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2 E. AZROUL, A. BENKIRANE AND M. RHOUDAF

1. I NTRODUCTION

Throughout this paperΩ is a bounded open subset ofRN , p is a real number such that1 <
p < ∞ andp′ is a conjugate, i.e.,1

p
+ 1

p′
= 1.

Consider the following strongly nonlinear Dirichlet problem,

(1.1)

{
Au + g(x, u,∇u) = f in Ω
u = 0 on ∂Ω,

whereAu = −div(a(x, u,∇u)) is a Leray-Lions operator with a Carathéodory functiona :
Ω× R× RN → R which satisfying the classical Leray-Lions conditions.
And g is a nonlinear lower order terms having natural growth with respect to|∇u|, no growth
with respect tou and satisfying a sign conditions, i.e.,

(1.2) g(x, s, ξ)s ≥ 0.

We begin by some remarks and well know about the solvability of the problem (1.1) in theLp-
case.
It will turn out that for In the variational case where (i.e.,f ∈ W−1,p′(Ω)) the reader is referred
to [5]and [10] where the different approaches are applied.
If f ∈ L1(Ω), existence result of (1.1) have been proved in [9], but under some additionally
coercivity condition on the nonlinear term, that is,

(1.3) |g(x, s, ξ)| ≥ γ|ξ|p for all |s| some µ > 0.

It should be noted that hypothesis (1.3) is more technical and allows to solve (1.1) inW 1,p
0 (Ω).

Unfortunately, where (1.3) is violated, the solvability of (1.1) withL1-data is not possible in
W 1,p

0 (Ω)., but the solution of (1.1) is proved inW 1,q
0 (Ω) with 1 < q < q̄ = N(p−1)

N−1
.

Note that in all the last works, the coefficients ofA and the nonlinearity have supposed to satisfy
the growth conditions and coercivity of polynômial type.
Now, when trying to relax this restrictions ona andg, we are let to replaceW 1,p

0 (Ω) by a general
setting of Orlicz-Sobolev spacesW 1LM(Ω) built from anN -functionM instead of|t|p, where
theN -functionM which definesLM is related to the actuel growth and coercivity ofa andg.
In this LM -case, we list firstly the work [13] of Gossez, where the second memberf lies in
W−1EM̄(Ω) and the nonlinear termg depends only onx andu.
Wheng ≡ g(x, u,∇u), the last work of Gossez is generalized in [6], but under some restriction
on the usedN -functionM ( that isM satisfies the so-called∆2-condition).
The case wheref ∈ L1(Ω), is studied in [7] butg have supposed satisfying in addition the
following LM -coercivity,

(1.4) |g(x, s, ξ)| ≥ βM(|ξ|).

The result of [7] is recovered by the work [8] where no coercivity condition as (1.4) is assumed
ong but the result is restricted to N-functionM satisfying the∆2-condition.
Concerning the obstacle problems associated to (1.1) in the Orlicz - Sobolev Spaces, we refer
for this topics to [2] and [3].
It will be interesting to note that the hypothesis of a sign condition is assumed in the all previous
works and it plays a crucial role for to obtain a priori estimates and existence of solutions.
Our principal goal in the present work is to obtain a solution of (1.1) withf ∈ L1(Ω) in the
general settings of Orlicz-Sobolev Spaces. This is done with a nonlinearityg, not satisfying
nor sign condition and norLM -coercivity and without any restriction ( as∆2-condition ) on the
N-functionM .
More precisely, the existence of nonbounded solution to some nonlinear elliptic equations for
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ON SOME STRONGLY NONLINEAR ELLIPTIC PROBLEMS 3

unilateral problems is investigated. No growth and no sign condition are imposed on the func-
tion g(x, s, ξ) with respect to the variables. Furthermore, the functiong is assumed to garde a
constant sign.
It’s well known that the classical techniques used for to study the problem (1.1) are based on
the following approximate problems,

(Pε)

{
−div(a(x, uε,∇uε)) + gε(x, uε,∇uε) = fε in Ω
uε ≡ 0 on ∂Ω,

wheregε(x, s, ξ) = g(x,s,ξ)
1+ε|g(x,s,ξ)| and wherefε is a sequence of regular functions.

Nevertheless, this approximation can not allow to obtain the a priori estimates in our case, this
is due to the fact thatuεg(x, uε,∇uε) has no sign.
To overcome this difficulty, one has introduce a doubling approximation, that is we penalize the
problem(Pε) by,

(P σ
ε )

{
−div(a(x, uσ

ε ,∇uσ
ε )) + gσ

ε (x, uσ
ε ,∇uσ

ε )− 1
ε2

m(T 1
ε
(uσ−

ε )) = fε in Ω

uσ
ε ≡ 0 on ∂Ω,

wheregσ
ε (x, s, ξ) = δσ(s)gε(x, s, ξ) and whereδσ(t) is some increasing Lipschitz-function (see

sections 4 and 5).
Our simplest model problem is the following:

(1.5)

{
−∆Mu + |u|rM(|∇u|) = f in Ω
u ≡ 0 on ∂Ω,

wherer > 0 and∆Mu is the so-calledM -Laplacian operator defined as,

∆Mu = −div(m(|∇u|) ∇u

|∇u|
),

wherem is the derivatives function of theN -functionM .
Note that, when we take in (1.5),M(t) = |t|p (p > 1) we obtain the followingLp-problem,{

−div(|∇u|p−2|∇u|) + |u|r|∇u|p = f in Ω
u ≡ 0 on ∂Ω,

generated by the classicalp-Laplacian operator.

2. PRELIMINARIES

2-1 Let M : R+ → R+ be anN -function, i.e.,M is continous, convex, withM(t) > 0 for
t > 0, M(t)

t
→ 0 ast → 0 and M(t)

t
→∞ ast →∞.

Equivalently,M admits the representation:M(t) =
∫ t

0
m(s) ds wherem : R+ → R+ is nonde-

creasing, right continuous, withm(0) = 0, m(t) > 0 for t > 0 anda(t) tends to∞ ast →∞.

The N -function M conjugate toM is defined byM =
∫ t

0
m̄(s) ds, wherem̄ : R+ → R+

is given bym̄(t) = sup{s : a(s) ≤ t}.

TheN -functionM is said to satisfy the∆2-condition if, for somek

(2.1) M(2t) ≤ kM(t) ∀t ≥ 0.

When (2.1) holds only fort ≥ somet0 > 0 thenM is said to satisfy the∆2-condition near
infinity. We will extend theseN -functions into even functions on allR.
Moreover, we have the following Young’s inequality,

∀ s, t ≥ 0, st ≤ M(t) + M(s).
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4 E. AZROUL, A. BENKIRANE AND M. RHOUDAF

Let P andQ be twoN -functions.P << Q means thatP grows essentially less rapidly thanQ,
i.e., for eachε > 0, P (t)

Q(εt)
→ 0 ast →∞.

This is the case if and only iflim
t→∞

Q−1(t)

P−1(t)
= 0.

2-2Let Ω be an open subset ofRN . The Orlicz classKM(Ω) ( resp. the Orlicz spaceLM(Ω)
is defined as the set of ( equivalence classes of ) real valued measurable functionsu on Ω such
that: ∫

Ω

M(u(x)) dx < +∞( resp.
∫

Ω

M(
u(x)

λ
) dx < +∞ for someλ > 0).

LM(Ω) is a Banach space under the norm,

‖u‖M,Ω = inf{λ > 0 :

∫
Ω

M(
u(x)

λ
) dx ≤ 1}

andKM(Ω) is a convex subset ofLM(Ω).
The closure inLM(Ω) of the set of bounded measurable functions with compact support inΩ is
denoted byEM(Ω).

