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1. I NTRODUCTION

Computing the simplicial cohomology groups of`1(S), whereS is anormal bandsemigroup
(particular case ofbandsemigroup), was done in [2, 3]. The general case, of band semigroup,
was done in [1]. In this last paper, Choi et all have identified the cyclic cohomology groups, in
three steps. Using the Connes-Tzygan exact sequence [8], they determined that the simplicial
cohomology groups vanishes. This same strategy was used in [5, 6, 7].
Determining the simplicial cohomology directly will prove on effective method for its compre-
hensive. In this way, we provided in [4] an explicit contracting homotopy, which allows us to
get an explicit result for the simplicial cohomology of the Banach algebra`1(Z+). Also, a direct
method can aid in generalizing for other Banach algebras (especially those which do not respect
Connes-Tzygan lemma). For this goal, we follow three steps. In the first step, the important
step, we give two methods, Sections 3.2 and 3.2. The second and third steps (subsections 4.1
and 4.2 respectively) are compatible with the methods of the first step.

2. BACKGROUND AND DEFINITIONS

2.1. Simplicial cohomology. We now briefly establish our notation and recall some defini-
tions. For a Banach algebraA, we regardA∗, the topological dual space ofA, as a Banach
A-bimodule in the usual way.

Forn ≥ 1, we denote the Banach space of boundedn-linear operator fromAn := A× · · · × A︸ ︷︷ ︸
n

toA∗ by Cn(A,A∗). We define the boundary operatorδn : Cn(A,A∗) −→ Cn+1(A,A∗) as the
bounded linear operator given by

(δnT )(a1, . . . , an+1)(an+2) = T (a2, . . . , an+1)(an+2a1)

+
n∑

j=1

(−1)jT (a1, . . . , ajaj+1, . . . , an+1)(an+2)

+(−1)n+1T (a1, . . . , an)(an+1an+2)

whereT ∈ Cn(A,A∗).
By convention, forn = 0, we haveCn(A,A∗) := A∗, andδ0 : C0(A,A∗) −→ C1(A,A∗) is

given byδ0(T )(a1)(a2) = T (a2a1)− T (a1a2).
For T ∈ Cn(A,A∗) we say thatT is ann-cocycleif δnT = 0, and we say thatT is n-

coboundaryif T = δn−1S, for someS ∈ Cn−1(A,A∗). Let Zn(A,A∗) the subspace of
n−cocycles, andBn(A,A∗) the subspace ofn−coboundaries. Knowing thatδn ◦ δn−1 = 0, the
nth simplicial cohomology group ofA is the spaceHn(A,A∗) := Zn(A,A∗)

Bn(A,A∗) .

Elements ofCn(A,A∗) may be regarded as bounded linear functional on the spaceCn(A,A) :=

A⊗̂n+1, the (n + 1)-fold completed projective tensor product ofA. The bounded linear op-
eratorδn : Cn(A,A∗) −→ Cn+1(A,A∗) is then the adjoint of the bounded linear operator
dn : Cn+1(A,A) −→ Cn(A,A) defined on elementary tensorsX = a1 ⊗ a2 ⊗ · · · ⊗ an+2 ∈

Cn+1(A,A) by dn(X) =
n+1∑
i=0

dn
i (X) where

dn
0 (X) := a2 ⊗ · · · ⊗ an+1 ⊗ an+2a1,

dn
i (X) := (−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2, i = 1, . . . , n + 1.
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2.2. Band semigroup.

Definition 2.1.
(1) A band is a semigroup in which every element is idempotent.
(2) A rectangular band is a semigroup in which the identitya = aba always holds.
(3) A semilattice is a commutative band semigroup.

Note that, fora, b, c ∈ S, rectangular band semigroup, we haveabc = ac. In particular, a
rectangular band semigroup is a band semigroup. A characterization of band semigroup is
given in [9, Theorem 4.4.5] by:

Theorem 2.2. Any band semigroupS can be represented as a disjoint union
∐

α∈L

Rα, whereL

is a semilattice, eachRα is a rectangular band given byAα × Bα, the left and right index sets,
and the following properties are satisfied:

i RαRβ ⊆ Rαβ for all α, β ∈ L;
ii for x = (a1, b1) ∈ Rα andy = (a2, b2) ∈ Rβ with α � β, xy andy have the same right

index (i. e.xy = (., b2)), whileyx andy have the same left index
( i. e. yx = (a2, .));

iii the product is associative.

