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2 E. AZROUL, A. BENKIRANE AND M. RHOUDAF

1. INTRODUCTION
Throughout this pape® is a bounded open subset®f’, p is a real number such that<
p < oo andp’ is a conjugate, i.eg + - = 1.
Consider the following strongly nonlinear Dirichlet problem,

Au+ g(z,u,Vu) = f in
(1.1) { w=0  on oo
where Au = —div(a(z,u, Vu)) is a Leray-Lions operator with a Carathéodory function

Q x R x RN — R which satisfying the classical Leray-Lions conditions.
And g is a nonlinear lower order terms having natural growth with respeld¥td, no growth
with respect ta: and satisfying a sign conditions, i.e.,

1.2) g(x,s,&)s > 0.

We begin by some remarks and well know about the solvability of the profplein (1.1) iiPthe
case.

It will turn out that for In the variational case where (ifes W7 (Q)) the reader is referred

to [S]and [10] where the different approaches are applied.

If f e L'(Q), existence result 0.1) have been proved_in [9], but under some additionally
coercivity condition on the nonlinear term, that is,

(1.3) lg(x,s,&)| > ~|¢|P forall |s| some p > 0.

It should be noted that hypothe1.3) is more technical and allows to e (Wﬁ)’ﬁ(ﬂ).
Unfortunately, where[ (1]3) is violated, the solvability pf (1.1) with-data is not possible in
W, (€2)., but the solution of (1]1) is proved i /() with 1 < g < g = T2,

N-1
Note that in all the last works, the coefficients4and the nonlinearity have supposed to satisfy

the growth conditions and coercivity of polynémial type.

Now, when trying to relax this restrictions arandg, we are let to replacﬁ/ol’i”(Q) by a general
setting of Orlicz-Sobolev spacéB' L), () built from an N-function M instead ofi¢|?, where

the N-function M which defines.,, is related to the actuel growth and coercivityaodindg.

In this L,,-case, we list firstly the work [13] of Gossez, where the second merflies in
W=LE;;(Q) and the nonlinear term depends only on andu.

Wheng = g(z, u, Vu), the last work of Gossez is generalized.ih [6], but under some restriction
on the usedV-function M ( that isM satisfies the so-callefi,-condition).

The case wherg € L'(Q), is studied in[[7] buty have supposed satisfying in addition the
following L ,,-coercivity,

(1.4) |9z, s,8)] = BM([E]).

The result of[[7] is recovered by the work [8] where no coercivity condition a$ (1.4) is assumed
on g but the result is restricted to N-functionl satisfying theA,-condition.

Concerning the obstacle problems associatef t¢ (1.1) in the Orlicz - Sobolev Spaces, we refer
for this topics tol[2] and [3].

It will be interesting to note that the hypothesis of a sign condition is assumed in the all previous
works and it plays a crucial role for to obtain a priori estimates and existence of solutions.

Our principal goal in the present work is to obtain a solution of|(1.1) vita L'() in the
general settings of Orlicz-Sobolev Spaces. This is done with a nonlinganigt satisfying

nor sign condition and nak ,,-coercivity and without any restriction ( &s,-condition ) on the
N-function M .

More precisely, the existence of nonbounded solution to some nonlinear elliptic equations for
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unilateral problems is investigated. No growth and no sign condition are imposed on the func-
tion g(z, s, &) with respect to the variable Furthermore, the functionis assumed to garde a
constant sign.

It's well known that the classical techniques used for to study the profplem (1.1) are based on
the following approximate problems,

(P) { —div(a(z, ue, Vue)) + ge(z, ue, Vue) = fe in Q
¢ u. =0 on 01},

whereg.(x,s,§) = % and wheref, is a sequence of regular functions.

Nevertheless, this approximation can not allow to obtain the a priori estimates in our case, this

is due to the fact that.g(z, u., Vu.) has no sign.

To overcome this difficulty, one has introduce a doubling approximation, that is we penalize the

problem(F;) by,

o [ —div(a(z, uZ, Vu?)) + gZ (z,ug, Vu?) = Zm(Ti(u¢")) = fe in Q
(PE ) o — €

ul = on 01},
whereg?(z, s,&) = d,(5)g.(x, s, &) and where,(t) is some increasing Lipschitz-function (see

section$ @ and]5).

Our simplest model problem is the following:

—Apu+ [u|"M(|Vu|) = f in Q
(1.5) { u=0 on 09,
wherer > 0 andA,u is the so-called//-Laplacian operator defined as,
. Vu
AMU = —le(m(|VU|)W),

wherem is the derivatives function of th&-function M.
Note that, when we take ifi (3.5)/(¢) = |¢|” (p > 1) we obtain the followingL”-problem,

—div(|Vul[P~2|Vu|) + [u]"|[VulP = f in Q
u=0 on 01,

generated by the classigal.aplacian operator.

2. PRELIMINARIES

2-1Let M : R™ — R* be anN-function, i.e.,M is continous, convex, witd/(¢) > 0 for

t>O,MT(t)—>OaSt—>OandMT(t)—>ooaSt—>oo.

Equivalently,M admits the representation/ (t) = f(f m(s) ds wherem : R™ — R is nonde-
creasing, right continuous, with(0) = 0, m(¢) > 0 for ¢ > 0 anda(t) tends toco ast — oc.

The N-function M conjugate to) is defined byM = [ n(s) ds, wherem : RY — R
is given bym(t) = sup{s : a(s) < t}.

The N-function M is said to satisfy thé\,-condition if, for somek

(2.1) M(2t) < EM(t) ¥t >0.

When [2.1) holds only fot > somet, > 0 thenM is said to satisfy the\,-condition near
infinity. We will extend theseV-functions into even functions on atl.
Moreover, we have the following Young's inequality,

Vst >0, st<M(t)+ M(s).
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Let P and@ be two N-functions.P << ) means thaP’ grows essentially less rapidly thgh
i.e., foreach > 0, 2U _ past — .

