

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 7, Issue 1, Article 5, pp. 1-25, 2010

ON SOME STRONGLY NONLINEAR ELLIPTIC PROBLEMS IN L¹-DATA WITH A NONLINEARITY HAVING A CONSTANT SIGN IN ORLICZ SPACES VIA PENALIZATION METHODS

E. AZROUL, A. BENKIRANE AND M. RHOUDAF

Received 1 July, 2007; accepted 28 February, 2008; published 3 March, 2010.

DÉP. MATH. FACULTÉ DES SCIENCES DHAR-MAHRAZ, B.P 1796 ATLAS FÈS, MAROC.

Departement of Mathematics, Faculty of Sciences and Techniques of Tangier, B.P. 416, Tangier, Morocco. $rhoudaf_mohamed@yahoo.fr$

ABSTRACT. This paper is concerned with the existence result of the unilateral problem associated to the equations of the type

 $Au + g(x, u, \nabla u) = f,$

in Orlicz spaces, without assuming the sign condition in the nonlinearity g. The source term f belongs to $L^1(\Omega)$.

Key words and phrases: Orlicz Sobolev spaces, Boundary value problems, Truncations.

2000 Mathematics Subject Classification. Primary 46E35.

ISSN (electronic): 1449-5910

^{© 2010} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

Throughout this paper Ω is a bounded open subset of \mathbb{R}^N , p is a real number such that 1 and <math>p' is a conjugate, i.e., $\frac{1}{p} + \frac{1}{p'} = 1$.

Consider the following strongly nonlinear Dirichlet problem,

(1.1)
$$\begin{cases} Au + g(x, u, \nabla u) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $Au = -\operatorname{div}(a(x, u, \nabla u))$ is a Leray-Lions operator with a Carathéodory function $a : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ which satisfying the classical Leray-Lions conditions.

And g is a nonlinear lower order terms having natural growth with respect to $|\nabla u|$, no growth with respect to u and satisfying a sign conditions, i.e.,

$$(1.2) g(x,s,\xi)s \ge 0.$$

We begin by some remarks and well know about the solvability of the problem (1.1) in the L^p -case.

It will turn out that for In the variational case where (i.e., $f \in W^{-1,p'}(\Omega)$) the reader is referred to [5] and [10] where the different approaches are applied.

If $f \in L^1(\Omega)$, existence result of (1.1) have been proved in [9], but under some additionally coercivity condition on the nonlinear term, that is,

(1.3)
$$|g(x,s,\xi)| \ge \gamma |\xi|^p \text{ for all } |s| \text{ some } \mu > 0.$$

It should be noted that hypothesis (1.3) is more technical and allows to solve (1.1) in $W_0^{1,p}(\Omega)$. Unfortunately, where (1.3) is violated, the solvability of (1.1) with L^1 -data is not possible in $W_0^{1,p}(\Omega)$, but the solution of (1.1) is proved in $W_0^{1,q}(\Omega)$ with $1 < q < \bar{q} = \frac{N(p-1)}{N-1}$.

Note that in all the last works, the coefficients of A and the nonlinearity have supposed to satisfy the growth conditions and coercivity of polynômial type.

Now, when trying to relax this restrictions on a and g, we are let to replace $W_0^{1,p}(\Omega)$ by a general setting of Orlicz-Sobolev spaces $W^1L_M(\Omega)$ built from an N-function M instead of $|t|^p$, where the N-function M which defines L_M is related to the actuel growth and coercivity of a and g.

In this L_M -case, we list firstly the work [13] of Gossez, where the second member f lies in $W^{-1}E_{\overline{M}}(\Omega)$ and the nonlinear term g depends only on x and u.

When $g \equiv g(x, u, \nabla u)$, the last work of Gossez is generalized in [6], but under some restriction on the used N-function M (that is M satisfies the so-called Δ_2 -condition).

The case where $f \in L^1(\Omega)$, is studied in [7] but g have supposed satisfying in addition the following L_M -coercivity,

$$(1.4) |g(x,s,\xi)| \ge \beta M(|\xi|).$$

The result of [7] is recovered by the work [8] where no coercivity condition as (1.4) is assumed on g but the result is restricted to N-function M satisfying the Δ_2 -condition.

Concerning the obstacle problems associated to (1.1) in the Orlicz - Sobolev Spaces, we refer for this topics to [2] and [3].

It will be interesting to note that the hypothesis of a sign condition is assumed in the all previous works and it plays a crucial role for to obtain a priori estimates and existence of solutions.

Our principal goal in the present work is to obtain a solution of (1.1) with $f \in L^1(\Omega)$ in the general settings of Orlicz-Sobolev Spaces. This is done with a nonlinearity g, not satisfying nor sign condition and nor L_M -coercivity and without any restriction (as Δ_2 -condition) on the N-function M.

More precisely, the existence of nonbounded solution to some nonlinear elliptic equations for

unilateral problems is investigated. No growth and no sign condition are imposed on the function $g(x, s, \xi)$ with respect to the variable s. Furthermore, the function g is assumed to garde a constant sign.

It's well known that the classical techniques used for to study the problem (1.1) are based on the following approximate problems,

$$(P_{\epsilon}) \begin{cases} -\operatorname{div}(a(x, u_{\epsilon}, \nabla u_{\epsilon})) + g_{\epsilon}(x, u_{\epsilon}, \nabla u_{\epsilon}) = f_{\epsilon} \text{ in } \Omega \\ u_{\epsilon} \equiv 0 \quad \text{on } \partial\Omega, \end{cases}$$

where $g_{\epsilon}(x, s, \xi) = \frac{g(x, s, \xi)}{1+\epsilon|g(x, s, \xi)|}$ and where f_{ϵ} is a sequence of regular functions. Nevertheless, this approximation can not allow to obtain the a priori estimates in our case, this is due to the fact that $u_{\epsilon}g(x, u_{\epsilon}, \nabla u_{\epsilon})$ has no sign.

To overcome this difficulty, one has introduce a doubling approximation, that is we penalize the problem (P_{ϵ}) by,

$$(P^{\sigma}_{\epsilon}) \left\{ \begin{array}{l} -\operatorname{div}(a(x, u^{\sigma}_{\epsilon}, \nabla u^{\sigma}_{\epsilon})) + g^{\sigma}_{\epsilon}(x, u^{\sigma}_{\epsilon}, \nabla u^{\sigma}_{\epsilon}) - \frac{1}{\epsilon^{2}}m(T_{\frac{1}{\epsilon}}(u^{\sigma-}_{\epsilon})) = f_{\epsilon} \ \text{in} \ \Omega \\ u^{\sigma}_{\epsilon} \equiv 0 \qquad \text{on} \ \partial\Omega, \end{array} \right.$$

where $g_{\epsilon}^{\sigma}(x, s, \xi) = \delta_{\sigma}(s)g_{\epsilon}(x, s, \xi)$ and where $\delta_{\sigma}(t)$ is some increasing Lipschitz-function (see sections 4 and 5).

Our simplest model problem is the following:

(1.5)
$$\begin{cases} -\Delta_M u + |u|^r M(|\nabla u|) = f \text{ in } \Omega\\ u \equiv 0 \quad \text{on } \partial\Omega, \end{cases}$$

where r > 0 and $\Delta_M u$ is the so-called *M*-Laplacian operator defined as,

$$\Delta_M u = -\operatorname{div}(m(|\nabla u|) \frac{\nabla u}{|\nabla u|}),$$

where m is the derivatives function of the N-function M. Note that, when we take in (1.5), $M(t) = |t|^p (p > 1)$ we obtain the following L^p -problem,

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}|\nabla u|) + |u|^r |\nabla u|^p = f \text{ in } \Omega\\ u \equiv 0 \quad \text{on} \quad \partial \Omega, \end{cases}$$

generated by the classical *p*-Laplacian operator.

2. PRELIMINARIES

2-1 Let $M : \mathbb{R}^+ \to \mathbb{R}^+$ be an *N*-function, i.e., *M* is continous, convex, with M(t) > 0 for $t > 0, \frac{M(t)}{t} \to 0$ as $t \to 0$ and $\frac{M(t)}{t} \to \infty$ as $t \to \infty$.

Equivalently, M admits the representation: $M(t) = \int_0^t m(s) \, ds$ where $m : \mathbb{R}^+ \to \mathbb{R}^+$ is nondecreasing, right continuous, with m(0) = 0, m(t) > 0 for t > 0 and a(t) tends to ∞ as $t \to \infty$.

The *N*-function \overline{M} conjugate to M is defined by $\overline{M} = \int_0^t \overline{m}(s) \, ds$, where $\overline{m} : \mathbb{R}^+ \to \mathbb{R}^+$ is given by $\overline{m}(t) = \sup\{s : a(s) \le t\}$.

The N-function M is said to satisfy the Δ_2 -condition if, for some k

(2.1)
$$M(2t) \le kM(t) \quad \forall t \ge 0.$$

When (2.1) holds only for $t \ge \text{some } t_0 > 0$ then M is said to satisfy the Δ_2 -condition near infinity. We will extend these N-functions into even functions on all \mathbb{R} . Moreover, we have the following Young's inequality,

$$\forall s, t \geq 0, st \leq M(t) + \overline{M}(s).$$

AJMAA

Let P and Q be two N-functions. $P \ll Q$ means that P grows essentially less rapidly than Q, i.e., for each $\epsilon > 0$, $\frac{P(t)}{Q(\epsilon t)} \rightarrow 0$ as $t \rightarrow \infty$.

This is the case if and only if $\lim_{t\to\infty} \frac{Q^{-1}(t)}{P^{-1}(t)} = 0.$

2-2 Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $K_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$ is defined as the set of (equivalence classes of) real valued measurable functions u on Ω such that:

$$\int_{\Omega} M(u(x)) \, dx < +\infty(\text{ resp. } \int_{\Omega} M(\frac{u(x)}{\lambda}) \, dx < +\infty \text{ for some } \lambda > 0).$$

 $L_M(\Omega)$ is a Banach space under the norm,

$$||u||_{M,\Omega} = \inf\{\lambda > 0 : \int_{\Omega} M(\frac{u(x)}{\lambda}) \, dx \le 1\}$$

and $K_M(\Omega)$ is a convex subset of $L_M(\Omega)$.