The dual ofEM(Ω) can be identified withLM(Ω) by means of the pairing
∫

Ω

uv dx, and the

dual norm ofLM(Ω) is equivalent to‖.‖M,Ω.

2-3 We now turn to the Orlicz-Sobolev space,W 1LM(Ω) [resp. W 1EM(Ω)] is the space of
all functionsu such thatu and its distributional derivatives up to order 1 lie inLM(Ω) [resp.
EM(Ω)]. It is a banach space under the norm,

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus,W 1LM(Ω) andW 1EM(Ω) can be identified with subspaces of product ofN + 1 copies
of LM(Ω). Denoting this product by

∏
LM , we will use the weak topologiesσ(

∏
LM ,

∏
EM)

andσ(
∏

LM ,
∏

LM).
The spaceW 1

0 EM(Ω) is defined as the (norm) closure of the Schwartz spaceD(Ω) in W 1EM(Ω)
and the spaceW 1

0 LM(Ω) as theσ(
∏

LM ,
∏

EM) closure ofD(Ω) in W 1LM(Ω).

2-4 Let W−1LM(Ω) [resp. W−1EM(Ω)] denote the space of distributions onΩ which can
be written as sums of derivatives of order≤ 1 of functions inLM(Ω) [resp. EM(Ω)]. It is a
Banach space under the usual quotient norm. (For more details see [1]).
We recall some lemmas introduced in [6] which will be used later.

Lemma 2.1. (cf. [6]) Let F : R → R be uniformly Lipschitzian, withF (0) = 0. LetM be an
N -function and letu ∈ W 1LM(Ω) ( resp. W 1EM(Ω)). ThenF (u) ∈ W 1LM(Ω)
( resp.W 1EM(Ω)). Moreover, if the setD of discontinuity points ofF ′ is finite, then

∂

∂xi

F (u) =

{
F ′(u) ∂

∂xi
u a.e. in{x ∈ Ω : u(x) /∈ D},

0 a.e. in{x ∈ Ω : u(x) ∈ D}

Lemma 2.2. (cf. [6]) Let F : R → R be uniformly Lipschitzian, withF (0) = 0. We suppose
that the set of discontinuity points ofF ′ is finite. LetM be anN -function, then the mapping
F : W 1LM(Ω) → W 1LM(Ω) is sequentially continous with respect to the weak* topology
σ(

∏
LM ,

∏
EM).
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We give now the following lemma which concerns operators of the Nemytskii type in Orlicz
spaces ( see [6]).

Lemma 2.3. (cf. [6]) LetΩ be an open subset ofRN with finite measure.
LetM, P andQ beN -functions such thatQ << P , and letf : Ω×R → R be a Carathéodory
function such that, fora.e.x ∈ Ω and alls ∈ R:

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

wherek1, k2 are real constants andc(x) ∈ EQ(Ω).
Then the Nemytskii operatorNf defined byNf (u)(x) = f(x, u(x)) is strongly continuous from
P(EM(Ω), 1

k2
) = {u ∈ LM(Ω) : d(u, EM(Ω)) < 1

k2
} into EQ(Ω).

We defineT 1,M
0 (Ω) to be the set of measurable functionu : Ω → R such thatTk(u) ∈

W 1
0 LM(Ω), whereTk(s) = max(−k, min(k, s)) for s ∈ R andk ≥ 0. We gives the following

lemma which is a generalization of Lemma 2.1 [4] in Orlicz spaces. The proof of this lemma is
slightly modification of the preceding.

Lemma 2.4. For everyu ∈ T 1,M
0 (Ω), there exists a unique measurable functionv : Ω −→ RN

such that
∇Tk(u) = vχ{|u|<k}, almost everywhere inΩ for every k > 0.

We will define the gradient ofu as the functionv, and we will denote it byv = ∇u.

Lemma 2.5. Let λ ∈ R and letu and v be two measurable functions defined onΩ which
are finite almost everywhere, and which are such thatTk(u), Tk(v) andTk(u + λv) belong to
W 1

0 LM(Ω) for everyk > 0 then

∇(u + λv) = ∇u + λ∇v a.e. inΩ

where∇u,∇v and∇(u + λv) are the gradients ofu, v andu + λv introduced in Lemma 2.4.

The proof of this lemma is similar to the proof of Lemma 2.12 [11] in theLp case.

3. BASIC ASSUMPTIONS AND ONE FUNDAMENTAL LEMMA

Let Ω be an open bounded subset ofRN , N ≥ 2, with the segment property.
We now state our conditions on the differential operator,

(3.1) Au = −div(a(x, u,∇u)).

(A1) a(x, s, ξ) : Ω× R× RN → RN is a Carathéodory function.
(A2) There exist tow N-functionsM and P with P << M , a functionc(x) in EM(Ω),
constantsk1, k2, k3, k4 such that, for a.e.x in Ω and for alls, ζ ∈ R,

|a(x, s, ζ)| ≤ c(x) + k1P
−1

M(k2|s|) + k3M
−1

M(k4|ζ|).
(A3) [a(x, s, ζ) − a(x, s, ζ ′)](ζ − ζ ′) > 0 for a.e. x in Ω, all s in R and allζ ′ in RN , with
ζ 6= ζ ′.
(A4) There exists a strictly positive constantα such that,

a(x, s, ζ)ζ ≥ αM(|ζ|),
for a.e.x in Ω, all s ∈ R and all ζ ∈ RN .

Furthermore letg : Ω × R × RN → R be a Carathéodory function having a constant sign
such that for a.e.x ∈ Ω and for alls ∈ R and allζ ∈ RN ,
(G1) |g(x, s, ζ)| ≤ b(|s|) (h(x) + M(|ζ|));
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6 E. AZROUL, A. BENKIRANE AND M. RHOUDAF

(G2) g(x, 0, ζ) = 0;
whereb : R+ → R+ is a continuous non-decreasing function,h is a given non-negative function
in L1(Ω).
Consider now the following Dirichlet problem:

(3.2)

{
A(u) + g(x, u,∇u) = f in Ω
u = 0 on ∂Ω,

and defineτ 1,M
0 (Ω) as a set of measurable functionsu : Ω → R such thatTk(u) ∈ W 1

0 LM(Ω),
whereTk(s) = max(−k, min(k, s)) for s ∈ R andk ≥ 0.

Lemma 3.1. Let (fn)n, f ∈ L1(Ω) such that,

1) fn ≥ 0 a.e. inΩ;
2) fn → f a.e. inΩ;

3)
∫

Ω

fn(x) dx →
∫

Ω

f(x) dx. Thenfn → f strongly inL1(Ω).

Lemma 3.2. Assume that(A1) − (A4) are satisfied, and let(zn) be a sequence inW 1
0 LM(Ω)

such that,

a) zn ⇀ z in W 1
0 LM(Ω) for σ(ΠLM(Ω), ΠEM(Ω));

b) (a(x, zn,∇zn))n is bounded in(LM(Ω))N ;

c)
∫

Ω

[a(x, zn,∇zn)− a(x, zn,∇zχs)][∇zn −∇zχs] dx → 0 asn ands → +∞

(whereχs is the characteristic function ofΩs = {x ∈ Ω, |∇z| ≤ s}).
Then,

M(|∇zn|) → M(|∇z|) in L1(Ω).