7 Qet)
. : Lt
This is the case if and only ifim Q)
=0 P71(1)
2-2Let) be an open subset &". The Orlicz class(,,(2) (resp. the Orlicz spack,, ()
is defined as the set of ( equivalence classes of ) real valued measurable funaiofissuch

that:
/ M (u(z)) dx < 4o0( resp. / M(@) dx < +oo for some\ > 0).
Q Q

=0.

Ly (€2) is a Banach space under the norm,

|lul|aro = inf{A > 0: / M(@) de < 1}
Q
and K,(2) is a convex subset df ().
The closure inL,;(9) of the set of bounded measurable functions with compact suppQrisin
denoted byF,, ().

The dual of £, (Q2) can be identified with7(2) by means of the pairingf wv dz, and the
Q
dual norm ofL;(2) is equivalent t|. || 57 -

2-3 We now turn to the Orlicz-Sobolev spad&;' L,,(2) [resp. W!E(Q)] is the space of
all functionsu such that: and its distributional derivatives up to order 1 lie i, (Q2) [resp.
Ey(€)]. Itis a banach space under the norm,

lullar =) I1D%ullas.

o<1

Thus, WL, (Q) andW!E,(Q) can be identified with subspaces of produc\of+- 1 copies
of L/(€2). Denoting this product by [ L,,, we will use the weak topologies [ [ L, [ [ E77)
andO'(H LM'7 H LM)

The spacéVj E,,(9) is defined as the (norm) closure of the Schwartz sgaEe) in W' E,,(Q)
and the spac®/; L,(2) as thes ([ ] Las, [ Ea7) closure ofD(Q2) in WLy (Q).

2-4Let W L47(Q) [resp. W1 E4(2)] denote the space of distributions &nwhich can
be written as sums of derivatives of orderl of functions inL;(2) [resp. E5;(Q2)]. Itis a
Banach space under the usual quotient norm. (For more details see [1]).
We recall some lemmas introduced in [6] which will be used later.

Lemma 2.1. (cf. [6]) Let /' : R — R be uniformly Lipschitzian, witli’(0) = 0. Let M be an
N-function and lets € WLy, (Q) ( resp. W'Ey(Q)). ThenF (u) € WLy (Q)
(resp.W1E,(Q)). Moreover, if the seb of discontinuity points of” is finite, then

0 B F’(u)%u a.e.in{z € Q:u(zx) ¢ D},
8xlF(u) B { 0 a.ae. in{z € Q:u(x) € D}

Lemma 2.2. (cf. [6]) Let F' : R — R be uniformly Lipschitzian, witl#'(0) = 0. We suppose
that the set of discontinuity points &f is finite. LetM be anN-function, then the mapping
F : WLy (Q) — WLy (Q) is sequentially continous with respect to the weak* topology

o(IT Lot T Egp)-
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We give now the following lemma which concerns operators of the Nemytskii type in Orlicz
spaces ( see[6]).

Lemma 2.3. (cf. [6]) Let2 be an open subset & with finite measure.
Let M, P and@ be N-functions such thaf) << P, and letf : QO x R — R be a Carathéodory
function such that, fora.e.x € 2 and alls € R:

|[f (. 8)| < e(@) + ki P M (als]),

wherek;, k, are real constants anglz) € Eq(Q).
Then the Nemytskii operata¥ ; defined byN(u)(z) = f(z,u(x)) is strongly continuous from

We defineZ;"" (Q) to be the set of measurable function: Q — R such thatT},(u) €
Wi Ly (), whereTy(s) = max—k, min(k,s)) for s € R andk > 0. We gives the following
lemma which is a generalization of Lemma 2.1 [4] in Orlicz spaces. The proof of this lemma is
slightly modification of the preceding.

Lemma 2.4. For everyu € T,"" (Q), there exists a unique measurable functionQ? — RY
such that
VTi(u) = vX{y <k, almosteverywhere i) for every k > 0.

We will define the gradient of as the functiorny, and we will denote it by = Vu.

Lemma 2.5. Let A € R and letw and v be two measurable functions defined @rwhich
are finite almost everywhere, and which are such thdt:), 7). (v) and Ty (v + Av) belong to
Wi Ly (Q) for everyk > 0 then

V(u+ M) =Vu+ AVv a.e. inQ
whereVu, Vv andV(u + Av) are the gradients ofi, v andu + Av introduced in Lemmp 2,4.

The proof of this lemma is similar to the proof of Lemma 2.12 [11] in fiiecase.

3. BASIC ASSUMPTIONS AND ONE FUNDAMENTAL LEMMA

Let Q2 be an open bounded subseffdf, N > 2, with the segment property.
We now state our conditions on the differential operator,

(3.1) Au = —div(a(z,u, Vu)).

(A) alx,s,€): QxR xRY — RY is a Carathéodory function.
(Az) There exist tow N-functions// and P with P << M, a functionc(x) in Ez(2),
constants:;, ko, k3, k4 such that, for a.ex in 2 and for alls, ¢ € R,

la(z, 5,C)| < c(w) + kP M(ks|s|) + ks M M (ky|C]).
(A3) [a(z,s,¢) —alx,s, ) (¢C—¢) >0 forae.zin, allsin R and all¢’ in RY, with

(A4) There exists a strictly positive constansuch that,

a(z,s,¢)¢ = aM(|¢]),

fora.e.zinQ,als € R andall ¢ € RV,

Furthermore leyy : O x R x RV — R be a Carathéodory function having a constant sign
such that for a.er € Q2 and for alls € R and all¢ € RY,

(G1) lg(z, s, Q) < b([s]) (h(x) + M(|C]));
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(G2) g(x,0,¢) = 0;

whereb : R, — R, is a continuous non-decreasing functibns a given non-negative function
in L1(Q).

Consider now the following Dirichlet problem:

{ A(u) + g(x,u, Vu) = f in Q

(3:2) u =10 on 012,

and definer, " () as a set of measurable functions Q — R such thafl},(u) € Wi Ly (),
whereTy(s) = max—k, min(k,s)) for s € Randk > 0.