The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$.

The dual of $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of the pairing $\int_{\Omega} uv \, dx$, and the dual norm of $L_{\overline{M}}(\Omega)$ is equivalent to $\|.\|_{\overline{M},\Omega}$.

2-3 We now turn to the Orlicz-Sobolev space, $W^1L_M(\Omega)$ [resp. $W^1E_M(\Omega)$] is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ [resp. $E_M(\Omega)$]. It is a banach space under the norm,

$$||u||_{1,M} = \sum_{|\alpha| \le 1} ||D^{\alpha}u||_{M}.$$

Thus, $W^1L_M(\Omega)$ and $W^1E_M(\Omega)$ can be identified with subspaces of product of N + 1 copies of $L_M(\Omega)$. Denoting this product by $\prod L_M$, we will use the weak topologies $\sigma(\prod L_M, \prod E_{\overline{M}})$ and $\sigma(\prod L_M, \prod L_{\overline{M}})$.

The space $W_0^1 E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $D(\Omega)$ in $W^1 E_M(\Omega)$ and the space $W_0^1 L_M(\Omega)$ as the $\sigma(\prod L_M, \prod E_{\overline{M}})$ closure of $D(\Omega)$ in $W^1 L_M(\Omega)$.

2-4 Let $W^{-1}L_{\overline{M}}(\Omega)$ [resp. $W^{-1}E_{\overline{M}}(\Omega)$] denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ [resp. $E_{\overline{M}}(\Omega)$]. It is a Banach space under the usual quotient norm. (For more details see [1]). We recall some lemmas introduced in [6] which will be used later.

Lemma 2.1. (cf. [6]) Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly Lipschitzian, with F(0) = 0. Let M be an N-function and let $u \in W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$). Then $F(u) \in W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$). Moreover, if the set D of discontinuity points of F' is finite, then

$$\frac{\partial}{\partial x_i} F(u) = \begin{cases} F'(u) \frac{\partial}{\partial x_i} u \text{ a.e. in } \{x \in \Omega : u(x) \notin D\}, \\ 0 \quad \text{a.e. in } \{x \in \Omega : u(x) \in D\} \end{cases}$$

Lemma 2.2. (cf. [6]) Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly Lipschitzian, with F(0) = 0. We suppose that the set of discontinuity points of F' is finite. Let M be an N-function, then the mapping $F : W^1L_M(\Omega) \to W^1L_M(\Omega)$ is sequentially continous with respect to the weak* topology $\sigma(\prod L_M, \prod E_{\overline{M}})$. We give now the following lemma which concerns operators of the Nemytskii type in Orlicz spaces (see [6]).

Lemma 2.3. (cf. [6]) Let Ω be an open subset of \mathbb{R}^N with finite measure. Let M, P and Q be N-functions such that $Q \ll P$, and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such that, for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$|f(x,s)| \le c(x) + k_1 P^{-1} M(k_2|s|),$$

where k_1, k_2 are real constants and $c(x) \in E_Q(\Omega)$. Then the Nemytskii operator N_f defined by $N_f(u)(x) = f(x, u(x))$ is strongly continuous from $\mathcal{P}(E_M(\Omega), \frac{1}{k_2}) = \{u \in L_M(\Omega) : d(u, E_M(\Omega)) < \frac{1}{k_2}\}$ into $E_Q(\Omega)$.

We define $\mathcal{T}_0^{1,M}(\Omega)$ to be the set of measurable function $u : \Omega \to \mathbb{R}$ such that $T_k(u) \in W_0^1 L_M(\Omega)$, where $T_k(s) = \max(-k, \min(k, s))$ for $s \in \mathbb{R}$ and $k \ge 0$. We gives the following lemma which is a generalization of Lemma 2.1 [4] in Orlicz spaces. The proof of this lemma is slightly modification of the preceding.

Lemma 2.4. For every $u \in T_0^{1,M}(\Omega)$, there exists a unique measurable function $v : \Omega \longrightarrow \mathbb{R}^N$ such that

$$\nabla T_k(u) = v\chi_{\{|u| \le k\}}, \text{ almost everywhere in } \Omega \text{ for every } k > 0.$$

We will define the gradient of u as the function v, and we will denote it by $v = \nabla u$.

Lemma 2.5. Let $\lambda \in \mathbb{R}$ and let u and v be two measurable functions defined on Ω which are finite almost everywhere, and which are such that $T_k(u)$, $T_k(v)$ and $T_k(u + \lambda v)$ belong to $W_0^1 L_M(\Omega)$ for every k > 0 then

$$abla(u+\lambda v) = \nabla u + \lambda \nabla v \text{ a.e. in } \Omega$$

where ∇u , ∇v and $\nabla(u + \lambda v)$ are the gradients of u, v and $u + \lambda v$ introduced in Lemma 2.4.

The proof of this lemma is similar to the proof of Lemma 2.12 [11] in the L^p case.

3. BASIC ASSUMPTIONS AND ONE FUNDAMENTAL LEMMA

Let Ω be an open bounded subset of \mathbb{R}^N , $N \ge 2$, with the segment property. We now state our conditions on the differential operator,

(3.1)
$$Au = -\operatorname{div}(a(x, u, \nabla u)).$$

 (A_1) $a(x, s, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function.

 (A_2) There exist tow N-functions M and P with $P \ll M$, a function c(x) in $E_{\overline{M}}(\Omega)$, constants k_1, k_2, k_3, k_4 such that, for a.e. x in Ω and for all $s, \zeta \in \mathbb{R}$,

$$|a(x,s,\zeta)| \le c(x) + k_1 \overline{P}^{-1} M(k_2|s|) + k_3 \overline{M}^{-1} M(k_4|\zeta|).$$

 (A_3) $[a(x, s, \zeta) - a(x, s, \zeta')](\zeta - \zeta') > 0$ for a.e. x in Ω , all s in \mathbb{R} and all ζ' in \mathbb{R}^N , with $\zeta \neq \zeta'$.

 (A_4) There exists a strictly positive constant α such that,

$$a(x, s, \zeta)\zeta \ge \alpha M(|\zeta|)$$

for a.e. x in Ω , all $s \in \mathbb{R}$ and all $\zeta \in \mathbb{R}^N$.

Furthermore let $g : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ be a Carathéodory function having a constant sign such that for a.e. $x \in \Omega$ and for all $s \in \mathbb{R}$ and all $\zeta \in \mathbb{R}^N$, $(G_1) |g(x, s, \zeta)| \leq b(|s|) (h(x) + M(|\zeta|));$ (G_2) $g(x, 0, \zeta) = 0;$ where $b : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous non-decreasing function, h is a given non-negative function in $L^1(\Omega)$.

Consider now the following Dirichlet problem:

(3.2)
$$\begin{cases} A(u) + g(x, u, \nabla u) = f \text{ in } \Omega \\ u = 0 \text{ on } \partial\Omega, \end{cases}$$

and define $\tau_0^{1,M}(\Omega)$ as a set of measurable functions $u: \Omega \to \mathbb{R}$ such that $T_k(u) \in W_0^1 L_M(\Omega)$, where $T_k(s) = \max(-k, \min(k, s))$ for $s \in \mathbb{R}$ and $k \ge 0$.

Lemma 3.1. Let $(f_n)_n, f \in L^1(\Omega)$ such that,

1)
$$f_n \ge 0$$
 a.e. in Ω ;
2) $f_n \to f$ a.e. in Ω ;
3) $\int_{\Omega} f_n(x) dx \to \int_{\Omega} f(x) dx$. Then $f_n \to f$ strongly in $L^1(\Omega)$.

Lemma 3.2. Assume that $(A_1) - (A_4)$ are satisfied, and let (z_n) be a sequence in $W_0^1 L_M(\Omega)$ such that,

Then,

$$M(|\nabla z_n|) \to M(|\nabla z|)$$
 in $L^1(\Omega)$.

Proof. Fix r > 0 and let s > r we have,

$$(3.3) \qquad 0 \leq \int_{\Omega_r} [a(x, z_n, \nabla z_n) - a(x, z_n, \nabla z)] [\nabla z_n - \nabla z] \, dx$$

$$\leq \int_{\Omega_s} [a(x, z_n, \nabla z_n) - a(x, z_n, \nabla z)] [\nabla z_n - \nabla z] \, dx$$

$$= \int_{\Omega_s} [a(x, z_n, \nabla z_n) - a(x, z_n, \nabla z \chi_s)] [\nabla z_n - \nabla z \chi_s] \, dx$$

$$\leq \int_{\Omega} [a(x, z_n, \nabla z_n) - a(x, z_n, \nabla z \chi_s)] [\nabla z_n - \nabla z \chi_s] \, dx.$$

Which with the condition c) imply that,

(3.4)
$$\lim_{n \to \infty} \int_{\Omega_r} [a(x, z_n, \nabla z_n) - a(x, z_n, \nabla z)] [\nabla z_n - \nabla z] \, dx = 0.$$

So, following the same argument as in [12] we claim that,

$$(3.5) \qquad \nabla z_n \to \nabla z \quad a.e. \text{ in } \Omega.$$

On the other hand, we have

(3.6)
$$\int_{\Omega} a(x, z_n, \nabla z_n) \nabla z_n \, dx = \int_{\Omega} [a(x, z_n, \nabla z_n) - a(x, z_n, \nabla z\chi_s)] \\ \times [\nabla z_n - \nabla z\chi_s] \, dx \\ + \int_{\Omega} a(x, z_n, \nabla z\chi_s) (\nabla z_n - \nabla z\chi_s) \, dx \\ + \int_{\Omega} a(x, z_n, \nabla z_n) \nabla z\chi_s \, dx.$$

Since $(a(x, z_n, \nabla z_n))_n$ is bounded in $(L_{\overline{M}}(\Omega))^N$, and by using (3.5), we obtain (3.7) $a(x, z_n, \nabla z_n) \rightharpoonup a(x, z, \nabla z)$ weakly in $(L_{\overline{M}}(\Omega))^N$ for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$, which implies that,

(3.8)
$$\int_{\Omega} a(x, z_n, \nabla z_n) \nabla z \chi_s \, dx \to \int_{\Omega} a(x, z, \nabla z) \nabla z \chi_s \, dx \text{ as } n \to \infty.$$

Letting also $s \to \infty$, we obtain

(3.9)
$$\int_{\Omega} a(x, z, \nabla z) \nabla z \chi_s \, dx \to \int_{\Omega} a(x, z, \nabla z) \nabla z \, dx$$

On the other hand, it is easy to see that the second term of the right hand side of (3.6) tends to 0 as $n \to \infty$ and $s \to \infty$.