Proof. Fix r > 0 and lets > r we have,

0 ≤
∫

Ωr

[a(x, zn,∇zn)− a(x, zn,∇z)][∇zn −∇z] dx(3.3)

≤
∫

Ωs

[a(x, zn,∇zn)− a(x, zn,∇z)][∇zn −∇z] dx

=

∫
Ωs

[a(x, zn,∇zn)− a(x, zn,∇zχs)][∇zn −∇zχs] dx

≤
∫

Ω

[a(x, zn,∇zn)− a(x, zn,∇zχs)][∇zn −∇zχs] dx.

Which with the conditionc) imply that,

(3.4) lim
n→∞

∫
Ωr

[a(x, zn,∇zn)− a(x, zn,∇z)][∇zn −∇z] dx = 0.

So, following the same argument as in [12] we claim that,

(3.5) ∇zn → ∇z a.e. in Ω.

On the other hand, we have
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∫
Ω

a(x, zn,∇zn)∇zn dx =

∫
Ω

[a(x, zn,∇zn)− a(x, zn,∇zχs)](3.6)

× [∇zn −∇zχs] dx

+

∫
Ω

a(x, zn,∇zχs)(∇zn −∇zχs) dx

+

∫
Ω

a(x, zn,∇zn)∇zχs dx.

Since(a(x, zn,∇zn))n is bounded in(LM(Ω))N , and by using (3.5), we obtain

(3.7) a(x, zn,∇zn) ⇀ a(x, z,∇z) weakly in (LM(Ω))N for σ(ΠLM , ΠEM),

which implies that,

(3.8)
∫

Ω

a(x, zn,∇zn)∇zχs dx →
∫

Ω

a(x, z,∇z)∇zχs dx as n →∞.

Letting alsos →∞, we obtain

(3.9)
∫

Ω

a(x, z,∇z)∇zχs dx →
∫

Ω

a(x, z,∇z)∇z dx.

On the other hand, it is easy to see that the second term of the right hand side of (3.6) tends to
0 asn →∞ ands →∞.
Consequently, fromc), (3.8) and (3.9) we have,

(3.10) lim
n→∞

∫
Ω

a(x, zn,∇zn)∇zn dx =

∫
Ω

a(x, z,∇z)∇z dx.

Finally, the coersivity(A4) and Lemma 3.1 allow to conclude that,

(3.11) M(|∇zn|) −→ M(|∇z|) in L1(Ω).

In the sequel, sinceg is supposed having a constant sign, we start our study by a case whereg
is positive.

4. CASE OF A POSITIVE NONLINEARITY

We consider first the convex set,

(4.1) K0 = {u ∈ W 1
0 LM(Ω); u ≥ 0 a.e. in Ω}.

This convex set is sequentiallyσ(ΠLM , ΠEM) closed inW 1
0 LM(Ω) [see [14]].

Remark 4.1. For eachu ∈ K0∩L∞(Ω) there exists a sequencevj ∈ K0∩W 1
0 EM(Ω)∩L∞(Ω)

such thatvj → u for the modular convergence with‖vj‖∞ bounded (see proposition 10, [14]).

Theorem 4.1. Assume that(A1) - (A4), (G1) and (G2) hold true and that f ∈ L1(Ω). Then
there exists at least one solution of the following unilateral problem,

(P )



u ∈ τ 1,M
0 (Ω), u ≥ 0 a.e. in Ω,

g(x, u,∇u) ∈ L1(Ω),∫
Ω

a(x, u,∇u)∇Tk(u− v) dx +

∫
Ω

g(x, u,∇u)Tk(u− v) dx

≤
∫

Ω

fTk(u− v) dx,

∀ v ∈ K0 ∩ L∞(Ω), ∀k > 0.
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Remark 4.2. Note that the gradient ofu in (P ) is well defined in the weak sense (see Lemma
2.4 and Lemma 2.5)

Proof. Let us define,

(4.2) gε(x, s, ξ) =
g(x, s, ξ)

1 + ε|g(x, s, ξ)|
and consider the following approximate problem,

(4.3) (Pε)

{
−diva(x, uε,∇uε) + gε(x, uε,∇uε) = fε in Ω
uε = 0 on ∂Ω,

wherefε is a regular function such thatfε strongly converges tof in L1(Ω)
and‖fε‖L1(Ω) ≤ ‖f‖L1(Ω). Note thatgε(x, s, ξ) satisfies the following conditions,

|gε(x, s, ξ)| ≤ |g(x, s, ξ)| ≤ b(|s|)(h(x) + M(|ξ|))
and

|gε(x, s, ξ)| ≤ 1

ε
.

Nevertheless, it seems different to obtain a priori estimates, due to the fact that the quantity
uεg(x, uε,∇uε) has no sign.
In order to avoid this inconvenience, we approach the sign function by an increasing Lipschitz
function.
Set,

δσ(s) =


s−σ

s
if s ≥ σ > 0

0 if |s| ≤ σ
−s−σ

s
if s < −σ < 0.

Now, we set

(4.4) gσ
ε (x, s, ξ) = δσ(s)gε(x, s, ξ).

Remark thatgσ
ε (x, s, ξ) has a same sign ass.

Now, we are in opposition to approximate our initial unilateral problem by the following penal-
ized problem,
(4.5)

(P σ
ε )



uσ
ε ∈ W 1

0 LM(Ω)∫
Ω

〈Auσ
ε , u

σ
ε − v〉+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )(uσ

ε − v) dx− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))(uσ

ε − v) dx

=

∫
Ω

fε(u
σ
ε − v) dx

∀ v ∈ W 1
0 LM(Ω),

wherem(t) is the derivatives function ofM(t).
From Gossez and Mustonen ([14], Proposition 5), the problem (4.5) has at least one solu-

tion.
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4.1. Study of the approximate problem with respect toε.

4.1.1. A priori estimates. Takingv = uσ
ε − Tk(u

σ
ε ) as test in (4.5), we obtain∫

Ω

a(x, uσ
ε ,∇uσ

ε )∇Tk(u
σ
ε ) dx

+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )Tk(u

σ
ε ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))Tk(u

σ
ε ) dx

=

∫
Ω

fεTk(u
σ
ε ) dx.

gσ
ε (x, uσ

ε ,∇uσ
ε )Tk(u

σ
ε ) ≥ 0 and− 1

ε2 m(T 1
ε
(uσ

ε
−))Tk(u

σ
ε ) ≥ 0 then we have,

(4.6)
∫

Ω

a(x, uσ
ε ,∇uσ

ε )∇Tk(u
σ
ε ) dx ≤ k‖f‖L1(Ω).

So, by(A4) we get,

(4.7) α

∫
Ω

M(|∇Tk(u
σ
ε )|) ≤ k‖f‖L1(Ω).

Thus (Tk(u
σ
ε ))ε is bounded inW 1

0 LM(Ω) uniformly in ε andσ, then there exists forσ fixed
somevσ

k ∈ W 1
0 LM(Ω) such that,

Tk(u
σ
ε ) ⇀ vσ

k in W 1
0 LM(Ω) for σ(ΠLM , ΠEM̄)

and

(4.8) Tk(u
σ
ε ) → vσ

k strongly in EM(Ω).

4.1.2. Convergence in measure ofuσ
ε . Let k > 0. By Lemma 5.7 of [12], there exist tow

positive constantsc1 andc2 such that,∫
Ω

M(c1Tk(u
σ
ε )) dx ≤ c2

∫
Ω

M(|∇Tk(u
σ
ε )|) dx.

So, in virtue of (4.7), we have

(4.9)
∫

Ω

M(c1Tk(u
σ
ε )) dx ≤ kc,

wherec = c(‖f‖L1(Ω), c1, α).
Then, we deduce that,

M(c1k)meas({|uσ
ε | > k}) =

∫
{|uσ

ε |>k}
M(c1Tk(u

σ
ε )) dx ≤ kc.