Lemma 3.1. Let(f,),, f € L'(Q) such that,

1) f, > 0a.e.in®;
2) fn - f a.e. in¢;

3) /fn(x) de — / f(z) dx. Thenf, — f strongly inL'(€).
Q Q

Lemma 3.2. Assume thatA,) — (A4) are satisfied, and letz,) be a sequence i/} Ly (9)
such that,

a) z, — zin W3 Ly (Q) for o (L (Q), TE77());
b) (a(z, zn, Vz,)). is bounded in Ly7(0))Y;

C) /[a(w, Zny Vzn) — a(z, 20, V2x,)][Vzn — Vzx,| de — 0asnands — +oo
(v%herexs is the characteristic function @2, = {z € Q,|Vz| < s}).
Then,
M(|Vz,|) — M(|Vz]) in L*(Q).

Proof. Fix r > 0 and lets > r we have,
(3.3) 0< /Q la(x, z,,Vz,) —alx, z,,V2)|[Vz, — Vz]| dx
< / la(x, 2, Vz,) — a(x, 2, V2)|[Vz, — Vz] do
= /ﬂ la(x, 2, V2z,) — a(x, 2, Vax,)][Vz, — Vax,] de
< /Q[a(x, Zny V) — a(x, 20, V2x,)] [V, — Vzx,] de.
Which with the conditiorr) imply that,
(3.4) RILIEO : la(x, 2, Vz,) — a(x, z,, V2)|[Vz, — Vz] de = 0.
So, following the same argument aslinl[12] we claim that,

(3.5) Vz, — Vz a.e. in Q.

On the other hand, we have

AIJMAA Vol. 7, No. 1, Art. 5, pp. 1-25, 2010 AJMAA
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(3.6) / a(z, zn, Vz,)Vz, dx —/[a(x,zn,Vzn) —a(z, zn, VZX,)]
Q Q
X [Vz, — Vzy,| dx

+ / a(x, zn, Vax,)(Vz, — Vzx,) d
Q

+ / a(x, zn, Vz,)Vax, dx.
0

Since(a(z, z,, Vz,)), is bounded i L37(Q))~, and by using[(3]5), we obtain
(3.7) a(x, 2y, Vz,) — a(z, 2, Vz) weakly in (Ly;(Q)Y for o(I1Ly7, I1Ey),
which implies that,
(3.8) / a(z, z,, Vz,)Vzx, de — / a(x,z,Vz)Vzx, dv as n — oo.

Q Q
Letting alsos — oo, we obtain
(3.9) /a(x,z, Vz)Vzx, de — / a(x,z,Vz)Vzd.
0 Q

On the other hand, it is easy to see that the second term of the right hand sidé of (3.6) tends to
0 asn — oo ands — oo.

Consequently, from), (3.8) and|(3.9) we have,

(3.10) lim [ a(z,2,,V2,)Vz, dx = / a(x,z,Vz)Vz d.
Finally, the coersivity(4,) and Lemma 3]1 allow to conclude that,
(3.11) M(|Vz,]) — M(|V2]) in LY(<).

In the sequel, sincg is supposed having a constant sign, we start our study by a case gvhere
IS positive.n

4. CASE OF A POSITIVE NONLINEARITY

We consider first the convex set,
(4.1) Ko={u € WiLy(Q); u>0 ae.in Q}.
This convex set is sequentialby(I1L,,, 1 F5;) closed intV, Ly (Q) [see [14]].

Remark 4.1. For eachu € KN L>(2) there exists a sequencee KoNWy Ey (2)NL¥(Q)
such thaw; — u for the modular convergence withy; || . bounded (see proposition 10, [14]).

Theorem 4.1. Assume thatA,) - (A4), (G1) and (G2) hold true and that f € L'(Q). Then
there exists at least one solution of the following unilateral problem,

(wery™(Q),u>0ae. in Q,
g(z,u, Vu) € L*(Q),

/ a(z,u, Vu)VTi(u—v) dx + / g(x,u, Vu)Ti(u — v) dx
0 0

< / fTi(u — v) da,
Q
|V ve Kyn L=(Q), VE > 0.
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Remark 4.2. Note that the gradient af in (P) is well defined in the weak sense (see Lemma
[2.4 and LemmAa 2|5)

Proof. Let us define,

9(,s,¢)

4.2 (z,8,&) =
(“2) S e TERNa]
and consider the following approximate problem,
(P) —diva(z, u, Vue) + ge(z, ue, Vue) = fe in Q

¢ u. =0 on 01,
wheref, is a regular function such thdt strongly converges té in L' (Q)
and|| fell 1) < || fllz1)- Note thatg(z, s, ) satisfies the following conditions,

|9e(2, 5, ) < lg(x,5,6)] < b([s]) (h(x) + M([E]))

(4.3)

and )
|ge(x> 375)' < E

Nevertheless, it seems different to obtain a priori estimates, due to the fact that the quantity
ueg(x, ue, Vue) has no sign.

In order to avoid this inconvenience, we approach the sign function by an increasing Lipschitz
function.

Set,
=2 if s>0>0
do(s)=4¢ 0 if |s| <o
===z if s<—0o<0O.
Now, we set
(44) g?(x787§> :5J(S)ge(xa87§)'

Remark thay? (z, s, &) has a same sign as

Now, we are in opposition to approximate our initial unilateral problem by the following penal-
ized problem,

(4.5)

(u? € WiLy(Q)

(A uf = o)+ | g7 ot V) g —v) do = 5 [ (T2 ) (a2 o) da
Q

(P7)q /¢
:/Qfe(ug—v) dx

€

[ Vve WiLy(Q),

wherem(t) is the derivatives function a¥/(¢).
From Gossez and Mustonen ([14], Proposition 5), the probjem (4.5) has at least one solu-
tion. n
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4.1. Study of the approximate problem with respect toe.