Consequently, from c), (3.8) and (3.9) we have,

(3.10)
$$\lim_{n \to \infty} \int_{\Omega} a(x, z_n, \nabla z_n) \nabla z_n \, dx = \int_{\Omega} a(x, z, \nabla z) \nabla z \, dx.$$

Finally, the coersivity (A_4) and Lemma 3.1 allow to conclude that,

(3.11)
$$M(|\nabla z_n|) \longrightarrow M(|\nabla z|) \text{ in } L^1(\Omega).$$

In the sequel, since g is supposed having a constant sign, we start our study by a case where g is positive.

4. CASE OF A POSITIVE NONLINEARITY

We consider first the convex set,

(4.1)
$$K_0 = \{ u \in W_0^1 L_M(\Omega); u \ge 0 \ a.e. \text{ in } \Omega \}$$

This convex set is sequentially $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closed in $W_0^1 L_M(\Omega)$ [see [14]].

Remark 4.1. For each $u \in K_0 \cap L^{\infty}(\Omega)$ there exists a sequence $v_j \in K_0 \cap W_0^1 E_M(\Omega) \cap L^{\infty}(\Omega)$ such that $v_j \to u$ for the modular convergence with $||v_j||_{\infty}$ bounded (see proposition 10, [14]).

Theorem 4.1. Assume that $(A_1) - (A_4)$, (G_1) and (G_2) hold true and that $f \in L^1(\Omega)$. Then there exists at least one solution of the following unilateral problem,

$$(P) \begin{cases} u \in \tau_0^{1,M}(\Omega), u \ge 0 \text{ a.e. in } \Omega, \\ g(x, u, \nabla u) \in L^1(\Omega), \\ \int_\Omega a(x, u, \nabla u) \nabla T_k(u - v) \, dx + \int_\Omega g(x, u, \nabla u) T_k(u - v) \, dx \\ \le \int_\Omega f T_k(u - v) \, dx, \\ \forall \ v \in K_0 \cap L^\infty(\Omega), \ \forall k > 0. \end{cases}$$

Remark 4.2. Note that the gradient of u in (P) is well defined in the weak sense (see Lemma 2.4 and Lemma 2.5)

Proof. Let us define,

(4.2)
$$g_{\epsilon}(x,s,\xi) = \frac{g(x,s,\xi)}{1+\epsilon|g(x,s,\xi)|}$$

and consider the following approximate problem,

(4.3)
$$(P_{\epsilon}) \begin{cases} -\operatorname{div}a(x, u_{\epsilon}, \nabla u_{\epsilon}) + g_{\epsilon}(x, u_{\epsilon}, \nabla u_{\epsilon}) = f_{\epsilon} \text{ in } \Omega \\ u_{\epsilon} = 0 \text{ on } \partial\Omega, \end{cases}$$

where f_{ϵ} is a regular function such that f_{ϵ} strongly converges to f in $L^{1}(\Omega)$ and $||f_{\epsilon}||_{L^{1}(\Omega)} \leq ||f||_{L^{1}(\Omega)}$. Note that $g_{\epsilon}(x, s, \xi)$ satisfies the following conditions,

$$|g_{\epsilon}(x, s, \xi)| \le |g(x, s, \xi)| \le b(|s|)(h(x) + M(|\xi|))$$

and

$$|g_{\epsilon}(x,s,\xi)| \le \frac{1}{\epsilon}.$$

Nevertheless, it seems different to obtain a priori estimates, due to the fact that the quantity $u_{\epsilon}g(x, u_{\epsilon}, \nabla u_{\epsilon})$ has no sign.

In order to avoid this inconvenience, we approach the sign function by an increasing Lipschitz function.

Set,

$$\delta_{\sigma}(s) = \begin{cases} \frac{s-\sigma}{s} & \text{if } s \ge \sigma > 0\\ 0 & \text{if } |s| \le \sigma\\ \frac{-s-\sigma}{s} & \text{if } s < -\sigma < 0. \end{cases}$$

Now, we set

(4.4)
$$g_{\epsilon}^{\sigma}(x,s,\xi) = \delta_{\sigma}(s)g_{\epsilon}(x,s,\xi).$$

Remark that $g^{\sigma}_{\epsilon}(x, s, \xi)$ has a same sign as s.

Now, we are in opposition to approximate our initial unilateral problem by the following penalized problem, (4.5)

$$(P^{\sigma}_{\epsilon}) \begin{cases} u^{\sigma}_{\varepsilon} \in W^{1}_{0}L_{M}(\Omega) \\ \int_{\Omega} \langle Au^{\sigma}_{\epsilon}, u^{\sigma}_{\epsilon} - v \rangle + \int_{\Omega} g^{\sigma}_{\epsilon}(x, u^{\sigma}_{\epsilon}, \nabla u^{\sigma}_{\epsilon})(u^{\sigma}_{\epsilon} - v) \ dx - \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u^{\sigma-}_{\varepsilon}))(u^{\sigma}_{\varepsilon} - v) \ dx \\ = \int_{\Omega} f_{\varepsilon}(u^{\sigma}_{\varepsilon} - v) \ dx \\ \forall v \in W^{1}_{0}L_{M}(\Omega), \end{cases}$$

where m(t) is the derivatives function of M(t).

From Gossez and Mustonen ([14], Proposition 5), the problem (4.5) has at least one solution. \blacksquare

4.1. Study of the approximate problem with respect to ϵ .

4.1.1. A priori estimates. Taking $v = u_{\varepsilon}^{\sigma} - T_k(u_{\varepsilon}^{\sigma})$ as test in (4.5), we obtain

$$\int_{\Omega} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla T_{k}(u_{\varepsilon}^{\sigma}) dx + \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{k}(u_{\varepsilon}^{\sigma}) dx - \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) T_{k}(u_{\varepsilon}^{\sigma}) dx = \int_{\Omega} f_{\varepsilon} T_{k}(u_{\varepsilon}^{\sigma}) dx.$$

 $g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})T_k(u_{\varepsilon}^{\sigma}) \geq 0 \text{ and } -\frac{1}{\varepsilon^2}m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-}))T_k(u_{\varepsilon}^{\sigma}) \geq 0 \text{ then we have,}$

(4.6)
$$\int_{\Omega} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla T_k(u_{\varepsilon}^{\sigma}) \, dx \le k \|f\|_{L^1(\Omega)}.$$

So, by (A_4) we get,

(4.7)
$$\alpha \int_{\Omega} M(|\nabla T_k(u_{\varepsilon}^{\sigma})|) \le k \|f\|_{L^1(\Omega)}.$$

Thus $(T_k(u_{\varepsilon}^{\sigma}))_{\varepsilon}$ is bounded in $W_0^1 L_M(\Omega)$ uniformly in ε and σ , then there exists for σ fixed some $v_k^{\sigma} \in W_0^1 L_M(\Omega)$ such that,

 $T_k(u^{\sigma}_{\varepsilon}) \rightharpoonup v^{\sigma}_k$ in $W^1_0 L_M(\Omega)$ for $\sigma(\Pi L_M, \Pi E_{\bar{M}})$

and

(4.8)
$$T_k(u_{\varepsilon}^{\sigma}) \to v_k^{\sigma}$$
 strongly in $E_M(\Omega)$.

4.1.2. Convergence in measure of u_{ε}^{σ} . Let k > 0. By Lemma 5.7 of [12], there exist tow positive constants c_1 and c_2 such that,

$$\int_{\Omega} M(c_1 T_k(u_{\varepsilon}^{\sigma})) \, dx \le c_2 \int_{\Omega} M(|\nabla T_k(u_{\varepsilon}^{\sigma})|) \, dx$$

So, in virtue of (4.7), we have

$$\int_{\Omega} M(c_1 T_k(u_{\varepsilon}^{\sigma})) \ dx \le kc,$$

where $c = c(||f||_{L^1(\Omega)}, c_1, \alpha)$. Then, we deduce that,

$$M(c_1k)\operatorname{meas}(\{|u_{\varepsilon}^{\sigma}| > k\}) = \int_{\{|u_{\varepsilon}^{\sigma}| > k\}} M(c_1T_k(u_{\varepsilon}^{\sigma})) \, dx \le kc.$$

Hence,

(4.9)

$$\operatorname{meas}(\{|u_{\varepsilon}^{\sigma}| > k\}) \leq \frac{kc}{M(c_1k)} \,\,\forall \,\varepsilon, \,\forall \,k.$$

This yields that,

(4.10)
$$\operatorname{meas}(\{|u_{\varepsilon}^{\sigma}| > k\}) \to 0 \text{ as } k \to +\infty$$

uniformly in ε and σ .