Hence,

meas({|uσ
ε | > k}) ≤ kc

M(c1k)
∀ ε, ∀ k.

This yields that,

(4.10) meas({|uσ
ε | > k}) → 0 as k → +∞

uniformly in ε andσ.
Now, we prove that(uσ

ε )ε converges to some functionuσ in measure (and therefore, we can
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always assume that the convergence is a.e. after passing to a suitable subsequence).
For everyλ > 0, we have

meas({|uσ
j − uσ

i | > λ}) ≤ meas({|uσ
j | > k})(4.11)

+ meas({|uσ
i | > k})

+ meas({|Tk(u
σ
j )− Tk(u

σ
i )| > λ}).

Consequently, by (4.8) we can assume that(Tk(u
σ
ε ))ε is a Cauchy sequence in measure inΩ.

Let η > 0. By (4.11) there exists somek(η) > 0 such that,

meas({|uσ
j − uσ

i | > λ}) ≤ η for all i, j ≥ n0(k(η), λ).

This proves that(uσ
ε )ε is a Cauchy sequence in measure inΩ, thus converges almost every where

to some measurable functionuσ. Then

Tk(u
σ
ε ) ⇀ Tk(u

σ) weakly in W 1
0 LM(Ω) for σ(ΠLM , ΠEM̄)

(4.12) Tk(u
σ
ε ) → Tk(u

σ) strongly in EM(Ω) and a.e. inΩ.

4.1.3. Show thatuσ ≥ 0. Takingv = uσ
ε − T 1

ε
(uσ

ε ) as test in (4.5), we obtain∫
Ω

a(x, uσ
ε ,∇uσ

ε )∇T 1
ε
(uσ

ε ) dx +

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )T 1

ε
(uσ

ε ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))T 1

ε
(uσ

ε ) dx

=

∫
Ω

fεT 1
ε
(uσ

ε ) dx.

Since
∫

Ω

a(x, uσ
ε ,∇uσ

ε )∇T 1
ε
(uσ

ε ) dx ≥ 0 andgσ
ε (x, uσ

ε ,∇uσ
ε )T 1

ε
(uσ

ε ) ≥ 0 we get,

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))T 1

ε
(uσ

ε ) dx ≤ 1

ε
‖f‖L1(Ω),

which implies that,
1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))T 1

ε
(uσ

ε
−) dx ≤ 1

ε
‖f‖L1(Ω).

Moreover, since
M(τ) ≤ m(τ)τ

then we have, ∫
Ω

M(T 1
ε
(uσ

ε
−)) dx ≤ ε‖f‖L1(Ω).

Finally, writing
∫

Ω

M(uσ
ε
−) dx as∫

Ω

M(uσ
ε
−) dx =

∫
{uσ

ε
−≤ 1

ε
}
M(uσ

ε
−) dx +

∫
{uσ

ε
−> 1

ε
}
M(uσ

ε
−) dx,

one deduce that, ∫
Ω

M(uσ
ε
−) dx ≤ ε‖f‖L1(Ω) +

∫
{uσ

ε
−> 1

ε
}
M(uσ

ε
−) dx.

Hence, due to the fact thatuσ
ε → uσ a.e. inΩ, we conclude that

M(uσ
ε ) → M(uσ) a.e. in Ω.
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Also as in (4.10) we can prove that,

meas{uσ
ε
− >

1

ε
} → 0.

Then,

M(uσ
ε
−) → 0 as ε → 0,

which gives,

uσ ≥ 0.

4.1.4. Boundedness of(a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε )))ε in (LM̄(Ω))N . Let w ∈ (EM(Ω))N be arbi-

trary. By(A3) we have,

[a(x, uσ
ε ,∇uσ

ε )− a(x, uσ
ε , w)][∇uσ

ε − w] > 0,

which implies that,

a(x, uσ
ε ,∇uσ

ε )w ≤ a(x, uσ
ε ,∇uσ

ε )∇uσ
ε − a(x, uσ

ε , w)(∇uσ
ε − w).

Integrating on the subset{x ∈ Ω, |uσ
ε | < k} we obtain,∫

{|uσ
ε |<k}

a(x, uσ
ε ,∇uσ

ε )w dx ≤
∫
{|uσ

ε |<k}
a(x, uσ

ε ,∇uσ
ε )∇uσ

ε dx(4.13)

−
∫
{|uσ

ε |<k}
a(x, uσ

ε , w)(∇uσ
ε − w) dx.

Thanks to (4.6), we have

(4.14)
∫
{|uσ

ε |<k}
a(x, uσ

ε ,∇uσ
ε )∇uσ

ε dx ≤ c(k).

On the other hand, forλ large enough, we have by using(A2),∫
{|uσ

ε |<k}
M̄

(
a(x, uσ

ε , w)

λ

)
dx ≤

∫
Ω

M̄

(
k(x)

λ

)
dx +

k3

λ

∫
Ω

M(k2|w|) + c ≤ c3.

Hence(|a(x, uσ
ε , w)|χ{|uσ

ε |<k})ε is bounded inLM̄(Ω), which implies that the second term of the
right hand side of (4.13) is also bounded.
Consequently, we obtain,

(4.15)
∫

Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))w ≤ c4,

wherec4 is a positive constant depending ofk.
Hence, by the theorem of Banach-Steinhaus, the sequencea(x, Tk(u

σ
ε ),∇Tk(u

σ
ε ))ε

remains bounded in(LM̄(Ω))N .
Which implies that, for allk > 0, there exists a functionhkσ ∈ (LM̄(Ω))N , such that

(4.16) a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε )) ⇀ hkσ weakly in (LM̄(Ω))N for σ(ΠLM̄(Ω), ΠEM(Ω)).
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4.1.5. Almost every where convergence of the gradient.In the sequel, we use the following
notations:
η(ε, j, h) is any quantity such that

lim
h→+∞

lim
j→+∞

lim
ε→0

η(ε, j, h) = 0.

If the quantity we consider does not depend on one parameter amongη, j andh, we will omit
the dependence on the corresponding parameter: as an example,η(ε, h) is any quantity such
that

lim
h→+∞

lim
ε→0

η(ε, h) = 0.

Finally, we will denote (for example) byηh(ε, j) a quantity that depends onε, j, h and is such
that

lim
j→+∞

lim
ε→0

ηh(ε, j) = 0

for any fixed value ofh.
We fix k > 0, let Ωr = {x ∈ Ω, |∇Tk(u

σ(x))| ≤ r} and denote byχr the characteristic
function ofΩr.
Clearly,Ωr ⊂ Ωr+1 and meas(Ω\Ωr) → 0 asr →∞.
Fix r and lets > r, we have

0 ≤
∫

Ωr

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε )− a(x, Tk(u

σ
ε ),∇Tk(u

σ)][∇Tk(u
σ
ε )−∇Tk(u

σ)] dx

(4.17)

≤
∫

Ωs

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε )− a(x, Tk(u

σ
ε ),∇Tk(u

σ)][∇Tk(u
σ
ε )−∇Tk(u

σ)] dx

=

∫
Ωs

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε )− a(x, Tk(u

σ
ε ),∇Tk(u

σ)χs][∇Tk(u
σ
ε )−∇Tk(u

σ)χs] dx

≤
∫

Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε )− a(x, Tk(u

σ
ε ),∇Tk(u

σ)χs][∇Tk(u
σ
ε )−∇Tk(u

σ)χs] dx.

Let k > 0 and letϕk(s) = seγs2
, whereγ = ( b(k)

α
)2.