4.1.1. A priori estimates. Takingv = uZ — T,(u?) as testin[(4.5), we obtain
/a(:n,ua,Vu WVTi(u?) dx
Q

—|—/g€(x,u€,Vu) k(ul) dx
Q

— L [ T ) Twe) de

€2Q € ¢

= [ fTx(u?) dx.
Q

92 (x,ug, Vu?)Ty(u?) > 0 and—Lm(Ts(uZ ")) T,(u?) > 0 then we have,

(4.6) /Qa(a:,ug,Vu IVT(u?) de < k|| fllo1 o)

So, by(A4) we get,
@.7) o [ MVTLOD < Hlf e

Thus (Ty(u?)). is bounded inWj L,(22) uniformly in e and o, then there exists for fixed
somev? € WLy (2) such that,
Te(u?) — vy in WiLy(Q) for o(TILy, IE ;)
and
(4.8) Ti(u?) — vy strongly in E ().

€

4.1.2. Convergence in measure af?. Let £ > 0. By Lemma 5.7 of[[12], there exist tow
positive constants; andc, such that,

/ M(e () de < cg/ M(IVTo(u)]) da.
Q Q

So, in virtue of (4.7), we have

(49) /M ClTk dl’ < kC

wherec = c(|| f|| 1), c1, @).
Then, we deduce that,

M(erk)meag{[u?| > k}) = /{I Ly TG0 dr < e

Hence,
kc
7| >k}) < Ve, VEk.
meas{|uz| > k}) < s Ve
This yields that,
(4.10) mea§{|ul| > k}) — 0 as k — +o0

uniformly in ¢ ando.
Now, we prove thatu?). converges to some functiaff in measure (and therefore, we can
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always assume that the convergence is a.e. after passing to a suitable subsequence).
For every\ > 0, we have

(4.11) meas{|u] — uf| > \}) < meag{|u]| > k})
+meagf|u]| > k})
+meas{|Ti(u]) — Ti(ui)| > A}).

Consequently, by (4.8) we can assume thafu?)). is a Cauchy sequence in measuré€in
Letn > 0. By (4.11) there exists sonigr) > 0 such that,

meas{[us — u?| > A}) < n forall i,j > no(k(n), \).

This proves thatu?). is a Cauchy sequence in measur@ijrthus converges almost every where
to some measurable functiafi. Then

Te(u?) — Typ(u®) weaklyin Wy Ly (Q) for o(IILy, TEy)
(4.12) Te(u?) — Tr(u”) strongly in Ey,(2) and a.e. inf.

£

4.1.3. Show thatu” > 0. Takingv = u? — T1(u?) as test in), we obtain

/a(az,ug,Vu YVT1 (u?) da:—i—/gS (x,ul, Vul)T (ug) dx
Q ‘ Q
1

) Weoy

Since/ a(z,ul, VuZ)VT1(ul) de > 0 andg? (z,ul, Vul)T' ( 7) > 0 we get,
Q £

1 o . 1
—o | mTa(u))Te(w)) dr < [ fllze
Q £ € 8
which implies that,
1 .
= | T ()T 2 )dx<4uml

Moreover, since

then we have,

Finally, ertlng/M ) dx as

/ M(ul™) dx = / M(u?™) dx +/ M(u?™) dx,
Q {ug=<1} {ug=>2}

one deduce that,
/ M(u?™) dx < €| fllLyo +/ M(u?™) dx.
{ug=>2}
Hence, due to the fact thaf — u” a.e. in(2, we conclude that
M(u?) — M(u®) a.e.inf.

€

AJMAA Vol. 7, No. 1, Art. 5, pp. 1-25, 2010 AJMAA
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Also as in(4.1ID) we can prove that,

1

meagul~ > -} — 0.

9

Then,
M(ul™)—0 ase—0,
which gives,
u? > 0.

4.1.4. Boundedness ofa(z, Ty (u?), VI (u?))). in (L ()N . Letw € (En(Q2))Y be arbi-
trary. By (A;) we have,

[CL(iL‘7 ug? vug) - CL(I’, u?a ’LU)HVU? - w] > 07

which implies that,
a(z,ul, Vul)w < a(z,u?, Vul )Vu? — a(z,ul,w)(Vul — w).

) Yeoy ) Weoy ) Yeo

Integrating on the subsét: € 2, |u?| < k} we obtain,

(4.13) / a(z,u, Vul )w dz < / a(z,u?, Vu? )\Vu? dx
{lug|<k} {lug|<k}

- / a(z,ul, w)(Vul —w) dz.
{lug|<k}
Thanks to[(4.6), we have

) Yeoy

(4.14) / a(z,ul, Vu? )\Vu? dx < c(k).
{lug|<k}

On the other hand, fox large enough, we have by usifng,),

_ o _ [k k
/ M(M) de/M(ﬁ) dﬁ_?»/M(kQ\wDHg@,.
(lug|<k) A 0 A A Jo

Hence(|a(z, uZ, w)|y, 0, ) IS Pounded inL y (€2), which implies that the second term of the

right hand side of (4.13) is also bounded.
Consequently, we obtain,

(4.15) / a(x, Tp(u?), VT (u)w < ¢y,
Q
wherec, is a positive constant depending/of
Hence, by the theorem of Banach-Steinhaus, the sequencé;, (u?), VI (u?)).

remains bounded ifi ; (Q2))V.
Which implies that, for alk > 0, there exists a functiohy, € (L;;(€2))", such that

(4.16) a(z, Tr(u?), VTi(u?)) = hye weaklyin (L ()Y for o(ILL;(Q), TTEN(Q)).
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4.1.5. Almost every where convergence of the gradieim. the sequel, we use the following
notations:
n(e, j, h) is any quantity such that

lim lim limn(e,j,h) = 0.

h—+o00 j—+o0 e—0

If the quantity we consider does not depend on one parameter amgrand/h, we will omit
the dependence on the corresponding parameter: as an exaaple), is any quantity such
that

lim lim 77(5 h) = 0.