So forx in a band semigroup there exist a uniqueα, in a semilattice, such thatx ∈ Rα, rectan-
gular band. And we define[x] = α. Note that forα, β belong to semilattice, we writeα ≺ β if
αβ = α andα 6= β. Let S be a band semigroup. Theleft coherent unitsis a function denoted
by 〈.], from S to S and defined as follows: for each rectangular bandRα (α belongs to the
semilatticeL), fix an elementyα ∈ Rα and define〈x] = xyα, for eachx ∈ Rα. Then, the
function〈.] : S −→ S has the following properties:

(1) for eachα ∈ L, 〈Rα] ⊆ Rα;
(2) for eachα ∈ L and eachx ∈ Rα, 〈x]x = x;
(3) for eachα, β ∈ L such thatα � β, and eachx ∈ Rα andy ∈ Rβ, 〈xy] = 〈x].

Using the same method[x〉 = yαx. We use this notation in the subsection 4.2.
Notations. For the rest of the paper,S is a band semigroup. We denote simply byx the point
mass atx, δx ∈ `1(S). Then,X = x1⊗x2⊗ · · ·⊗xn+1 will denote a typicalelementary tensor
in `1(S)⊗̂`1(S)⊗̂ . . . ⊗̂`1(S). If i = (n + 1), then(i + 1) := 1 soxi+1 := x1. Moreover, if
1 ≤ i ≤ (n + 1) then(n + 1 + i) := i, andxn+1+i := xi. Also if i = 1 theni− 1 := n + 1 and
xi−1 := xn+1.
From [1, Definition 5.5], we have:

Definition 2.3. LetX = x1 ⊗ x2 ⊗ · · · ⊗ xn+1 ∈ `1(S)⊗̂`1(S)⊗̂ . . . ⊗̂`1(S):
(1) We say thatX has a minimal elementif there exist1 ≤ i ≤ n + 1 such that[xi] � [xk]

for all 1 ≤ k ≤ n + 1.
(2) If X is without minimal element. We say that a cyclic subtensorxk ⊗ · · · ⊗ xl of X

has a minimal left elementif [xk] � [xi] for all i in the cyclic interval[k, l]. A cyclic
subtensor is aleft-block if it has a minimal left element and is not strictly included in
another cyclic subtensor which has a minimal left element.

Notation For an elementary tensor without minimal element, it is easy to see thatX has a
unique decomposition into left-blocks, and, therefore, we can define

IX = {i ∈ {1, 2, 3, . . . , n + 1} : xi is the first component of a left− block}.
It is easy to see that for an elementary tensorX without minimal element we have2 ≤ |IX | ≤
n + 1.
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To prove that for eachT ∈ Kerδn there existR ∈ Cn−1(`1(S), `1(S)∗) such thatδn−1(R) =
T , it is sufficient to prove that there exist bounded linear mapsrk : Ck(`

1(S), `1(S)) −→
Ck+1(`

1(S), `1(S)), k ∈ {n − 1, n}, such that
(
I − (rn−1dn−1 + dnrn)

)
(X) = 0, for all X ∈

Cn(`1(S), `1(S)) ** . Note that
(
I − (rn−1dn−1 + dnrn)

)(
I − (sn−1dn−1 + dnsn)

)
=

(
I −

(qn−1dn−1 + dnqn)
)
. So, we can prove the condition** with two steps or more. To achieve

our goal, we can prove that there existrk, sk, qk : Ck(`
1(S), `1(S)) −→ Ck+1(`

1(S), `1(S)),
k ∈ {n− 1, n}, bounded linear maps such that:

(1) For allX ∈ Ck(`
1(S), `1(S)), we have

(
I − (rn−1dn−1 + dnrn)

)
(X) ∈ Fn,me.

(2) For allX ∈ Fn,me, we have
(
I − (sn−1dn−1 + dnsn)

)
(X) ∈ Fn,cons.

(3) For allX ∈ Fn,cons, we have
(
I − (qn−1dn−1 + dnqn)

)
(X) = 0.

WhereFn,me = lin{X ∈ Cn

(
`1(S), `1(S)

)
: X has minimal element}, Fn,cons = lin{X ∈

Cn

(
`1(S), `1(S)

)
: X = x1 ⊗ x2 · · · ⊗ xn+1 and[x1] = [x2] = · · · = [xn+1]}. In the rest of our

work we need also the following subspace and definition:F j
n = lin{X ∈ Cn

(
`1(S), `1(S)

)
: X

has at mostj left-blocks}.

Definition 2.4. If T is a finite semilattice, andα ∈ T , the height ofα in T is the length of the
longest descending chain inT which starts atα. That is,

hT (α) := sup{m : there existt0, t1, . . . , tm ∈ T with α = tm � tm−1 � · · · � t0}.
If X = x1⊗x2⊗ · · ·⊗xn+1 is an elementary tensor inCn

(
`1(S), `1(S)

)
, letT (X) be the finite

semilattice that is generated by the set
{
[x1], [x2], . . . , [xn+1]

}
, and define theheight ofX to be

h(X) :=
n+1∑
k=1

hT (X)([xk]).