It is well know that,

(4.18) ϕ′k(s)−
b(k)

α
|ϕk(s)| ≥

1

2
, ∀ s ∈ R.

Thanks to Remark 4.1 there exists a sequencevj ∈ K0 ∩W 1
0 EM(Ω)∩L∞(Ω) which converges

to Tk(u
σ) for the modular convergence inW 1

0 LM(Ω).
Here, we define

whσ
εj = T2k(u

σ
ε − Th(u

σ
ε ) + Tk(u

σ
ε )− Tk(vj))

whσ
j = T2k(u

σ − Th(u
σ) + Tk(u

σ)− Tk(vj))

whσ = T2k(u
σ − Th(u

σ))

whereh > 2k > 0.
Forη = exp(−4γk2), we define the following function as,

(4.19) vh,σ
ε,j = uσ

ε − ηϕk(w
h,σ
ε,j ).
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We takevh,σ
ε,j as test function in (4.5), we obtain,

〈A(uσ
ε ), ηϕk(w

h,σ
ε,j )〉

+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )ηϕk(w

h,σ
ε,j ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))ηϕk(w

h,σ
ε,j ) dx

≤
∫

Ω

ηfεϕk(w
h,σ
ε,j ) dx,

which implies that,

〈A(uσ
ε ), ϕk(w

h,σ
ε,j )〉

+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )ϕk(w

h,σ
ε,j ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))ϕk(w

h,σ
ε,j ) dx

≤
∫

Ω

fεϕk(w
h,σ
ε,j ) dx.

It follows that, ∫
Ω

a(x, uσ
ε ,∇uσ

ε )∇wh,σ
ε,j ϕ′k(w

h,σ
ε,j ) dx(4.20)

+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )ϕk(w

h,σ
ε,j ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))ϕk(w

h,σ
ε,j ) dx

≤
∫

Ω

fεϕk(w
h,σ
ε,j ) dx.

Note that,∇wh,σ
ε,j = 0 on the set where|uσ

ε | > h + 5k, therefore, settings = 5k + h, we get by
(4.20) ∫

Ω

a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))∇wh,σ

ε,j ϕ′k(w
h,σ
ε,j ) dx

+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )ϕk(w

h,σ
ε,j ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))ϕk(w

h,σ
ε,j ) dx

≤
∫

Ω

fεϕk(w
h,σ
ε,j ) dx.

In view of (4.12), we haveϕk(w
h,σ
ε,j ) → ϕk(w

h,σ
j ) weakly* in L∞(Ω) asε → 0 and then∫

Ω

fεϕk(w
h,σ
ε,j ) dx →

∫
Ω

fϕk(w
h,σ
j ) dx as ε → 0,

again tendingj to infinity, we get∫
Ω

fϕk(w
h,σ
j ) dx →

∫
Ω

fϕk(w
h,σ) dx as j → +∞.
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Finally, by using the Lebesgue’s theorem, we can deduce that,∫
Ω

fϕk(w
h,σ) dx → 0 as h → +∞.

So that,

(4.21)
∫

Ω

fεϕk(w
h,σ
ε,j ) dx = η(ε, j, h).

Note that the sign ofϕk(w
h,σ
ε,j ) is the same as that ofuσ

ε in the set{x ∈ Ω, |uσ
ε | > k}, then we

have
gσ

ε (x, uσ
ε ,∇uσ

ε )ϕk(w
h,σ
ε,j ) ≥ 0,

and

− 1

ε2
m(T 1

ε
(uσ

ε
−))ϕk(w

h,σ
ε,j ) ≥ 0

in the subset{x ∈ Ω, |uσ
ε | > k}, we deduce from (4.20) that,∫
Ω

a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.22)

+

∫
{|uσ

ε |<k}
gσ

ε (x, uσ
ε ,∇uσ

ε )ϕk(w
h,σ
ε,j ) dx

− 1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
−))(uσ

ε − Tk(vj)) exp(γ(wh,σ
ε,j )2

≤η(ε, j, h).

Since by Remark 4.1,vj ≥ 0, then the third term of the left-hand side of the above inequality is
positive, thus, ∫

Ω

a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.23)

+

∫
{|uσ

ε |<k}
gσ

ε (x, uσ
ε ,∇uσ

ε )ϕk(w
h,σ
ε,j ) dx

≤η(ε, j, h).

Splitting the first integral one the left hand side of (4.23), where|uσ
ε | ≤ k and where|uσ

ε | > k,
we can write,∫

Ω

a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.24)

=

∫
{|uσ

ε |≤k}
a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))[∇Tk(u

σ
ε )−∇Tk(vj)]ϕ

′
k(w

h,σ
ε,j ) dx

+

∫
{|uσ

ε |>k}
a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx.

The first term of the right-hand side of the last inequality can write as,∫
{|uσ

ε |≤k}
a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.25)

=

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))[∇Tk(u

σ
ε )−∇Tk(vj)]ϕ

′
k(w

h,σ
ε,j ) dx.
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For the second term of the right hand side of (4.24) we can write, using(A4),∫
{|uσ

ε |>k}
a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.26)

≥ −ϕ′k(2k)

∫
{|uσ

ε |>k}
|a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))||∇vj| dx.

Since|a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))| is bounded inLM̄(Ω), we have for a subsequence

|a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))| ⇀ ls,σ

weakly inLM̄(Ω) for σ(LM̄ , EM) asε tends to zero, and since

∇vjχ{|uσ
ε |>k} → ∇vjχ{|uσ |>k}

strongly inEM(Ω) asε → 0, we have

−ϕ′k(2k)

∫
{|uσ

ε |>k}
|a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))||∇vj| dx → −ϕ′(2k)

∫
{|uσ |>k}

ls,σ|∇vj| dx

asε → 0.
Using now, the modular convergence of(vj), we get

−ϕ′k(2k)

∫
{|uσ |>k}

ls,σ|∇vj| dx → −ϕ′k(2k)

∫
{|uσ |>k}

ls,σ|∇Tk(u
σ)| dx = 0

asj → +∞.
Finally, we have

(4.27) − ϕ′k(2k)

∫
{|uσ

ε |>k}
|a(x, Ts(u

σ
ε ),∇Ts(u

σ
ε ))||∇vj| dx = ηh(ε, j).

Combining (4.24) and (4.27), we deduce that,∫
Ω

a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx

≥
∫

Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))[∇Tk(u

σ
ε )−∇Tk(vj)]ϕ

′
k(w

h,σ
ε,j ) dx + ηh(ε, j).

Which implies that,∫
Ω

a(x, Ts(u
σ
ε ),∇Ts(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.28)

≥
∫

Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)]

× [∇Tk(u
σ
ε )−∇Tk(vj)χ

j
s)]ϕ

′
k(w

h,σ
ε,j ) dx

+

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s]ϕ

′
k(w

h,σ
ε,j ) dx

−
∫

Ω\Ωj
s

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))∇Tk(vj)ϕ

′
k(w

h,σ
ε,j ) dx

+ ηh(ε, j),

where χj
s denotes the characteristic function of the subsetΩj

s = {x ∈ Ω : |∇Tk(vj)| ≤
s}.
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By (4.16) and the fact that∇Tk(vj)χΩ\Ωj
s
ϕ′k(w

h,σ
ε,j ) tends to∇Tk(vj)χΩ\Ωj

s
ϕ′k(w

h,σ
j ) strongly in

(EM(Ω))N , the third term of the right-hand side of (4.28) tends to the quantity∫
Ω

hk,σ∇Tk(vj)χΩ\Ωj
s
ϕ′k(w

h,σ
j ) dx as ε → 0.