h—+o00e—0

Finally, we will denote (for example) by, (¢, j) a quantity that depends anj, h and is such
that

lim hmnh(e j)=0

_]—>+oo e—0

for any fixed value of.
We fix k > 0, letQ, = {z € Q,|VT,(u’(z))| < r} and denote by, the characteristic
function of(,.
Clearly, (2, C ©,,, and meaf2\(2,) — 0 asr — oc.
Fix r and lets > r, we have

(4.17)
OS/Q‘[ (@, Tho(u?), VTi(u?) — alz, Ti(u?), VIR (u”)|[VTi(u?) — VTi(u”)] dx

S/ la(z, Ti(u?), VTi(u?) — a(z, Ti(u?), VI (u)][VTL(u?) — VT (u”)] dx
:/Q [a(z, Ti(u?), VTi(u?) — a(z, Ti(u?), VT (u”)x ] [VTk(ul) — VT (u”)x,] dx
< /Q[ (2, T(u?), VT (u?) — a(z, Ty (u?), VTi(u”) x| [VTi(ul) — VTi(u”)x,] dz.

Letk > 0 and lety, (s) = se?s*, wherey = (%’“))2
It is well know that,

, 1
(4.18) pils) = ——len(s)l 2 5, Vs eR.
Thanks to Remark 4.1 there exists a sequence K, N W Ey () N L>(£2) which converges

to 7). (u”) for the modular convergence i, Ly, (£2).
Here, we define

whereh > 2k > 0.
Forn = exp(—4vk?), we define the following function as,

(4.19) W =l — g (W),
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We takevh 7 as test function |r.5) we obtain,
(A(ug), npy (W)

+/Qgs<x,ug,w () da

1 _ o
— = [ (T () gy (w!) da
e? Jo
</Q77f590k(wff) dz,

which implies that,
(A(), pp(wly))

—|—/96<ZL',U€,VU )gpk( J) dr
Q

1 o— g
-3 / m(Té (u? ))‘Pk(w?,’j ) dx
Q

< /Q fepr(w?

(4.20) /Qa(x,ue,Vu )Vw?]agoﬁg( 7)) dx

It follows that,

+/g€ (2,uZ, V) 0y (wl?) d
Q

1 _ -
— o | T )y (wl) de
€% Ja
S fggpk(w?:]a) d&?

Q

Note that,waj = 0 on the set where:?| > h + 5k, therefore, setting = 5k + h, we get by
@.20)

/ oz, To(u?), VTu(u2)) Vel 2 gy () da
Q
+/g5 (2, u7, VU)o () da

Q

1 _ o
1 / m(Ts (ul ™))y (wl?) da
€“ Ja N

< / fepr(w!

In view of ) we have, (w™7) — ¢ 7) weakly* in L>°(2) ase — 0 and then
W W

/fggok dx—>/fg0k )dz ase — 0,

again tending to infinity, we get

/fgpk dx—>/fg0 h”)dm as j — +oo.
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Finally, by using the Lebesgue’s theorem, we can deduce that,
/chpk(wh"’) dxr — 0 as h — +o0.

So that,

(4.21) |ttty da = nte.i.m.

Note that the sign Obk(w?”;’) is the same as that af in the set{z € Q, |u?| > k}, then we
have

92 (x,uZ, Vud)py (wiy) = 0,

) Yeoy

and
(T ) e(wl) 2 0

in the subsefz € Q, |u?| > k}, we deduce front (4.20) that,
(4.22) | e T ). VIVl )i k) do
+/ ge($7u€7vu )Spk( hU) dx
{

/ (T2 (W2 ™) (02 — Talvy) exply(ul))?

Sn(w, h).

Since by Remark 4] L;; > 0, then the third term of the left-hand side of the above inequality is
positive, thus,

4.23) / oz, Tu(u?), VTL(u2)V ()l (w) da

+/ 9e (ZL’,UE,VU )Spk’( hU) dx
{lug|<k}

<n(e, j, h).

Splitting the first integral one the left hand side [of (4.23), whefé < k and whergu?| > F,
we can write,

(4.24) / a(z, Ty(u?), VT, (ud))V (W)l (wl7) do
/ ”\<k} u?), VIu()) [V Ti(ul) = VTi(v)))pp(wsy) do

of 7). VI )V ()l (wl'7) do.
u"|>k}
The first term of the right-hand side of the last inequality can write as,

(4.25) / ae, To(u2), VT, (u2)V (") g () da
{|ug|<k}

/Q oz, Tu(u?), VT () [V Tw(42) — VTi(v;)|glh (w9 de.
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For the second term of the right hand side[of (4.24) we can write, sing

(4.26) / a(z, Ty(u?), VI,(u2))V (W) (wl?) dx
{|ug|>k}
> gl (2h) /{ e ), VT
uZ |>

Since|a(z, Ts(u?), VTs(u?))| is bounded inL;; (2), we have for a subsequence
la(z, Ts(ud), VT (ul))] = Lso

weakly inL; () for o(Ly;, Ey) ase tends to zero, and since
VUJ’X{|ug|>k} - VUjX{|u"|>k}

strongly inE,,(Q2) ase — 0, we have

oL (2h) / lala, Ty(u2), VT, ()| V] dx — ! (28) / Lo V| da
{|ug|>k} {

lu7|>k}

ase — 0.
Using now, the modular convergence(of), we get

—@%(2]@)/ ls.o|Vv;| do — —@%(2]{)/ ls.o|VT(u”)] dz =0
{lue|>k} {

|uo|>k}
asj — +oo.
Finally, we have
4.27) G (2k) /{ T, V)V dr = (o)
uZ [>

Combining [4.2%) and (4.27), we deduce that,

/ al, T,(u?), VTy(u?))V (wl) gl () da
Q

> /Qa(fca Ti(ul), VT(u) [V Ti(ul) = VTi(0)lei (wiy) da+ (e, ).