Now, we prove that $(u_{\varepsilon}^{\sigma})_{\varepsilon}$ converges to some function u^{σ} in measure (and therefore, we can

AJMAA

always assume that the convergence is a.e. after passing to a suitable subsequence). For every $\lambda > 0$, we have

(4.11)
$$\max(\{|u_j^{\sigma} - u_i^{\sigma}| > \lambda\}) \le \max(\{|u_j^{\sigma}| > k\})$$
$$+ \max(\{|u_i^{\sigma}| > k\})$$
$$+ \max(\{|T_k(u_i^{\sigma}) - T_k(u_i^{\sigma})| > \lambda\})$$

Consequently, by (4.8) we can assume that $(T_k(u_{\varepsilon}^{\sigma}))_{\varepsilon}$ is a Cauchy sequence in measure in Ω . Let $\eta > 0$. By (4.11) there exists some $k(\eta) > 0$ such that,

$$\operatorname{meas}(\{|u_j^{\sigma} - u_i^{\sigma}| > \lambda\}) \le \eta \text{ for all } i, j \ge n_0(k(\eta), \lambda).$$

This proves that $(u_{\varepsilon}^{\sigma})_{\varepsilon}$ is a Cauchy sequence in measure in Ω , thus converges almost every where to some measurable function u^{σ} . Then

$$T_k(u^{\sigma}_{\varepsilon}) \rightharpoonup T_k(u^{\sigma})$$
 weakly in $W_0^1 L_M(\Omega)$ for $\sigma(\Pi L_M, \Pi E_{\bar{M}})$

(4.12)
$$T_k(u^{\sigma}_{\varepsilon}) \to T_k(u^{\sigma})$$
 strongly in $E_M(\Omega)$ and a.e. in Ω

4.1.3. Show that $u^{\sigma} \ge 0$. Taking $v = u^{\sigma}_{\varepsilon} - T_{\frac{1}{\varepsilon}}(u^{\sigma}_{\varepsilon})$ as test in (4.5), we obtain

$$\begin{split} \int_{\Omega} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \, dx + \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \, dx \\ &- \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \, dx \\ &= \int_{\Omega} f_{\varepsilon} T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \, dx. \end{split}$$

Since $\int_{\Omega} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) dx \ge 0$ and $g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \ge 0$ we get, $\frac{1}{\varepsilon} \int_{\Omega} dx = 0$ and $g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \ge 0$ we get,

$$-\frac{1}{\varepsilon^2} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma}) \, dx \le \frac{1}{\varepsilon} \|f\|_{L^1(\Omega)}$$

which implies that,

$$\frac{1}{\varepsilon^2} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-}) \, dx \leq \frac{1}{\varepsilon} \|f\|_{L^1(\Omega)}.$$

Moreover, since

$$M(\tau) \le m(\tau)\tau$$

then we have,

$$\int_{\Omega} M(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) \, dx \leq \varepsilon \|f\|_{L^{1}(\Omega)}.$$

Finally, writing $\int_{\Omega} M(u_{\varepsilon}^{\sigma-}) dx$ as

$$\int_{\Omega} M(u_{\varepsilon}^{\sigma-}) \, dx = \int_{\{u_{\varepsilon}^{\sigma-} \le \frac{1}{\varepsilon}\}} M(u_{\varepsilon}^{\sigma-}) \, dx + \int_{\{u_{\varepsilon}^{\sigma-} > \frac{1}{\varepsilon}\}} M(u_{\varepsilon}^{\sigma-}) \, dx,$$

one deduce that,

$$\int_{\Omega} M(u_{\varepsilon}^{\sigma-}) \, dx \leq \varepsilon \|f\|_{L^{1}(\Omega)} + \int_{\{u_{\varepsilon}^{\sigma-} > \frac{1}{\varepsilon}\}} M(u_{\varepsilon}^{\sigma-}) \, dx.$$

Hence, due to the fact that $u^{\sigma}_{\varepsilon} \to u^{\sigma}$ a.e. in Ω , we conclude that

 $M(u_{\varepsilon}^{\sigma}) \to M(u^{\sigma})$ a.e. in Ω .

Also as in (4.10) we can prove that,

$$\operatorname{meas}\{u_{\varepsilon}^{\sigma-} > \frac{1}{\varepsilon}\} \to 0.$$

Then,

$$M(u_{\varepsilon}^{\sigma-}) \to 0 \text{ as } \varepsilon \to 0,$$

which gives,

 $u^{\sigma} \geq 0.$

4.1.4. Boundedness of $(a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})))_{\varepsilon}$ in $(L_{\bar{M}}(\Omega))^N$. Let $w \in (E_M(\Omega))^N$ be arbitrary. By (A_3) we have,

$$[a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) - a(x, u_{\varepsilon}^{\sigma}, w)][\nabla u_{\varepsilon}^{\sigma} - w] > 0,$$

which implies that,

$$a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})w \le a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})\nabla u_{\varepsilon}^{\sigma} - a(x, u_{\varepsilon}^{\sigma}, w)(\nabla u_{\varepsilon}^{\sigma} - w)$$

Integrating on the subset $\{x \in \Omega, |u_{\varepsilon}^{\sigma}| < k\}$ we obtain,

$$(4.13) \qquad \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) w \, dx \leq \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla u_{\varepsilon}^{\sigma} \, dx \\ - \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} a(x, u_{\varepsilon}^{\sigma}, w) (\nabla u_{\varepsilon}^{\sigma} - w) \, dx.$$

Thanks to (4.6), we have

(4.14)
$$\int_{\{|u_{\varepsilon}^{\sigma}| < k\}} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla u_{\varepsilon}^{\sigma} dx \le c(k).$$

On the other hand, for λ large enough, we have by using (A_2) ,

$$\int_{\{|u_{\varepsilon}^{\sigma}| < k\}} \bar{M}\left(\frac{a(x, u_{\varepsilon}^{\sigma}, w)}{\lambda}\right) dx \leq \int_{\Omega} \bar{M}\left(\frac{k(x)}{\lambda}\right) dx + \frac{k_3}{\lambda} \int_{\Omega} M(k_2|w|) + c \leq c_3.$$

Hence $(|a(x, u_{\varepsilon}^{\sigma}, w)|_{\chi_{\{|u_{\varepsilon}^{\sigma}| < k\}}})_{\varepsilon}$ is bounded in $L_{\overline{M}}(\Omega)$, which implies that the second term of the right hand side of (4.13) is also bounded.

Consequently, we obtain,

(4.15)
$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) w \le c_4,$$

where c_4 is a positive constant depending of k.

Hence, by the theorem of Banach-Steinhaus, the sequence $a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma}))_{\varepsilon}$ remains bounded in $(L_{\bar{M}}(\Omega))^N$. Which implies that, for all k > 0, there exists a function $h_{k\sigma} \in (L_{\bar{M}}(\Omega))^N$, such that

(4.16)
$$a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) \rightharpoonup h_{k\sigma}$$
 weakly in $(L_{\bar{M}}(\Omega))^N$ for $\sigma(\Pi L_{\bar{M}}(\Omega), \Pi E_M(\Omega))$

4.1.5. *Almost every where convergence of the gradient.* In the sequel, we use the following notations:

 $\eta(\varepsilon, j, h)$ is any quantity such that

$$\lim_{h \to +\infty} \lim_{j \to +\infty} \lim_{\varepsilon \to 0} \eta(\varepsilon, j, h) = 0.$$

If the quantity we consider does not depend on one parameter among η , j and h, we will omit the dependence on the corresponding parameter: as an example, $\eta(\varepsilon, h)$ is any quantity such that

$$\lim_{h\to+\infty}\lim_{\varepsilon\to 0}\eta(\varepsilon,h)=0.$$

Finally, we will denote (for example) by $\eta_h(\varepsilon, j)$ a quantity that depends on ε, j, h and is such that

$$\lim_{j\to+\infty}\lim_{\varepsilon\to 0}\eta_h(\varepsilon,j)=0$$

for any fixed value of h.

We fix k > 0, let $\Omega_r = \{x \in \Omega, |\nabla T_k(u^{\sigma}(x))| \le r\}$ and denote by χ_r the characteristic function of Ω_r .

Clearly, $\Omega_r \subset \Omega_{r+1}$ and $\text{meas}(\Omega \setminus \Omega_r) \to 0$ as $r \to \infty$. Fix r and let s > r, we have

(4.17)

$$0 \leq \int_{\Omega_{r}} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma}) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma}))] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})] dx$$

$$\leq \int_{\Omega_{s}} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma}) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma}))] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})] dx$$

$$= \int_{\Omega_{s}} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma}) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma})\chi_{s})] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})\chi_{s}] dx$$

$$\leq \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma}) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma})\chi_{s})] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})\chi_{s}] dx.$$

Let k > 0 and let $\varphi_k(s) = se^{\gamma s^2}$, where $\gamma = (\frac{b(k)}{\alpha})^2$. It is well know that,

(4.18)
$$\varphi'_k(s) - \frac{b(k)}{\alpha} |\varphi_k(s)| \ge \frac{1}{2}, \ \forall s \in \mathbb{R}.$$

Thanks to Remark 4.1 there exists a sequence $v_j \in K_0 \cap W_0^1 E_M(\Omega) \cap L^{\infty}(\Omega)$ which converges to $T_k(u^{\sigma})$ for the modular convergence in $W_0^1 L_M(\Omega)$. Here, we define

$$w_{\varepsilon j}^{h\sigma} = T_{2k}(u_{\varepsilon}^{\sigma} - T_h(u_{\varepsilon}^{\sigma}) + T_k(u_{\varepsilon}^{\sigma}) - T_k(v_j))$$

$$w_j^{h\sigma} = T_{2k}(u^{\sigma} - T_h(u^{\sigma}) + T_k(u^{\sigma}) - T_k(v_j))$$

$$w^{h\sigma} = T_{2k}(u^{\sigma} - T_h(u^{\sigma}))$$

where h > 2k > 0. For $\eta = \exp(-4\gamma k^2)$, we define the following function as,

(4.19)
$$v_{\varepsilon,j}^{h,\sigma} = u_{\varepsilon}^{\sigma} - \eta \varphi_k(w_{\varepsilon,j}^{h,\sigma}).$$

We take $v_{\varepsilon,j}^{h,\sigma}$ as test function in (4.5), we obtain,

$$\begin{split} \langle A(u_{\varepsilon}^{\sigma}), \eta \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \rangle \\ &+ \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \eta \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ &- \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) \eta \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ \leq \int_{\Omega} \eta f_{\varepsilon} \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx, \end{split}$$

which implies that,

$$\begin{split} \langle A(u_{\varepsilon}^{\sigma}), \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \rangle \\ &+ \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \ dx \\ &- \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \ dx \\ &\leq \int_{\Omega} f_{\varepsilon} \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \ dx. \end{split}$$