It is clear that forX without minimal element we have(n+1) ≤ h(X) ≤ n(n+1). We denote

by F j,h
n = lin

{
X ∈ Cn

(
`1(S), `1(S)

)
: X has at mostj left-blocks with height at most h

}
.

And we denote byGn,j,h = lin
{
F j,h

n + F j−1
n

}
.

3. W ITHOUT MINIMAL ELEMENT

In this section we will show that there existsk : Ck(`
1(S), `1(S)) −→ Ck+1(`

1(S), `1(S)),
k ∈ {n−1, n}, bounded linear map such that for each elementary tensorX ∈ Ck(`

1(S), `1(S)),
we have

(
I − (sn−1dn−1 + dnsn)

)
(X) ∈ Fme. From [1, equation (5.3)] we have the following

definition:

Definition 3.1. For k ∈ {n − 1, n} and 1 ≤ i ≤ k + 1 let the linear bounded mapsk
i :

Ck(`
1(S), `1(S)) −→ Ck+1(`

1(S), `1(S)) defined by

sk
i (x1 ⊗ x2 ⊗ · · · ⊗ xk+1) = (−1)i x1 ⊗ · · · ⊗ 〈xi]⊗ xi ⊗ · · · ⊗ xk+1,

and
sk(X) =

∑
i∈IX

sk
i (X).

If X has a minimal element(IX = ∅), sk(X) := 0.

By using the abovesk Choi et al showed their result for the cyclic cohomology. In addition,
they used Connes-Tzygan lemma to conclude their result for the simplicial cohomology. In
this section, we show, with two methods, how we manage(sn−1dn−1 + dnsn) to avoid cyclic
cohomology and Connes-Tzygan lemma.
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3.1. First method. In [1, Proposition 5.12] and [1, Remark 5.13] we have, forX, an elemen-
tary tensor without minimal element:

Proposition 3.2. LetX an elementary tensor inF j,h
n . Then

(sn−1dn−1 + dnsn)(X) =
∑

i∈IX

[
X + •i−1 ⊗ 〈xixi+1]⊗ xixi+1 ⊗ •n−i

− •i−1 ⊗〈xi]⊗ xixi+1 ⊗ •n−i

]
mod Gn,j,h−1.

Where•i−1⊗〈xixi+1]⊗xixi+1⊗•n−i := x1⊗· · ·⊗xi−1⊗〈xixi+1]⊗xixi+1⊗xi+2⊗· · ·⊗xn+1

and•i−1 ⊗ 〈xi]⊗ xixi+1 ⊗•n−i := x1 ⊗ · · · ⊗ xi−1 ⊗ 〈xi]⊗ xixi+1 ⊗ xi+2 ⊗ · · · ⊗ xn+1. When
n + 1 ∈ IX , the corresponding term in square brackets should be interpreted as
X + (−1)nx2 ⊗ · · · ⊗ xn ⊗ 〈xn+1x1]⊗ xn+1x1 + (−1)n+1x2 ⊗ · · · ⊗ xn ⊗ 〈xn+1]⊗ xn+1x1.

In order to analyse the above result, we need [1, Definition 5.14]:

Definition 3.3. A left-block of length one is called aone-block. A one-blockxk in an elementary
tensorX is called ablock-unit if xk = 〈xk] andxkxk+1 = xk+1.

GivenX = x1 ⊗ x2 ⊗ · · · ⊗ xn+1, let

RX = {i ∈ IX : xi is a one− block but not block unit, and [xi] � [xi+1]},

clearlyRX may be empty. By [1, Lemma 5.16] we have:

Lemma 3.4. Let X be an elementary tensor inF j
n, and leti ∈ IX . Then precisely one of the

following four cases can occur

i) xi is not a one-block inX, in which case,

•i−1 ⊗ 〈xixi+1]⊗ xixi+1 ⊗ •n−i = •i−1 ⊗ 〈xi]⊗ xixi+1 ⊗ •n−i;

ii) xi is a one-block and[xi] � [xi+1], in which case, the tensor

•i−1 ⊗ 〈xi]⊗ xixi+1 ⊗ •n−i

either has fewer left-blocks, or lower height (and the same number of left-blocks), than
X;

iii) xi is a block-unit, in which case•i−1 ⊗ 〈xi]⊗ xixi+1 ⊗ •n−i = X;
iv) i ∈ RX .

In casesii), iii), iv) the tensor•i−1 ⊗ 〈xixi+1]⊗ xixi+1 ⊗ •n−i has fewer left-blocks thanX.