Which implies that,

@28) [ ol T0) VL) V(o) da
> [ lofe, Tu(u?), VT (00) = ale. Tuu?), V(03]
x [VTi(u?) = VTi(v;)x)]eh(wr) da
+ [ ol T(u). VI IVT ) = VI il do
-/ 00, VI VT )l do

+ nh(€7 j)a
where y? denotes the characteristic function of the subSét= {z € Q: |[VT\(v;)| <

s}.
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By (4.16) and the fact that 7. (v;) x o ol (w ) tends toVTk(v])XQ\ngok( *7) strongly in
(Ex(Q))YN, the third term of the right-hand S|de of (4]28) tends to the quantlty

[ e VLo xg i (0) di 3= 0.
Q

Letting now; tends to infinity, by using the modular convergence ofve have

/ Pk OVTk(UJ)XQ\QJ SDk( 7) dx — o VT (u”) @) (w"7) dz as j — +o0.
Q o\QZ

Finally, we get,

(4.29) /Q o a(z, Te(u2), VT (u?))VTi(v;) 0 (W) da

= [ o VR do e ).
ON\Qs
Concerning the second term of the right hand sid¢ of {4.28) we can write,
@30) [ @ T?) VTV TLE) — VTl (ul) da
— [ 4l Tu(u), VT o)) VT ATE) = Ta(wy) o
Q

— [ ol Tu(u), VT V(5 )
The first term of the right hand side ¢f (4]30) tends to the quantity,
/Qa(:mTk(u"), VT (v) X)) VT (u) gl (T (u”) — Ti(v;)) dz as e — 0.
Thanks to Lemmfa 23, we have
a(a, Tu(u?), V(0 WDk (T () = Ti(v;)) = ala, Tu(u”), V(03D (L) = Ti(w;))
strongly in(Ey; ()Y and
VTi(u?) — VTi(u”) weaklyin (Ly ()Y for o(I1Ly, TIE ;).
For the second term of the right hand side[of (#.30) it is easy to see that,

(4.31) / 0z, T(u2), VT (7)) VT (0, ()

— [ ale T VI Tilo i (] ) de s = =0,

Consequently, we have
@32) [ 4l T, V@)V TE) — VT (l) do
Q

- /Sza(x’T’f(uU)?VTk(Uj)Xg)[VTk(u ) — VT (v;) ] @hk( ;L") dx

+1;1().
Since,
VTi(v;)x ), (W) — VT(u”)x, ), (w™)
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strongly inE,,(Q2))Y asj — oo, it is easy to see that,
/Qa(x,Tk(u”),VTk(vj)Xg)[VTk(u ) — VTk(vj)Xs]gpk( 7)Ydr — 0 as j — +oc.

Thus,
(4.33) /Q (2, Ti(u?), VT (v;)X2) [V Tk (u?) — VTk(vj)Xg]gaz(wQ’f) dx =n,(e,j).
Combining [4.2B),[(4.29) and (433) we get,
(4.39) [ e T (2), VD) V@l )il da

Q

> [ lole. Tu(u), VI (0) = ol Tu(u), VTu(13))]

x [VTi(u?) = VTl (wly) da

+ / hio VT (u”) e, (0) dz + n(e, 7, h).
O\,

We now turn to the second term of the left hand sidé of (4.23), we have

‘/ 9e (SC,UE,VU )(pk( )dl‘
{lug|<k}
< b(k;)/Q(h(a:) + M(VTi(u) oy (w?)] da

<(6) [ o)leuuls)] de + 40 [ ale D). VT ) VI o) d

< (e, g, by + 28 | ole 1), VRV Tuu ulul)]

[0
The last term of the last side of this inequality reads as,

@/ﬂ[a@j}c(ug),vn(ug)) — a(z, Ti(uZ), VT (v;)x3)]
X [VTi(u?) = VTi(v;)x] e (wly)] da
Jr@/Q a(a, Ti(ug), VTi(v) XDV T(wd) = VTi(v;)x] | r(wly )] de

«

_@/Q (2, Ti(u?), VT (u)) VTi(v)) Xl pi (w2 )| dav.

«
And reasoning as above, it is easy to see that,

b(k)

o /Qa(%Tk(UQ’%VTk(vj)Xi)[VTk(u) VTi(v) ) len(wey)| de = e, j)

and
b(k)

«

/Q o, T(u?), V()Y Ti(v)x2 L ()] d = (e, 4, ).
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So that,
439 | s vty i
< @ /Q [a(z, T (u?), VTi(u?)) — a(x, Te(ul), Vi (v;)x3)]

X [VTi(u?) — VTi(v;) x| op(wl?)] dz + n(e, 4, ).
Combining [4.2B),[(4.34) and (435), we obtain
(4.36) / 0z, T(u?), VTx(u2)) — ae, Ty (u2), VTi(0;)x2)]
< [VTL() — VIl wl) — "2 gyl ) da
< / o VT (u”) 9} (0) da + 1(2, 5, h),
O\ Qs
which implies by using/ (4.18) that
(4.37) / lale, Ty(uZ), VTu(u?)) — ale, Ty(uZ), VTi(v;)xd)]
X VT (ug) — VTi(v;)xL] d
< 2/ hieo VT3 (u”),(0) dz + (e, j, ).
Q\QS
Now, remark that,
(4.38) / oz, Ty(u2), VTi(u2)) — a(z, Tu(u?), V()X )| [VTk(u?) — VTu(u®)x,] dz
< / (o, T(u?), VTx(u2)) — a(w, Te(u?), V(o X[V T(u?) — V()] da
n / (2, To(u?), VTe(0;)x) [V Ta(u2) — VTi(u;)d) di
Q
/Q oz, T(u2), VTi(u”)x,) VT (1) — VTi(u”)x,] da

+ [ ale Ti2), PTG VT3~ VI ()] de
Q

We shall pass to the limit im andj in the last three terms of the right-hand side of the last
inequality, we get

/Q (0, Tolu2), VT, XV T (u?) — VTi(05)x] dx = (e, )