It follows that,

$$(4.20) \qquad \qquad \int_{\Omega} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla w_{\varepsilon,j}^{h,\sigma} \varphi'_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ + \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ - \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ \le \int_{\Omega} f_{\varepsilon} \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) \, dx.$$

Note that, $\nabla w_{\varepsilon,j}^{h,\sigma} = 0$ on the set where $|u_{\varepsilon}^{\sigma}| > h + 5k$, therefore, setting s = 5k + h, we get by (4.20)

$$\begin{split} &\int_{\Omega} a(x, T_s(u_{\varepsilon}^{\sigma}), \nabla T_s(u_{\varepsilon}^{\sigma})) \nabla w_{\varepsilon,j}^{h,\sigma} \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ &+ \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_k(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ &- \frac{1}{\varepsilon^2} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-})) \varphi_k(w_{\varepsilon,j}^{h,\sigma}) \, dx \\ &\leq \int_{\Omega} f_{\varepsilon} \varphi_k(w_{\varepsilon,j}^{h,\sigma}) \, dx. \end{split}$$

In view of (4.12), we have $\varphi_k(w^{h,\sigma}_{\varepsilon,j}) \to \varphi_k(w^{h,\sigma}_j)$ weakly* in $L^{\infty}(\Omega)$ as $\varepsilon \to 0$ and then

$$\int_{\Omega} f_{\varepsilon} \varphi_k(w_{\varepsilon,j}^{h,\sigma}) \, dx \to \int_{\Omega} f \varphi_k(w_j^{h,\sigma}) \, dx \text{ as } \varepsilon \to 0,$$

again tending j to infinity, we get

$$\int_{\Omega} f\varphi_k(w_j^{h,\sigma}) \ dx \to \int_{\Omega} f\varphi_k(w^{h,\sigma}) \ dx \text{ as } j \to +\infty.$$

Finally, by using the Lebesgue's theorem, we can deduce that,

$$\int_{\Omega} f \varphi_k(w^{h,\sigma}) \ dx \to 0 \ \text{ as } \ h \to +\infty.$$

So that,

(4.21)
$$\int_{\Omega} f_{\varepsilon} \varphi_k(w_{\varepsilon,j}^{h,\sigma}) \, dx = \eta(\varepsilon, j, h).$$

Note that the sign of $\varphi_k(w_{\varepsilon,j}^{h,\sigma})$ is the same as that of u_{ε}^{σ} in the set $\{x \in \Omega, |u_{\varepsilon}^{\sigma}| > k\}$, then we have

$$g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})\varphi_k(w_{\varepsilon,j}^{n,\sigma}) \ge 0,$$

and

$$-\frac{1}{\varepsilon^2}m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-}))\varphi_k(w_{\varepsilon,j}^{h,\sigma})\geq 0$$

in the subset $\{x \in \Omega, \ |u_{\varepsilon}^{\sigma}| > k\}$, we deduce from (4.20) that,

(4.22)
$$\int_{\Omega} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi'_{k}(w_{\varepsilon,j}^{h,\sigma}) dx \\ + \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) dx \\ - \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma-}))(u_{\varepsilon}^{\sigma} - T_{k}(v_{j})) \exp(\gamma(w_{\varepsilon,j}^{h,\sigma})^{2}) \\ \leq \eta(\varepsilon, j, h).$$

Since by Remark 4.1, $v_j \ge 0$, then the third term of the left-hand side of the above inequality is positive, thus,

(4.23)
$$\int_{\Omega} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ + \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_{k}(w_{\varepsilon,j}^{h,\sigma}) dx \\ \leq \eta(\varepsilon, j, h).$$

Splitting the first integral one the left hand side of (4.23), where $|u_{\varepsilon}^{\sigma}| \leq k$ and where $|u_{\varepsilon}^{\sigma}| > k$, we can write,

$$(4.24) \qquad \int_{\Omega} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ = \int_{\{|u_{\varepsilon}^{\sigma}| \le k\}} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})] \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ + \int_{\{|u_{\varepsilon}^{\sigma}| > k\}} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx.$$

The first term of the right-hand side of the last inequality can write as,

(4.25)
$$\int_{\{|u_{\varepsilon}^{\sigma}| \le k\}} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx$$
$$= \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})] \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx.$$

For the second term of the right hand side of (4.24) we can write, using (A_4) ,

(4.26)
$$\int_{\{|u_{\varepsilon}^{\sigma}|>k\}} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx$$
$$\geq -\varphi_{k}'(2k) \int_{\{|u_{\varepsilon}^{\sigma}|>k\}} |a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma}))| |\nabla v_{j}| dx.$$

Since $|a(x, T_s(u_{\varepsilon}^{\sigma}), \nabla T_s(u_{\varepsilon}^{\sigma}))|$ is bounded in $L_{\bar{M}}(\Omega)$, we have for a subsequence

$$|a(x, T_s(u_{\varepsilon}^{\sigma}), \nabla T_s(u_{\varepsilon}^{\sigma}))| \rightharpoonup l_{s,\sigma}$$

weakly in $L_{\bar{M}}(\Omega)$ for $\sigma(L_{\bar{M}}, E_M)$ as ε tends to zero, and since

$$\nabla v_j \chi_{\{|u_{\varepsilon}^{\sigma}| > k\}} \to \nabla v_j \chi_{\{|u^{\sigma}| > k\}}$$

strongly in $E_M(\Omega)$ as $\varepsilon \to 0$, we have

$$-\varphi_k'(2k)\int_{\{|u_{\varepsilon}^{\sigma}|>k\}}|a(x,T_s(u_{\varepsilon}^{\sigma}),\nabla T_s(u_{\varepsilon}^{\sigma}))||\nabla v_j|\ dx\to -\varphi'(2k)\int_{\{|u^{\sigma}|>k\}}l_{s,\sigma}|\nabla v_j|\ dx$$

as $\varepsilon \to 0$.

Using now, the modular convergence of (v_j) , we get

$$-\varphi_k'(2k)\int_{\{|u^{\sigma}|>k\}}l_{s,\sigma}|\nabla v_j|\ dx\to -\varphi_k'(2k)\int_{\{|u^{\sigma}|>k\}}l_{s,\sigma}|\nabla T_k(u^{\sigma})|\ dx=0$$

as $j \to +\infty$. Finally, we have

Finally, we have

(4.27)
$$-\varphi'_k(2k)\int_{\{|u_{\varepsilon}^{\sigma}|>k\}}|a(x,T_s(u_{\varepsilon}^{\sigma}),\nabla T_s(u_{\varepsilon}^{\sigma}))||\nabla v_j|\,dx=\eta_h(\varepsilon,j).$$

Combining (4.24) and (4.27), we deduce that,

$$\int_{\Omega} a(x, T_s(u_{\varepsilon}^{\sigma}), \nabla T_s(u_{\varepsilon}^{\sigma})) \nabla (w_{\varepsilon,j}^{h,\sigma}) \varphi'_k(w_{\varepsilon,j}^{h,\sigma}) dx$$

$$\geq \int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)] \varphi'_k(w_{\varepsilon,j}^{h,\sigma}) dx + \eta_h(\varepsilon, j).$$

Which implies that,

$$(4.28) \qquad \int_{\Omega} a(x, T_{s}(u_{\varepsilon}^{\sigma}), \nabla T_{s}(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ \geq \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j})] \\ \times [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ + \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j}) [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ - \int_{\Omega \setminus \Omega_{s}^{j}} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) \nabla T_{k}(v_{j}) \varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) dx \\ + \eta_{h}(\varepsilon, j), \end{cases}$$

where χ_s^j denotes the characteristic function of the subset $\Omega_s^j = \{x \in \Omega : |\nabla T_k(v_j)| \le s\}.$

By (4.16) and the fact that $\nabla T_k(v_j)\chi_{\Omega\setminus\Omega_s^j}\varphi'_k(w_{\varepsilon,j}^{h,\sigma})$ tends to $\nabla T_k(v_j)\chi_{\Omega\setminus\Omega_s^j}\varphi'_k(w_j^{h,\sigma})$ strongly in $(E_M(\Omega))^N$, the third term of the right-hand side of (4.28) tends to the quantity

$$\int_{\Omega} h_{k,\sigma} \nabla T_k(v_j) \chi_{\Omega \setminus \Omega_s^j} \varphi_k'(w_j^{h,\sigma}) \, dx \text{ as } \varepsilon \to 0.$$

Letting now j tends to infinity, by using the modular convergence of v_i , we have

$$\int_{\Omega} h_{k,\sigma} \nabla T_k(v_j) \chi_{\Omega \setminus \Omega_s^j} \varphi_k'(w_j^{h,\sigma}) \, dx \to \int_{\Omega \setminus \Omega_s^j} h_{k,\sigma} \nabla T_k(u^{\sigma}) \varphi_k'(w^{h,\sigma}) \, dx \text{ as } j \to +\infty.$$

Finally, we get,

(4.29)
$$\int_{\Omega \setminus \Omega_s^j} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) \nabla T_k(v_j) \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) dx$$
$$= -\int_{\Omega \setminus \Omega_s} h_{k,\sigma} \nabla T_k(u^{\sigma}) \varphi_k'(w^{h,\sigma}) dx + \eta_h(\varepsilon, j).$$

Concerning the second term of the right hand side of (4.28) we can write,

(4.30)
$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) dx$$
$$= \int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) \nabla T_k(u_{\varepsilon}^{\sigma}) \varphi_k'(T_k(u_{\varepsilon}^{\sigma}) - T_k(v_j)) dx$$
$$- \int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) \nabla T_k(v_j)\chi_s^j \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) dx.$$

The first term of the right hand side of (4.30) tends to the quantity,

$$\int_{\Omega} a(x, T_k(u^{\sigma}), \nabla T_k(v_j)\chi_s^j) \nabla T_k(u^{\sigma}) \varphi_k'(T_k(u^{\sigma}) - T_k(v_j)) \, dx \text{ as } \varepsilon \to 0.$$

Thanks to Lemma 2.3, we have

$$\begin{split} a(x,T_k(u_{\varepsilon}^{\sigma}),\nabla T_k(v_j)\chi_s^j)\varphi_k'(T_k(u_{\varepsilon}^{\sigma})-T_k(v_j)) &\to a(x,T_k(u^{\sigma}),\nabla T_k(v_j)\chi_s^j)\varphi_k'(T_k(u^{\sigma})-T_k(v_j)) \\ \text{strongly in } (E_{\bar{M}}(\Omega))^N \text{ and } \end{split}$$

$$\nabla T_k(u_{\varepsilon}^{\sigma}) \rightharpoonup \nabla T_k(u^{\sigma})$$
 weakly in $(L_M(\Omega))^N$ for $\sigma(\Pi L_M, \Pi E_{\overline{M}})$.