Letting nowj tends to infinity, by using the modular convergence ofvj, we have∫
Ω

hk,σ∇Tk(vj)χΩ\Ωj
s
ϕ′k(w

h,σ
j ) dx →

∫
Ω\Ωj

s

hk,σ∇Tk(u
σ)ϕ′k(w

h,σ) dx as j → +∞.

Finally, we get , ∫
Ω\Ωj

s

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))∇Tk(vj)ϕ

′
k(w

h,σ
ε,j ) dx(4.29)

= −
∫

Ω\Ωs

hk,σ∇Tk(u
σ)ϕ′k(w

h,σ) dx + ηh(ε, j).

Concerning the second term of the right hand side of (4.28) we can write,∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s]ϕ

′
k(w

h,σ
ε,j ) dx(4.30)

=

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)∇Tk(u

σ
ε )ϕ′k(Tk(u

σ
ε )− Tk(vj)) dx

−
∫

Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)∇Tk(vj)χ

j
sϕ

′
k(w

h,σ
ε,j ) dx.

The first term of the right hand side of (4.30) tends to the quantity,∫
Ω

a(x, Tk(u
σ),∇Tk(vj)χ

j
s)∇Tk(u

σ)ϕ′k(Tk(u
σ)− Tk(vj)) dx as ε → 0.

Thanks to Lemma 2.3, we have

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)ϕ

′
k(Tk(u

σ
ε )−Tk(vj)) → a(x, Tk(u

σ),∇Tk(vj)χ
j
s)ϕ

′
k(Tk(u

σ)−Tk(vj))

strongly in(EM̄(Ω))N and

∇Tk(u
σ
ε ) ⇀ ∇Tk(u

σ) weakly in (LM(Ω))N for σ(ΠLM , ΠEM̄).

For the second term of the right hand side of (4.30) it is easy to see that,∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)∇Tk(vj)χ

j
sϕ

′
k(w

h,σ
ε,j ) dx(4.31)

→
∫

Ω

a(x, Tk(u
σ),∇Tk(vj)χ

j
s)∇Tk(vj)χ

j
sϕ

′
k(w

h,σ
j ) dx as ε → 0.

Consequently, we have∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s]ϕ

′
k(w

h,σ
ε,j ) dx(4.32)

=

∫
Ω

a(x, Tk(u
σ),∇Tk(vj)χ

j
s)[∇Tk(u

σ)−∇Tk(vj)χ
j
s]ϕ

′
k(w

h,σ
j ) dx

+ ηj,h(ε).

Since,
∇Tk(vj)χ

j
sϕ

′
k(w

h,σ
j ) → ∇Tk(u

σ)χsϕ
′
k(w

h,σ)
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strongly inEM(Ω))N asj →∞, it is easy to see that,∫
Ω

a(x, Tk(u
σ),∇Tk(vj)χ

j
s)[∇Tk(u

σ)−∇Tk(vj)χ
j
s]ϕ

′
k(w

h,σ
j ) dx → 0 as j → +∞.

Thus,

(4.33)
∫

Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s]ϕ

′
k(w

h,σ
ε,j ) dx = ηh(ε, j).

Combining (4.28), (4.29) and (4.33) we get,∫
Ω

a(x, Tm(uσ
ε ),∇Tk(u

σ
ε ))∇(wh,σ

ε,j )ϕ′k(w
h,σ
ε,j ) dx(4.34)

≥
∫

Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)]

× [∇Tk(u
σ
ε )−∇Tk(vj)χ

j
s]ϕ

′
k(w

h,σ
ε,j ) dx

+

∫
Ω\Ωs

hkσ∇Tk(u
σ)ϕ′k(0) dx + η(ε, j, h).

We now turn to the second term of the left hand side of (4.23), we have∣∣∣∣∫
{|uσ

ε |<k}
gσ

ε (x, uσ
ε ,∇uσ

ε )ϕk(w
h,σ
ε,j ) dx

∣∣∣∣
≤ b(k)

∫
Ω

(h(x) + M(∇Tk(u
σ
ε ))|ϕk(w

h,σ
ε,j )| dx

≤ b(k)

∫
Ω

h(x)|ϕk(w
h,σ
ε,j )| dx +

b(k)

α

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))∇Tk(u

σ
ε )|ϕk(w

h,σ
ε,j )| dx

≤ η(ε, j, h) +
b(k)

α

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))∇Tk(u

σ
ε )|ϕk(w

h,σ
ε,j )| dx.

The last term of the last side of this inequality reads as,

b(k)

α

∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)]

× [∇Tk(u
σ
ε )−∇Tk(vj)χ

j
s]|ϕk(w

h,σ
ε,j )| dx

+
b(k)

α

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s]|ϕk(w

h,σ
ε,j )| dx

− b(k)

α

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))∇Tk(vj)χ

j
s|ϕk(w

h,σ
ε,j )| dx.

And reasoning as above, it is easy to see that,

b(k)

α

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s]|ϕk(w

h,σ
ε,j )| dx = η(ε, j)

and
b(k)

α

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))∇Tk(vj)χ

j
s|ϕk(w

h,σ
ε,j )| dx = η(ε, j, h).
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So that, ∣∣∣∣∫
{|uσ

ε |<k}
gσ

ε (x, uσ
ε ,∇uσ

ε )ϕk(w
h,σ
ε,j ) dx

∣∣∣∣(4.35)

≤ b(k)

α

∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)]

× [∇Tk(u
σ
ε )−∇Tk(vj)χ

j
s]|ϕk(w

h,σ
ε,j )| dx + η(ε, j, h).

Combining (4.23), (4.34) and (4.35), we obtain∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)](4.36)

× [∇Tk(u
σ
ε )−∇Tk(vj)χ

j
s](ϕ

′
k(w

h,σ
ε,j )− b(k)

α
|ϕk(w

h,σ
ε,j )|) dx

≤
∫

Ω\Ωs

hkσ∇Tk(u
σ)ϕ′k(0) dx + η(ε, j, h),

which implies by using (4.18) that∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)](4.37)

× [∇Tk(u
σ
ε )−∇Tk(vj)χ

j
s] dx

≤ 2

∫
Ω\Ωs

hkσ∇Tk(u
σ)ϕ′k(0) dx + η(ε, j, h).

Now, remark that,∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(u

σ)χs)][∇Tk(u
σ
ε )−∇Tk(u

σ)χs] dx(4.38)

≤
∫

Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)][∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s] dx

+

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s] dx

−
∫

Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ)χs)[∇Tk(u
σ
ε )−∇Tk(u

σ)χs] dx

+

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))[∇Tk(vj)χ

j
s −∇Tk(u

σ)χs] dx.

We shall pass to the limit inε andj in the last three terms of the right-hand side of the last
inequality, we get∫

Ω

a(x, Tk(u
σ
ε ),∇Tk(vj)χ

j
s)[∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s] dx = η(ε, j)

∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u)χs)[∇Tk(u

σ
ε )−∇Tk(u)χs] dx = η(ε)

and ∫
Ω

a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))[∇Tk(vj)χ

j
s −∇Tk(u

σ)χs] dx = η(ε, j),
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which implies that,∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(u

σ)χs)][∇Tk(u
σ
ε )−∇Tk(u

σ)χs] dx(4.39)

=

∫
Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(vj)χ

j
s)][∇Tk(u

σ
ε )−∇Tk(vj)χ

j
s] dx

+ η(ε, j).