/Q (. To(u2), VTu(w)xs) [V Tk(u7) — VTi(w)x,] de = n(e)
and

/Q o(z, T(u?), VT(u)) [V Ta(0;)x! — VTu(u®)x,] dx = n(e, J),
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which implies that,

(439)/ (@, Tho(u), VTi(u?)) — a(z, Te(u?), VI (u”)x ) [VTk(ul) = VTi(u”)x,] dz

/Q[ (2, Ti(ug), VIi(ud)) — a(x, Ti(ud), VTu(v)XDIV Te(ul) — VTi(v;)x]] do

+ (e, j)-

Combining [4.1]7),[(4.37) anfl (4.39), we have
(4.40)

| e Ti), 9T00)) = . i), VTNV (a) = V()] o
< [ lofe. Tu(u), VTa)) = afe Tue?). VI VT ) = VT, da

S 2/ h/wVTk(uU)QD;C(O) dx + 7’/(8,j, h)
O\

By passing to théim sup overn and lettingy, &, s tend to infinity, we obtain

lim | [a(z, Te(u?), VIi(u?)) — alz, Ti(u?), VT )][VTL(u?) — VT(u®)] dx = 0.

e—0 Q
s

This implies by virtue of Lemmfa 3|2 that,

(4.41) Vu? — Vu’ a.e.in
and
(4.42) M(|VTy(u?)]) — M(|VTe(u”)]) in L'(9Q).

4.1.6. Equi-integrability of the nonlinearity. We need to prove that,
(4.43) g (z,u?, Vu?) — ¢°(z,u’, Vu’) stronglyin L'(€).

) Yeoy

In particular it is enough to prove the equi-integrabilitygdf =, uZ, VuZ). To this purpose, we

)y Weoy

takeu? — T (uZ — Ty (u?)) > 0 as test function if| (4]5), we obtain,
[ easveys [ jpjds
{lug|>h+1} {lug|>h}
Letn > 0, then there exists(n) > 1 such that,
(4.44) / |62 (z,uZ, Vu?) dx < q
{lug |2h(m)} 2
For any measurable subgétc (2, we have

/E 197 (2,7, Vu?)| di < / () (clx) + MV Ton(u2)]) i

4 / l9a, 02, Va?)| da
{|ug|>h(n)}

In view of (4.42) there exist§(n) > 0 such that,

(4.45) | b)) + M(VTii a2} d <

N3
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for all £ such thatE| < 3(n).

Finally, combining|(4.44) and (4.45), one easily Pyésigg(:c, uZ, Vu?)| dx < nforall E such
E

that meagE) < 5(n).

4.1.7. Passing to the limitie. Letv € Koy N Wy Ey () N L2(Q), we takeu? — Ty (u? — v)
as test function irf (4]5), we can write,

(4.46) / a(z,ul, Vul )VTi(u? —v) do + / 92 (z,u?, Vul)Ti(ul —v) dx
0 Q
< / [Tk (u? —v) dx,
Q
which implies that,
/ a(z,ul, VuZ)V(ul —v) dx + / 92 (z,ul, Vul) T (ul — v) dx
{lug —v[<k} Q

< /QfETk(ug —v) dz.

/ a(z,ul, Vu?)Vu dx — / a(z,ul, Vul)Vu dx
{lug —v[<k} {lug —v|<k}
+ / 92 (z,u, Vul ) Ty (u? — v) dx
Q
< / feTe(ul —v) dx.
Q

By Fatou’s lemma and the fact that,

(@, Tt o)oo (U2), Vg ofoe (ud)) = (@, Tt o)e (47), Vg o) e (u”))
weakly in(L;; ()Y for o(I1L;, ILE),) on easily see that,
/ a(x,u’, Vu?)Vu’ dr — / a(, Tiyijo)|oe (U7), Vg o) (u”)) Vo dz
{lue—v|<k} {lue—v|<k}
+ / 97 (x,u’, Vu) T (u® —v) dx
Q
< [ fT(u® —v) da.
Q
Hence,

(4.47) / a(z,u’, Vu?)VT,(u” —v) dz + / g% (z,u’, Vu?)Ti(u” —v) dx
Q

Q
< [ fTi(u® —v) dx.
Q
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Now, letv € Ko N L>(€2), by Remark 4]1, there exist € Ko N W] Ey N L>(£2), such tha,
converges t@ in the modular sense. Lét> ||v||~, takingv = T;(v;) in (4.47), we have

/Qa(x,ua, Vu? )V, (v — T (vy)) doe + /Qg(’(a:,ua, Vu?) Ty (u® — Ti(v))) dx
< [ 1B =Tty de
We can easily pass to the limit as— +oo, to get
/Qa(a:,u”, Vu')\VTi(u® — Ti(v)) dz
—i—/gg”(m,u”,VuU)Tk(ug —T(v)) dx
S/Qka(UU—Tz(U)) dx Vove KognL>®(Q).
Asl > ||v]|«, We deduce,
/Qa(x, u’, Vu®)VT,(u” —v) dz
(4.48) —|—/Qgg(m,u", Vu' )Ty (v —v) dz

S/ka(u”—v) dx Vv e KyNL>®(Q), VEk>D0.
Q

4.2. Study of the problem with respect to theo.

4.2.1. Estimates with respect te. We are going to give some estimates, on the sequence

(u), identical to [(4.7).
For that, takingy = T, (u” — Tr(u”)) in (4.48) and lettings tends to infinity then by the same
argument as in section 4.1 we can prove that,

o [ MOVI)) < Kl
Q

Thus, as if 4.1]2, there existsuch thafl; (u) € Wy Ly (2) and
Te(u”) — Ti(u) weaklyin Wy Ly () for o(IILy, ITE )
T (u?) — T(u) strongly in E,/(€2) and a.e in2.

So,u? > 0 a.e. inQ2 and we have alse > 0. a.e in{).