For the second term of the right hand side of (4.30) it is easy to see that,

(4.31)
$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) \nabla T_k(v_j)\chi_s^j \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) dx$$
$$\rightarrow \int_{\Omega} a(x, T_k(u^{\sigma}), \nabla T_k(v_j)\chi_s^j) \nabla T_k(v_j)\chi_s^j \varphi_k'(w_j^{h,\sigma}) dx \text{ as } \varepsilon \to 0$$

Consequently, we have

(4.32)
$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) dx$$
$$= \int_{\Omega} a(x, T_k(u^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \varphi_k'(w_j^{h,\sigma}) dx$$
$$+ \eta_{j,h}(\varepsilon).$$

Since,

$$\nabla T_k(v_j)\chi_s^j\varphi_k'(w_j^{h,\sigma}) \to \nabla T_k(u^{\sigma})\chi_s\varphi_k'(w^{h,\sigma})$$

strongly in $E_M(\Omega))^N$ as $j \to \infty$, it is easy to see that,

$$\int_{\Omega} a(x, T_k(u^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \varphi_k'(w_j^{h,\sigma}) \, dx \to 0 \text{ as } j \to +\infty.$$

Thus,

(4.33)
$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \varphi_k'(w_{\varepsilon,j}^{h,\sigma}) \, dx = \eta_h(\varepsilon, j).$$

Combining (4.28), (4.29) and (4.33) we get,

$$(4.34) \qquad \int_{\Omega} a(x, T_m(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) \nabla(w_{\varepsilon,j}^{h,\sigma}) \varphi'_k(w_{\varepsilon,j}^{h,\sigma}) dx \\ \geq \int_{\Omega} [a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) - a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j)] \\ \times [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \varphi'_k(w_{\varepsilon,j}^{h,\sigma}) dx \\ + \int_{\Omega \setminus \Omega_s} h_{k\sigma} \nabla T_k(u^{\sigma}) \varphi'_k(0) dx + \eta(\varepsilon, j, h).$$

We now turn to the second term of the left hand side of (4.23), we have

$$\begin{split} & \left| \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_{k}(w_{\varepsilon, j}^{h, \sigma}) \, dx \right| \\ & \leq b(k) \int_{\Omega} (h(x) + M(\nabla T_{k}(u_{\varepsilon}^{\sigma})) |\varphi_{k}(w_{\varepsilon, j}^{h, \sigma})| \, dx \\ & \leq b(k) \int_{\Omega} h(x) |\varphi_{k}(w_{\varepsilon, j}^{h, \sigma})| \, dx + \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) \nabla T_{k}(u_{\varepsilon}^{\sigma}) |\varphi_{k}(w_{\varepsilon, j}^{h, \sigma})| \, dx \\ & \leq \eta(\varepsilon, j, h) + \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) \nabla T_{k}(u_{\varepsilon, j}^{\sigma})| \, dx. \end{split}$$

The last term of the last side of this inequality reads as,

$$\frac{b(k)}{\alpha} \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j})] \\
\times [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] |\varphi_{k}(w_{\varepsilon,j}^{h,\sigma})| dx \\
+ \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j}) [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] |\varphi_{k}(w_{\varepsilon,j}^{h,\sigma})| dx \\
- \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) \nabla T_{k}(v_{j})\chi_{s}^{j} |\varphi_{k}(w_{\varepsilon,j}^{h,\sigma})| dx.$$

And reasoning as above, it is easy to see that,

$$\frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] |\varphi_k(w_{\varepsilon,j}^{h,\sigma})| \ dx = \eta(\varepsilon, j)$$

and

$$\frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) \nabla T_k(v_j) \chi_s^j |\varphi_k(w_{\varepsilon,j}^{h,\sigma})| \ dx = \eta(\varepsilon, j, h).$$

So that,

(4.35)
$$\begin{aligned} \left| \int_{\{|u_{\varepsilon}^{\sigma}| < k\}} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \varphi_{k}(w_{\varepsilon, j}^{h, \sigma}) \, dx \right| \\ &\leq \frac{b(k)}{\alpha} \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j})] \\ &\times [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] |\varphi_{k}(w_{\varepsilon, j}^{h, \sigma})| \, dx + \eta(\varepsilon, j, h). \end{aligned}$$

Combining (4.23), (4.34) and (4.35), we obtain

(4.36)
$$\int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j})] \\ \times [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}](\varphi_{k}'(w_{\varepsilon,j}^{h,\sigma}) - \frac{b(k)}{\alpha}|\varphi_{k}(w_{\varepsilon,j}^{h,\sigma})|) dx \\ \leq \int_{\Omega \setminus \Omega_{s}} h_{k\sigma} \nabla T_{k}(u^{\sigma})\varphi_{k}'(0) dx + \eta(\varepsilon, j, h),$$

which implies by using (4.18) that

(4.37)
$$\int_{\Omega} [a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) - a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j)] \\ \times [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] dx \\ \leq 2 \int_{\Omega \setminus \Omega_s} h_{k\sigma} \nabla T_k(u^{\sigma})\varphi_k'(0) dx + \eta(\varepsilon, j, h).$$

Now, remark that,

$$(4.38) \quad \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma})\chi_{s})] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})\chi_{s}] dx$$

$$\leq \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j})] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] dx$$

$$+ \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(v_{j})\chi_{s}^{j}) [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(v_{j})\chi_{s}^{j}] dx$$

$$- \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma})\chi_{s}) [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})\chi_{s}] dx$$

$$+ \int_{\Omega} a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) [\nabla T_{k}(v_{j})\chi_{s}^{j} - \nabla T_{k}(u^{\sigma})\chi_{s}] dx.$$

We shall pass to the limit in ε and j in the last three terms of the right-hand side of the last inequality, we get

$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^j) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^j] \, dx = \eta(\varepsilon, j)$$
$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u)\chi_s) [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(u)\chi_s] \, dx = \eta(\varepsilon)$$

and

$$\int_{\Omega} a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) [\nabla T_k(v_j)\chi_s^j - \nabla T_k(u^{\sigma})\chi_s] \, dx = \eta(\varepsilon, j),$$

which implies that,

$$(4.39) \quad \int_{\Omega} [a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) - a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u^{\sigma})\chi_s)] [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(u^{\sigma})\chi_s] dx$$
$$= \int_{\Omega} [a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(u_{\varepsilon}^{\sigma})) - a(x, T_k(u_{\varepsilon}^{\sigma}), \nabla T_k(v_j)\chi_s^{j})] [\nabla T_k(u_{\varepsilon}^{\sigma}) - \nabla T_k(v_j)\chi_s^{j}] dx$$
$$+ \eta(\varepsilon, j).$$

Combining (4.17), (4.37) and (4.39), we have

(4.40)

$$\begin{split} &\int_{\Omega_{r}} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma}))] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})] dx \\ &\leq \int_{\Omega} [a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u_{\varepsilon}^{\sigma})) - a(x, T_{k}(u_{\varepsilon}^{\sigma}), \nabla T_{k}(u^{\sigma})\chi_{s})] [\nabla T_{k}(u_{\varepsilon}^{\sigma}) - \nabla T_{k}(u^{\sigma})\chi_{s}] dx \\ &\leq 2 \int_{\Omega \setminus \Omega_{s}} h_{k\sigma} \nabla T_{k}(u^{\sigma}) \varphi_{k}'(0) dx + \eta(\varepsilon, j, h). \end{split}$$

By passing to the $\limsup over n$ and letting j, h, s tend to infinity, we obtain

$$\lim_{\varepsilon \to 0} \int_{\Omega_r} [a(x, T_k(u_\varepsilon^{\sigma}), \nabla T_k(u_\varepsilon^{\sigma})) - a(x, T_k(u_\varepsilon^{\sigma}), \nabla T_k(u^{\sigma}))] [\nabla T_k(u_\varepsilon^{\sigma}) - \nabla T_k(u^{\sigma})] \, dx = 0.$$

This implies by virtue of Lemma 3.2 that,

(4.41)
$$\nabla u_{\varepsilon}^{\sigma} \to \nabla u^{\sigma}$$
 a.e. in Ω

and

(4.42)
$$M(|\nabla T_k(u_{\varepsilon}^{\sigma})|) \to M(|\nabla T_k(u^{\sigma})|) \quad \text{in } L^1(\Omega).$$

4.1.6. *Equi-integrability of the nonlinearity.* We need to prove that,

(4.43)
$$g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \to g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) \text{ strongly in } L^{1}(\Omega).$$

In particular it is enough to prove the equi-integrability of $g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})$. To this purpose, we take $u_{\varepsilon}^{\sigma} - T_1(u_{\varepsilon}^{\sigma} - T_h(u_{\varepsilon}^{\sigma})) \ge 0$ as test function in (4.5), we obtain,

$$\int_{\{|u_{\varepsilon}^{\sigma}| \ge h+1\}} |g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) dx \le \int_{\{|u_{\varepsilon}^{\sigma}| > h\}} |f_{\varepsilon}| dx.$$

Let $\eta > 0$, then there exists $h(\eta) \ge 1$ such that,

(4.44)
$$\int_{\{|u_{\varepsilon}^{\sigma}| \ge h(\eta)\}} |g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})| dx \le \frac{\eta}{2}$$

For any measurable subset $E \subset \Omega$, we have

$$\int_{E} |g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})| \, dx \leq \int_{\Omega} b(h(\eta))(c(x) + M(|\nabla T_{h(\eta)}(u_{\varepsilon}^{\sigma})|) \, dx \\ + \int_{\{|u_{\varepsilon}^{\sigma}| \geq h(\eta)\}} |g(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})| \, dx.$$

In view of (4.42) there exists $\beta(\eta) > 0$ such that,

(4.45)
$$\int_{E} b(h(\eta))(h(x) + M(|\nabla T_{h(\eta)}(u_{\varepsilon}^{\sigma})|) \, dx \leq \frac{\eta}{2}$$

for all E such that $|E| < \beta(\eta)$. Finally, combining (4.44) and (4.45), one easily has $\int_E |g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma})| dx \leq \eta$ for all E such that meas $(E) < \beta(\eta)$.