Combining (4.17), (4.37) and (4.39), we have

∫
Ωr

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(u

σ))][∇Tk(u
σ
ε )−∇Tk(u

σ)] dx

(4.40)

≤
∫

Ω

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(u

σ)χs)][∇Tk(u
σ
ε )−∇Tk(u

σ)χs] dx

≤ 2

∫
Ω\Ωs

hkσ∇Tk(u
σ)ϕ′k(0) dx + η(ε, j, h).

By passing to thelim sup overn and lettingj, h, s tend to infinity, we obtain

lim
ε→0

∫
Ωr

[a(x, Tk(u
σ
ε ),∇Tk(u

σ
ε ))− a(x, Tk(u

σ
ε ),∇Tk(u

σ))][∇Tk(u
σ
ε )−∇Tk(u

σ)] dx = 0.

This implies by virtue of Lemma 3.2 that,

(4.41) ∇uσ
ε → ∇uσ a.e. in Ω

and

(4.42) M(|∇Tk(u
σ
ε )|) → M(|∇Tk(u

σ)|) in L1(Ω).

4.1.6. Equi-integrability of the nonlinearity. We need to prove that,

(4.43) gσ
ε (x, uσ

ε ,∇uσ
ε ) → gσ(x, uσ,∇uσ) strongly in L1(Ω).

In particular it is enough to prove the equi-integrability ofgσ
ε (x, uσ

ε ,∇uσ
ε ). To this purpose, we

takeuσ
ε − T1(u

σ
ε − Th(u

σ
ε )) ≥ 0 as test function in (4.5), we obtain,∫
{|uσ

ε |≥h+1}
|gσ

ε (x, uσ
ε ,∇uσ

ε ) dx ≤
∫
{|uσ

ε |>h}
|fε| dx.

Let η > 0, then there existsh(η) ≥ 1 such that,

(4.44)
∫
{|uσ

ε |≥h(η)}
|gσ

ε (x, uσ
ε ,∇uσ

ε ) dx ≤ η

2
.

For any measurable subsetE ⊂ Ω, we have∫
E

|gσ
ε (x, uσ

ε ,∇uσ
ε )| dx ≤

∫
Ω

b(h(η))(c(x) + M(|∇Th(η)(u
σ
ε )|) dx

+

∫
{|uσ

ε |≥h(η)}
|g(x, uσ

ε ,∇uσ
ε )| dx.

In view of (4.42) there existsβ(η) > 0 such that,

(4.45)
∫

E

b(h(η))(h(x) + M(|∇Th(η)(u
σ
ε )|) dx ≤ η

2
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for all E such that|E| < β(η).

Finally, combining (4.44) and (4.45), one easily has
∫

E

|gσ
ε (x, uσ

ε ,∇uσ
ε )| dx ≤ η for all E such

that meas(E) < β(η).

4.1.7. Passing to the limit inε. Let v ∈ K0 ∩W 1
0 EM(Ω) ∩ L∞(Ω), we takeuσ

ε − Tk(u
σ
ε − v)

as test function in (4.5), we can write,∫
Ω

a(x, uσ
ε ,∇uσ

ε )∇Tk(u
σ
ε − v) dx +

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )Tk(u

σ
ε − v) dx(4.46)

≤
∫

Ω

fεTk(u
σ
ε − v) dx,

which implies that,∫
{|uσ

ε−v|≤k}
a(x, uσ

ε ,∇uσ
ε )∇(uσ

ε − v) dx +

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )Tk(u

σ
ε − v) dx

≤
∫

Ω

fεTk(u
σ
ε − v) dx.

i.e., ∫
{|uσ

ε−v|≤k}
a(x, uσ

ε ,∇uσ
ε )∇uσ

ε dx−
∫
{|uσ

ε−v|≤k}
a(x, uσ

ε ,∇uσ
ε )∇v dx

+

∫
Ω

gσ
ε (x, uσ

ε ,∇uσ
ε )Tk(u

σ
ε − v) dx

≤
∫

Ω

fεTk(u
σ
ε − v) dx.

By Fatou’s lemma and the fact that,

a(x, Tk+‖v‖∞(uσ
ε ),∇Tk+‖v‖∞(uσ

ε )) ⇀ a(x, Tk+‖v‖∞(uσ),∇Tk+‖v‖∞(uσ))

weakly in(LM̄(Ω))N for σ(ΠLM̄ , ΠEM) on easily see that,∫
{|uσ−v|≤k}

a(x, uσ,∇uσ)∇uσ dx−
∫
{|uσ−v|≤k}

a(x, Tk+‖v‖∞(uσ),∇Tk+‖v‖∞(uσ))∇v dx

+

∫
Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx

≤
∫

Ω

fTk(u
σ − v) dx.

Hence, ∫
Ω

a(x, uσ,∇uσ)∇Tk(u
σ − v) dx +

∫
Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx(4.47)

≤
∫

Ω

fTk(u
σ − v) dx.

AJMAA, Vol. 7, No. 1, Art. 5, pp. 1-25, 2010 AJMAA

http://ajmaa.org


ON SOME STRONGLY NONLINEAR ELLIPTIC PROBLEMS 21

Now, letv ∈ K0 ∩L∞(Ω), by Remark 4.1, there existvj ∈ K0 ∩W 1
0 EM ∩L∞(Ω), such thatvj

converges tov in the modular sense. Letl > ‖v‖∞, takingv = Tl(vj) in (4.47), we have∫
Ω

a(x, uσ,∇uσ)∇Tk(u
σ − Tl(vj)) dx +

∫
Ω

gσ(x, uσ,∇uσ)Tk(u
σ − Tl(vj)) dx

≤
∫

Ω

fTk(u
σ − Tl(vj)) dx.

We can easily pass to the limit asj → +∞, to get∫
Ω

a(x, uσ,∇uσ)∇Tk(u
σ − Tl(v)) dx

+

∫
Ω

gσ(x, uσ,∇uσ)Tk(u
σ − Tl(v)) dx

≤
∫

Ω

fTk(u
σ − Tl(v)) dx ∀ v ∈ K0 ∩ L∞(Ω).

As l ≥ ‖v‖∞, we deduce,∫
Ω

a(x, uσ,∇uσ)∇Tk(u
σ − v) dx

+

∫
Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx(4.48)

≤
∫

Ω

fTk(u
σ − v) dx ∀ v ∈ K0 ∩ L∞(Ω), ∀ k > 0.

4.2. Study of the problem with respect to theσ.

4.2.1. Estimates with respect toσ. We are going to give some estimates, on the sequence
(uσ)σ identical to (4.7).
For that, takingv = Ts(u

σ − Tk(u
σ)) in (4.48) and lettings tends to infinity then by the same

argument as in section 4.1 we can prove that,

α

∫
Ω

M(|∇Tk(u
σ)|) ≤ k‖f‖L1(Ω).

Thus, as in 4.1.2, there existsu such thatTk(u) ∈ W 1
0 LM(Ω) and

Tk(u
σ) ⇀ Tk(u) weakly in W 1

0 LM(Ω) for σ(ΠLM , ΠEM̄)

Tk(u
σ) → Tk(u) strongly in EM(Ω) and a.e inΩ.

So,uσ ≥ 0 a.e. inΩ and we have alsou ≥ 0. a.e inΩ.