4.2.2. Strong convergence of truncation with respect to We fix & > 0, letQ, = {x €
Q, |VTi(u(x))| < r} and denote by, the characteristic function @2,. Clearly, 2, C Q.
and meaf?\(2,) — 0 asr — oc.
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Fix r and lets > r, we have

(4.49) 0< / la(x, T (u?), VTE(u®) — a(z, Tp(u?), VIp(w)] [V (u) — VI (u)] dx

< /Q [a(z, T (u”), VT (u”) — a(z, Tp(u?), VI (w)] [V (u) — VI (u)] dx
= /Qw[a(x, Ti(u”), VI (u”) — a(z, Tr(u”), VT (u)x,] [VTr(u”) — VT (u)x,] dz
< /Q[a(m,Tk(u”), VT (u) — a(x, Te(u®), VTe(u) x| [VTk(u”) — VTi(u)x,] de.

Thanks to Remark 4.1, there exists a sequenee K, N W E),(€2) N L*(2) which converges
to 7. (u) for the modular convergence Wy L (2).
Here, we define

w;” = Top(u” — Th(u”) + Ty (u”) — Ti(v;))
wh = Top(u — Ty (u) 4 Tio(uw) — Ti(vy))
w' = Top(u — Th(u))

whereh > 2k > 0.
The choice oy = T.(u” — ¢, (w}”)) as test function inf (4.48), allows to have, for &t 0,

/Qa(:c, u?, Vul )V (u” — Ty(u” — @i (wh)) da
n / &7 (2,0, VU )Ti(u® — To(u® — o (w!)) d
< / T = T — o, (') da,
which implies that,
/ e, u, Vur) VT (wl) da
{lu”—p(wh*)|<s}
T / & (2,0, V)T — To(u — i, (w1)) d
< /Q T = Ty(u” = oy (w)) dar.
Letting s tends to infinity and choosingarge enougtil > |, (2k)|), we deduce
(4.50) /Qa(:v,ua, Vu“)Vgpk(w?U) dx + /Qgg(:n,ua, Vu”)gok(w?") dr < /Qfgpk(w?") dzx.

Then by using the same techniques gs in 4.1.5 we can deduce that,
(4.51) M (VT (u%)) — M(VTy(u)) strongly in L*(Q)

and
Vu® — Vu a.e. inf.
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4.2.3. Equi-integrability of g7 (z, u, Vu?) with respect tar . Moreover, since is a Carathéodory
function, it is easy to see that,

g(z,u’, Vu’) — g(z,u, Vu) a.e.in Q aso — 0.
Then, by assumptiofi7s) ( note that this hypothesis is only used here), it is clear that,
g7 (z,u”, Vu?) = d,(u”)g(x,u’, Vu’) — g(z,u, Vu) a.e.in {z € Q,u(z) > 0}.

Similarly, claim that,
¢ (z,u’, Vu’) — g(z,u, Vu) in L'(Q).
Indeed, taking:” — T3 (u, — T;(u”)) as test function ir{ (4.48), we obtain

[ e ve)des [l
{Jue[>1+1} {Jue|>1}
Let 5 > 0, then there exist§ 3) > 1 such that,

(4.52) / g (x,u”, Vu?) dx < é
{lu 121(3) 2
For any measurable subggtcC 2, we have

[E 167 (2, 07, V)| de < / b(U(B))(e(x) + M((VTigs)(u7)) di

+/ |6 (z,u”, Vu?)| dz.
{lu|>1(8)}

In view of (4.5]) there exist(3) > such that

(4.53) /E b(U(B)) (e(z) + M(|(VTigsy (u7)]) di <

RS

Finally, combining|(4.52) and (4.53), one easily Pyésg"(:c, u?, Vu?)| dx < nforall E such
E

that mea6l) < «o(f).
So, as i 4.1]7, we can pass to the limitimnd conclude. This achieves the proof of Theorem
4.1.

Remark 4.3. If we suppose that the source terfnis no positive, then the unique positive
solution of the problen] (1}1) is the vanished function.

Indeed: If we taker = 0 in (P), we have
/Qa(x,u,Vu)VTk(u) dx—i—/gg(x,u, Vu)Ti(u) de < /Qka(u) dx
Sinceg(z, u, Vu) > 0 and7j(u) > 0 we deduce,
/Qa(:c,u,Vu)VTk(u) dr < /Qka(u) dx
On the other hand, thanks td,) and the fact thaf < 0 andu > 0, we conclude
/]\/[ \VTi(u)|) de < / fTi(u) dz <O0.

We can easily deduce th@}(u) = 0, V k& > 0 by letting £ tends to infinity, we have
u = 0.
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5. CASE WHERE THE NONLINEARITY g IS NEGATIVE

We consider,
Ko={ueWyLy(Q); u<0 ae.in Q}.

This convex set is sequentiabyT1L,,, [1E57) closed intV! L, (Q2) (see[[14]). The nonlinearity
termg is supposed a non-positive function.

Theorem 5.1. Assume thatA,) - (4,), (G1) and (G>) hold true and that f € L'(2). Then
there exists at least one solution of the following unilateral problem,

(wery™(Q),u<0ae. in Q,
g(z,u, Vu) € L*(Q)

a(z,u, Vu)VTi(u —v) dx + / g(x,u, Vu)Ti(u — v) dx
Q

fTi(u—wv) de,

Q

_ Q
| V v e Kon L®(Q), Yk > 0.

Proof. The same proof as in Theor¢m4.1 can be applied with the following changements:
i) The Lipschitz functionj, (s) is replaced by.

B == jf s>0>0
d,(s) =% 0 if |s|] <o
sto if s<—0<0.

S

i) The approximate problem becomes :

( U? S WOIL]V[(Q)

B /(Aug,ug—v)Jr/ge(xu Vul)(ul —v dx+—/m ))(u? —v) dx
Q

/ fe(u? —v)
[ VveWiLy(Q).
iii) The setK, considered in Remafk 4.1, will be replaced by,
Ko={ueWiLy(Q); u<0 ae.in Q}.
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