4.1.7. Passing to the limit in ε . Let $v \in K_0 \cap W_0^1 E_M(\Omega) \cap L^{\infty}(\Omega)$, we take $u_{\varepsilon}^{\sigma} - T_k(u_{\varepsilon}^{\sigma} - v)$ as test function in (4.5), we can write,

(4.46)
$$\int_{\Omega} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla T_{k}(u_{\varepsilon}^{\sigma} - v) \, dx + \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{k}(u_{\varepsilon}^{\sigma} - v) \, dx$$
$$\leq \int_{\Omega} f_{\varepsilon} T_{k}(u_{\varepsilon}^{\sigma} - v) \, dx,$$

which implies that,

$$\int_{\{|u_{\varepsilon}^{\sigma}-v|\leq k\}} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla (u_{\varepsilon}^{\sigma}-v) \, dx + \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{k}(u_{\varepsilon}^{\sigma}-v) \, dx$$
$$\leq \int_{\Omega} f_{\varepsilon} T_{k}(u_{\varepsilon}^{\sigma}-v) \, dx.$$

i.e.,

$$\begin{split} \int_{\{|u_{\varepsilon}^{\sigma}-v|\leq k\}} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla u_{\varepsilon}^{\sigma} \, dx &- \int_{\{|u_{\varepsilon}^{\sigma}-v|\leq k\}} a(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) \nabla v \, dx \\ &+ \int_{\Omega} g_{\varepsilon}^{\sigma}(x, u_{\varepsilon}^{\sigma}, \nabla u_{\varepsilon}^{\sigma}) T_{k}(u_{\varepsilon}^{\sigma}-v) \, dx \\ &\leq \int_{\Omega} f_{\varepsilon} T_{k}(u_{\varepsilon}^{\sigma}-v) \, dx. \end{split}$$

By Fatou's lemma and the fact that,

$$a(x, T_{k+\|v\|_{\infty}}(u^{\sigma}_{\varepsilon}), \nabla T_{k+\|v\|_{\infty}}(u^{\sigma}_{\varepsilon})) \rightharpoonup a(x, T_{k+\|v\|_{\infty}}(u^{\sigma}), \nabla T_{k+\|v\|_{\infty}}(u^{\sigma}))$$

weakly in $(L_{\bar{M}}(\Omega))^N$ for $\sigma(\Pi L_{\bar{M}}, \Pi E_M)$ on easily see that,

$$\begin{split} \int_{\{|u^{\sigma}-v|\leq k\}} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla u^{\sigma} \, dx &- \int_{\{|u^{\sigma}-v|\leq k\}} a(x, T_{k+\|v\|_{\infty}}(u^{\sigma}), \nabla T_{k+\|v\|_{\infty}}(u^{\sigma})) \nabla v \, dx \\ &+ \int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) T_{k}(u^{\sigma}-v) \, dx \\ &\leq \int_{\Omega} fT_{k}(u^{\sigma}-v) \, dx. \end{split}$$

Hence,

(4.47)
$$\int_{\Omega} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla T_k(u^{\sigma} - v) \, dx + \int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) T_k(u^{\sigma} - v) \, dx$$
$$\leq \int_{\Omega} f T_k(u^{\sigma} - v) \, dx.$$

Now, let $v \in K_0 \cap L^{\infty}(\Omega)$, by Remark 4.1, there exist $v_j \in K_0 \cap W_0^1 E_M \cap L^{\infty}(\Omega)$, such that v_j converges to v in the modular sense. Let $l > ||v||_{\infty}$, taking $v = T_l(v_j)$ in (4.47), we have

$$\begin{split} \int_{\Omega} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla T_k(u^{\sigma} - T_l(v_j)) \, dx + \int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) T_k(u^{\sigma} - T_l(v_j)) \, dx \\ & \leq \int_{\Omega} f T_k(u^{\sigma} - T_l(v_j)) \, dx. \end{split}$$

We can easily pass to the limit as $j \to +\infty$, to get

$$\int_{\Omega} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla T_k(u^{\sigma} - T_l(v)) dx$$

+
$$\int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) T_k(u^{\sigma} - T_l(v)) dx$$

$$\leq \int_{\Omega} f T_k(u^{\sigma} - T_l(v)) dx \qquad \forall v \in K_0 \cap L^{\infty}(\Omega).$$

As $l \geq ||v||_{\infty}$, we deduce,

(4.48)

$$\int_{\Omega} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla T_{k}(u^{\sigma} - v) \, dx$$

$$+ \int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) T_{k}(u^{\sigma} - v) \, dx$$

$$\leq \int_{\Omega} f T_{k}(u^{\sigma} - v) \, dx \, \forall v \in K_{0} \cap L^{\infty}(\Omega), \quad \forall k > 0.$$

4.2. Study of the problem with respect to the σ .

4.2.1. *Estimates with respect to* σ . We are going to give some estimates, on the sequence $(u^{\sigma})_{\sigma}$ identical to (4.7).

For that, taking $v = T_s(u^{\sigma} - T_k(u^{\sigma}))$ in (4.48) and letting s tends to infinity then by the same argument as in section 4.1 we can prove that,

$$\alpha \int_{\Omega} M(|\nabla T_k(u^{\sigma})|) \le k \|f\|_{L^1(\Omega)}$$

Thus, as in 4.1.2, there exists u such that $T_k(u) \in W_0^1 L_M(\Omega)$ and

$$T_k(u^{\sigma}) \rightharpoonup T_k(u)$$
 weakly in $W_0^1 L_M(\Omega)$ for $\sigma(\Pi L_M, \Pi E_{\bar{M}})$

 $T_k(u^{\sigma}) \to T_k(u)$ strongly in $E_M(\Omega)$ and a.e in Ω .

So, $u^{\sigma} \ge 0$ a.e. in Ω and we have also $u \ge 0$. a.e in Ω .

4.2.2. Strong convergence of truncation with respect to σ . We fix k > 0, let $\Omega_r = \{x \in \Omega, |\nabla T_k(u(x))| \le r\}$ and denote by χ_r the characteristic function of Ω_r . Clearly, $\Omega_r \subset \Omega_{r+1}$ and meas $(\Omega \setminus \Omega_r) \to 0$ as $r \to \infty$.

Fix r and let s > r, we have

$$(4.49) \quad 0 \leq \int_{\Omega_{r}} [a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u^{\sigma}) - a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u))] [\nabla T_{k}(u^{\sigma}) - \nabla T_{k}(u)] dx$$

$$\leq \int_{\Omega_{s}} [a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u^{\sigma}) - a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u))] [\nabla T_{k}(u^{\sigma}) - \nabla T_{k}(u)] dx$$

$$= \int_{\Omega_{s}} [a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u^{\sigma}) - a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u)\chi_{s})] [\nabla T_{k}(u^{\sigma}) - \nabla T_{k}(u)\chi_{s}] dx$$

$$\leq \int_{\Omega} [a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u^{\sigma}) - a(x, T_{k}(u^{\sigma}), \nabla T_{k}(u)\chi_{s})] [\nabla T_{k}(u^{\sigma}) - \nabla T_{k}(u)\chi_{s}] dx.$$

Thanks to Remark 4.1, there exists a sequence $v_j \in K_0 \cap W_0^1 E_M(\Omega) \cap L^{\infty}(\Omega)$ which converges to $T_k(u)$ for the modular convergence in $W_0^1 L_M(\Omega)$. Here, we define

$$w_{j}^{h\sigma} = T_{2k}(u^{\sigma} - T_{h}(u^{\sigma}) + T_{k}(u^{\sigma}) - T_{k}(v_{j}))$$
$$w_{j}^{h} = T_{2k}(u - T_{h}(u) + T_{k}(u) - T_{k}(v_{j}))$$
$$w^{h} = T_{2k}(u - T_{h}(u))$$

where h > 2k > 0.

The choice of $v = T_s(u^{\sigma} - \varphi_k(w_j^{h\sigma}))$ as test function in (4.48), allows to have, for all l > 0,

$$\int_{\Omega} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla T_l(u^{\sigma} - T_s(u^{\sigma} - \varphi_k(w_j^{h\sigma}))) dx + \int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) T_l(u^{\sigma} - T_s(u^{\sigma} - \varphi_k(w_j^{h\sigma}))) dx \leq \int_{\Omega} f T_l(u^{\sigma} - T_s(u^{\sigma} - \varphi_k(w_j^{h\sigma}))) dx,$$

which implies that,

$$\begin{split} &\int_{\{|u^{\sigma}-\varphi(w_{j}^{h\sigma})|\leq s\}}a(x,u^{\sigma},\nabla u^{\sigma})\nabla T_{l}(\varphi_{k}(w_{j}^{h\sigma}))\ dx\\ &+\int_{\Omega}g^{\sigma}(x,u^{\sigma},\nabla u^{\sigma})T_{l}(u^{\sigma}-T_{s}(u^{\sigma}-\varphi_{k}(w_{j}^{h\sigma}))\ dx\\ &\leq\int_{\Omega}fT_{l}(u^{\sigma}-T_{s}(u^{\sigma}-\varphi_{k}(w_{j}^{h\sigma}))\ dx. \end{split}$$

Letting s tends to infinity and choosing l large enough $(l \ge |\varphi_k(2k)|)$, we deduce

(4.50)
$$\int_{\Omega} a(x, u^{\sigma}, \nabla u^{\sigma}) \nabla \varphi_k(w_j^{h\sigma}) \, dx + \int_{\Omega} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) \varphi_k(w_j^{h\sigma}) \, dx \le \int_{\Omega} f \varphi_k(w_j^{h\sigma}) \, dx$$

Then by using the same techniques as in 4.1.5 we can deduce that,

(4.51)
$$M(\nabla T_k(u^{\sigma})) \to M(\nabla T_k(u))$$
 strongly in $L^1(\Omega)$

and

$$\nabla u^{\sigma} \rightarrow \nabla u$$
 a.e. in Ω .