4.2.2. Strong convergence of truncation with respect toσ. We fix k > 0, let Ωr = {x ∈
Ω, |∇Tk(u(x))| ≤ r} and denote byχr the characteristic function ofΩr. Clearly,Ωr ⊂ Ωr+1

and meas(Ω\Ωr) → 0 asr →∞.
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Fix r and lets > r, we have

0 ≤
∫

Ωr

[a(x, Tk(u
σ),∇Tk(u

σ)− a(x, Tk(u
σ),∇Tk(u)][∇Tk(u

σ)−∇Tk(u)] dx(4.49)

≤
∫

Ωs

[a(x, Tk(u
σ),∇Tk(u

σ)− a(x, Tk(u
σ),∇Tk(u)][∇Tk(u

σ)−∇Tk(u)] dx

=

∫
Ωs

[a(x, Tk(u
σ),∇Tk(u

σ)− a(x, Tk(u
σ),∇Tk(u)χs][∇Tk(u

σ)−∇Tk(u)χs] dx

≤
∫

Ω

[a(x, Tk(u
σ),∇Tk(u

σ)− a(x, Tk(u
σ),∇Tk(u)χs][∇Tk(u

σ)−∇Tk(u)χs] dx.

Thanks to Remark 4.1, there exists a sequencevj ∈ K0∩W 1
0 EM(Ω)∩L∞(Ω) which converges

to Tk(u) for the modular convergence inW 1
0 LM(Ω).

Here, we define

whσ
j = T2k(u

σ − Th(u
σ) + Tk(u

σ)− Tk(vj))

wh
j = T2k(u− Th(u) + Tk(u)− Tk(vj))

wh = T2k(u− Th(u))

whereh > 2k > 0.
The choice ofv = Ts(u

σ − ϕk(w
hσ
j )) as test function in (4.48), allows to have, for alll > 0,∫

Ω

a(x, uσ,∇uσ)∇Tl(u
σ − Ts(u

σ − ϕk(w
hσ
j )) dx

+

∫
Ω

gσ(x, uσ,∇uσ)Tl(u
σ − Ts(u

σ − ϕk(w
hσ
j )) dx

≤
∫

Ω

fTl(u
σ − Ts(u

σ − ϕk(w
hσ
j )) dx,

which implies that, ∫
{|uσ−ϕ(whσ

j )|≤s}
a(x, uσ,∇uσ)∇Tl(ϕk(w

hσ
j )) dx

+

∫
Ω

gσ(x, uσ,∇uσ)Tl(u
σ − Ts(u

σ − ϕk(w
hσ
j )) dx

≤
∫

Ω

fTl(u
σ − Ts(u

σ − ϕk(w
hσ
j )) dx.

Lettings tends to infinity and choosingl large enough(l ≥ |ϕk(2k)|), we deduce

(4.50)
∫

Ω

a(x, uσ,∇uσ)∇ϕk(w
hσ
j ) dx +

∫
Ω

gσ(x, uσ,∇uσ)ϕk(w
hσ
j ) dx ≤

∫
Ω

fϕk(w
hσ
j ) dx.

Then by using the same techniques as in 4.1.5 we can deduce that,

(4.51) M(∇Tk(u
σ)) → M(∇Tk(u)) strongly in L1(Ω)

and

∇uσ → ∇u a.e. inΩ.
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4.2.3. Equi-integrability ofgσ(x, uσ,∇uσ) with respect toσ . Moreover, sinceg is a Carathéodory
function, it is easy to see that,

g(x, uσ,∇uσ) → g(x, u,∇u) a.e. in Ω as σ → 0.

Then, by assumption(G2) ( note that this hypothesis is only used here), it is clear that,

gσ(x, uσ,∇uσ) = δσ(uσ)g(x, uσ,∇uσ) → g(x, u,∇u) a.e. in {x ∈ Ω, u(x) ≥ 0}.
Similarly, claim that,

gσ(x, uσ,∇uσ) → g(x, u,∇u) in L1(Ω).

Indeed, takinguσ − T1(uσ − Tl(u
σ)) as test function in (4.48), we obtain∫

{|uσ |>l+1}
|gσ(x, uσ,∇uσ)| dx ≤

∫
{|uσ |>l}

|f | dx.

Let β > 0, then there existsl(β) ≥ 1 such that,

(4.52)
∫
{|uσ |≥l(β)}

gσ(x, uσ,∇uσ) dx <
β

2
.

For any measurable subsetE ⊂ Ω, we have∫
E

|gσ(x, uσ,∇uσ)| dx ≤
∫

Ω

b(l(β))(c(x) + M((∇Tl(β)(u
σ))) dx

+

∫
{|uσ |≥l(β)}

|gσ(x, uσ,∇uσ)| dx.

In view of (4.51) there existα(β) > such that

(4.53)
∫

E

b(l(β))(c(x) + M(|(∇Tl(β)(u
σ)|) dx ≤ η

2
.

Finally, combining (4.52) and (4.53), one easily has
∫

E

|gσ(x, uσ,∇uσ)| dx ≤ η for all E such

that meas(E) ≤ α(β).
So, as in 4.1.7, we can pass to the limit inσ and conclude. This achieves the proof of Theorem
4.1.

Remark 4.3. If we suppose that the source termf is no positive, then the unique positive
solution of the problem (1.1) is the vanished function.

Indeed: If we takev = 0 in (P ), we have∫
Ω

a(x, u,∇u)∇Tk(u) dx +

∫
Ω

g(x, u,∇u)Tk(u) dx ≤
∫

Ω

fTk(u) dx.

Sinceg(x, u,∇u) ≥ 0 andTk(u) ≥ 0 we deduce,∫
Ω

a(x, u,∇u)∇Tk(u) dx ≤
∫

Ω

fTk(u) dx.

On the other hand, thanks to(A4) and the fact thatf ≤ 0 andu ≥ 0, we conclude

α

∫
Ω

M(|∇Tk(u)|) dx ≤
∫

Ω

fTk(u) dx ≤ 0.

We can easily deduce thatTk(u) = 0, ∀ k ≥ 0 by lettingk tends to infinity, we have

u = 0.
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5. CASE WHERE THE NONLINEARITY g IS NEGATIVE

We consider,
K0 = {u ∈ W 1

0 LM(Ω); u ≤ 0 a.e. in Ω}.
This convex set is sequentiallyσ(ΠLM , ΠEM) closed inW 1

o LM(Ω) (see [14]). The nonlinearity
termg is supposed a non-positive function.

Theorem 5.1. Assume that(A1) - (A4), (G1) and (G2) hold true and that f ∈ L1(Ω). Then
there exists at least one solution of the following unilateral problem,

(P )



u ∈ τ 1,M
0 (Ω), u ≤ 0 a.e. in Ω,

g(x, u,∇u) ∈ L1(Ω)∫
Ω

a(x, u,∇u)∇Tk(u− v) dx +

∫
Ω

g(x, u,∇u)Tk(u− v) dx

≤
∫

Ω

fTk(u− v) dx,

∀ v ∈ K̄0 ∩ L∞(Ω), ∀k > 0.

Proof. The same proof as in Theorem 4.1 can be applied with the following changements:

i) The Lipschitz functionδσ(s) is replaced by.

δσ(s) =


−s−σ

s
if s ≥ σ > 0

0 if |s| ≤ σ
s+σ

s
if s < −σ < 0.

ii) The approximate problem becomes :

(P̄ σ
ε )



uσ
ε ∈ W 1

0 LM(Ω)∫
Ω

〈Auσ
ε , u

σ
ε − v〉+

∫
gσ

ε (x, uσ
ε ,∇uσ

ε )(uσ
ε − v) dx +

1

ε2

∫
Ω

m(T 1
ε
(uσ

ε
+))(uσ

ε − v) dx

=

∫
Ω

fε(u
σ
ε − v) dx,

∀ v ∈ W 1
0 LM(Ω).

iii) The setK0 considered in Remark 4.1, will be replaced by,

K0 = {u ∈ W 1
0 LM(Ω); u ≤ 0 a.e. in Ω}.
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