4.2.3. *Equi-integrability of* $g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma})$ with respect to σ . Moreover, since g is a Carathéodory function, it is easy to see that,

$$g(x,u^{\sigma},\nabla u^{\sigma}) \to g(x,u,\nabla u) \ \text{ a.e. in } \ \Omega \ \text{ as } \ \sigma \to 0.$$

Then, by assumption (G_2) (note that this hypothesis is only used here), it is clear that,

$$g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) = \delta_{\sigma}(u^{\sigma})g(x, u^{\sigma}, \nabla u^{\sigma}) \to g(x, u, \nabla u) \text{ a.e. in } \{x \in \Omega, u(x) \ge 0\}.$$

Similarly, claim that,

$$g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) \to g(x, u, \nabla u)$$
 in $L^{1}(\Omega)$.

Indeed, taking $u^{\sigma} - T_1(u_{\sigma} - T_l(u^{\sigma}))$ as test function in (4.48), we obtain

$$\int_{\{|u^{\sigma}|>l+1\}} |g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma})| \, dx \leq \int_{\{|u^{\sigma}|>l\}} |f| \, dx$$

Let $\beta > 0$, then there exists $l(\beta) \ge 1$ such that,

(4.52)
$$\int_{\{|u^{\sigma}| \ge l(\beta)\}} g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma}) \, dx < \frac{\beta}{2}$$

For any measurable subset $E \subset \Omega$, we have

$$\int_{E} |g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma})| \, dx \leq \int_{\Omega} b(l(\beta))(c(x) + M((\nabla T_{l(\beta)}(u^{\sigma}))) \, dx \\ + \int_{\{|u^{\sigma}| \geq l(\beta)\}} |g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma})| \, dx.$$

In view of (4.51) there exist $\alpha(\beta)$ > such that

(4.53)
$$\int_E b(l(\beta))(c(x) + M(|(\nabla T_{l(\beta)}(u^{\sigma})|)) dx \le \frac{\eta}{2}$$

Finally, combining (4.52) and (4.53), one easily has $\int_E |g^{\sigma}(x, u^{\sigma}, \nabla u^{\sigma})| dx \leq \eta$ for all E such that meas $(E) \leq \alpha(\beta)$.

So, as in 4.1.7, we can pass to the limit in σ and conclude. This achieves the proof of Theorem 4.1.

Remark 4.3. If we suppose that the source term f is no positive, then the unique positive solution of the problem (1.1) is the vanished function.

Indeed: If we take v = 0 in (P), we have

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u) \, dx + \int_{\Omega} g(x, u, \nabla u) T_k(u) \, dx \le \int_{\Omega} fT_k(u) \, dx$$

Since $g(x, u, \nabla u) \ge 0$ and $T_k(u) \ge 0$ we deduce,

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u) \, dx \le \int_{\Omega} fT_k(u) \, dx$$

On the other hand, thanks to (A_4) and the fact that $f \leq 0$ and $u \geq 0$, we conclude

$$\alpha \int_{\Omega} M(|\nabla T_k(u)|) \, dx \le \int_{\Omega} fT_k(u) \, dx \le 0.$$

We can easily deduce that $T_k(u) = 0, \forall k \ge 0$ by letting k tends to infinity, we have

$$u = 0.$$

5. CASE WHERE THE NONLINEARITY g IS NEGATIVE

We consider,

$$\overline{K}_0 = \{ u \in W_0^1 L_M(\Omega); \ u \leq 0 \ a.e. \text{ in } \Omega \}.$$

This convex set is sequentially $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closed in $W_o^1 L_M(\Omega)$ (see [14]). The nonlinearity term g is supposed a non-positive function.

Theorem 5.1. Assume that $(A_1) - (A_4)$, (G_1) and (G_2) hold true and that $f \in L^1(\Omega)$. Then there exists at least one solution of the following unilateral problem,

$$(P) \begin{cases} u \in \tau_0^{1,M}(\Omega), u \leq 0 \text{ a.e. in } \Omega, \\ g(x,u,\nabla u) \in L^1(\Omega) \\ \int_{\Omega} a(x,u,\nabla u) \nabla T_k(u-v) \, dx + \int_{\Omega} g(x,u,\nabla u) T_k(u-v) \, dx \\ \leq \int_{\Omega} fT_k(u-v) \, dx, \\ \forall \ v \in \bar{K}_0 \cap L^{\infty}(\Omega), \ \forall k > 0. \end{cases}$$

Proof. The same proof as in Theorem 4.1 can be applied with the following changements:

i) The Lipschitz function $\delta_{\sigma}(s)$ is replaced by.

$$\overline{\delta}_{\sigma}(s) = \begin{cases} \frac{-s-\sigma}{s} & \text{if } s \ge \sigma > 0\\ 0 & \text{if } |s| \le \sigma\\ \frac{s+\sigma}{s} & \text{if } s < -\sigma < 0. \end{cases}$$

ii) The approximate problem becomes :

$$(\bar{P}_{\epsilon}^{\sigma}) \begin{cases} u_{\varepsilon}^{\sigma} \in W_{0}^{1}L_{M}(\Omega) \\ \int_{\Omega} \langle Au_{\epsilon}^{\sigma}, u_{\epsilon}^{\sigma} - v \rangle + \int g_{\epsilon}^{\sigma}(x, u_{\epsilon}^{\sigma}, \nabla u_{\epsilon}^{\sigma})(u_{\epsilon}^{\sigma} - v) \ dx + \frac{1}{\varepsilon^{2}} \int_{\Omega} m(T_{\frac{1}{\varepsilon}}(u_{\varepsilon}^{\sigma+}))(u_{\varepsilon}^{\sigma} - v) \ dx \\ = \int_{\Omega} f_{\varepsilon}(u_{\varepsilon}^{\sigma} - v) \ dx, \\ \forall \ v \in W_{0}^{1}L_{M}(\Omega). \end{cases}$$

iii) The set K_0 considered in Remark 4.1, will be replaced by,

$$\overline{K}_0 = \{ u \in W_0^1 L_M(\Omega); \ u \le 0 \ a.e. \text{ in } \Omega \}.$$

REFERENCES

- [1] R. ADAMS, Sobolev Spaces, Ac. Press, New York, (1975).
- [2] L. AHAROUCH and M. RHOUDAF, Existence of solutions for unilateral problems with L^1 data in Orlicz spaces, *Proyecciones*, 23, Nř 3, (2004) pp. 293-317.
- [3] L. AHAROUCH and M. RHOUDAF, Strongly nonlinear elliptic unilateral problems in Orlicz space and L¹ data, J. Inequal. Pure and Appl. Math., 6, Issue 2, Art 54 (2005) pp. 1-20.
- [4] P. BÉNILAN, L. BOCCARDO, T. GALLOUET, R. GARIEPY, M. PIERRE and J. L. VÁZQUEZ, An L¹-theory of existence and uniqueness of nonlinear elliptic equations, *Ann. Scuola Norm. Sup. Pisa.*, 22 (1995), pp. 240-273.
- [5] A. BENSOUSSAN, L. BOCCARDO and F. MURAT, On a non linear partial differential equation having natural growth terms and unbounded solution, *Ann. Inst. Henri Poincaré.*, 5 No.4 (1988), pp. 347-364.

- [6] A. BENKIRANE and A. ELMAHI, An existence theorem for a strongly nonlinear elliptic problems
- [7] A. BENKIRANE and A. ELMAHI, A strongly nonlinear elliptic equation having natural growth terms and L¹ data, *Nonlinear Anal. T. M. A.*, **39** (2000), pp. 403-411.

in Orlicz spaces, Nonlinear Anal. T. M. A., 36 (1999), pp. 11-24.

- [8] A. BENKIRANE, A. ELMAHI, and D. MESKINE, An existence theorem for a class of elliptic problems in L¹, Applicationes Mathematicae, 29, 4, (2002) pp. 439-457.
- [9] L. BOCCARDO and T. GALLOUËT, Strongly nonlinear elliptic equations having natural growth terms and L¹ data, Nonlinear Analysis Theory Methods and Applications, Vol., 19, No.6 (1992), pp. 573-579.
- [10] L. BOCCARDO, T. GALLOUËT and F. MURAT, A unified presentation of two existence results for problems with natural growth, *in Progress in PDE, the Metz surveys 2, M. Chipot editor, Research in Mathematics, Longman,* 296 (1993), pp. 127-137.
- [11] G. DALMASO, F. MURAT, L. ORSINA and A. PRIGNET, Renormalized solutions of elliptic equations with general measure data, *Ann. Scuola Norm. Sup. Pisa Cl. Sci.*, **12** 4 (1999), pp. 741-808.
- [12] J. P. GOSSEZ, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, *Trans. Amer. Math. Soc.*, **190** (1974), pp. 163-205.
- [13] J. P. GOSSEZ, A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. A. M. S. Symp. Pure. Math., 45 (1986), pp. 163-205.
- [14] J. P. GOSSEZ and V. MUSTONEN, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal., 11 (1987), pp. 379-492.
- [15] A. PORRETTA, Existence for elliptic equations in L^1 having lower order terms with natural growth, *Portugal. Math.*, **57** (2000), pp. 179-190.