Corollary 3.5. LetX an elementary tensor inF j,h
n . Then

(sn−1dn−1 + dnsn)(X) = (| m′
X | + | R′

X |)X −
∑

1≤i≤n
i∈RX

Vi(X)

+

{
dn

0s
n
n+1(X) if n + 1 ∈ IX and[x1] ≺ [xn+1],

0 else,
+ mod Gn,j,h−1

wherem′
X =

{
i ∈ IX : i = n + 1 or [xi+1] ⊀ [xi]

}
, R′

X = {1 ≤ i ≤ n : i ∈ RX},
Vi(X) = •i−1 ⊗ 〈xi]⊗ xixi+1 ⊗ •n−i.
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Remark If | IX |6= 0, it is simple to verify that| m′
X |6= 0. Therefore, ifX has no minimal

element, then:

PmX
(X) :=

(
I − 1

mX

(sn−1dn−1 + dnsn)
)
(X)

=
1

mX

∑
1≤i≤n
i∈RX

Vi(X)

−
{

1
mX

dn
0s

n
n+1(X) if n + 1 ∈ IX and[x1] ≺ [xn+1],

0 else,

+ mod Gn,j,h−1

wheremX =| m′
X | + | R′

X |.

It is easy to see thatdn
0s

n
n+1(X) has at most the same number of left-blocks ofX, and at most

the same height ofX (if [x1] ≺ [xn+1] we have equalities). To eliminatedn
0s

n
n+1(X) we use an

original idea. And to eliminateVi(X) we adapt some notions from [1].

Definition 3.6. LetX = x1 ⊗ x2 ⊗ · · · ⊗ xn+1 an elementary tensor without minimal element.

(1) Define a descending block inX to be a cyclic subtensorxk ⊗ · · · ⊗ xl with the property
that [xk] � [xk+1] � · · · � [xl], while [xk−1] � [xk] and [xl] � [xl+1].

(2) Let 1 ≤ i ≤ n + 1, we define the descent ofxi in X, desci(X), to bel − i, wherexl

is the last element in the unique descending block that containsxi (this is interpreted
cyclically).

(3) We definedesc(X) =
∑

i∈RX

desci(X).

By [1, Lemma 5.19] we have:

Lemma 3.7. Let X = x1 ⊗ · · · ⊗ xn+1 be a tensor without minimal element, such thatRX is
non-empty, and leti ∈ RX . Then

desc
(
Vi(X)

)
< desc(X).

ForX ∈ F j,h
n let Dk(X) = lin{Y ∈ Gn,j,h : desc(Y ) ≤ desc(X)− k}. So, we have

PmX
(X) = D + S

−
{

1
mX

dn
0s

n
n+1(X) if n + 1 ∈ IX and[x1] ≺ [xn+1],

0 else,

whereD ∈ D1(X) andS ∈ Gn,j,h−1. For m1
X = mdn

0 sn
n+1(X) we have, ifn + 1 ∈ IX and

[x1] ≺ [xn+1] then

Pm1
X
(dn

0s
n
n+1(X)) = D + S

−
{ 1

m1
X

dn
0s

n
n+1(d

n
0s

n
n+1(X)) if n + 1 ∈ IX and[x2] ≺ [x1] ≺ [xn+1],

0 else,

whereD ∈ D1(d
n
0s

n
n+1(X)) andS ∈ Gn,j,h−1. Let us prove thatD1(d

n
0s

n
n+1(X)) ⊂ D1(X).

Lemma 3.8. If n + 1 ∈ IX and[x1] ≺ [xn+1] thendesc(dn
0s

n
n+1(X)) ≤ desc(X) and

D1(d
n
0s

n
n+1(X)) ⊂ D1(X).
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Proof. As [x1] ≺ [xn+1] it is evident that| Idn
0 sn

n+1(X) |=| IX | andh(dn
0s

n
n+1(X)) = h(X).

To get our result, we have to proof thatdesc(dn
0s

n
n+1(X)) ≤ desc(X). We havedn

0s
n
n+1(X) =

(−1)n+1x2 ⊗ · · · ⊗ xn ⊗ 〈xn+1] ⊗ xn+1x1. Let Z = x2 ⊗ xn ⊗ xn+1 ⊗ x1. It is clear that
desc(Z) = desc(X).

(1) If n ∈ RZ then, by Lemma 3.7,desc(Vn(Z)) < desc(Z). As desc(dn
0s

n
n+1(X)) =

desc(Vn(Z)) anddesc(Z) = desc(X) we have our result.
(2) If n 6∈ RZ thenxn+1 is a block-unit. Thus,〈xn+1] = xn+1 andxn+1x1 = x1. So,

desc(dn
0s

n
n+1(X)) = desc(Z) = desc(X). And we have our result.

Remark If X has no minimal element and[x1] ≺ [xn+1], thendn
0s

n
n+1(X) has no minimal

element.

Corollary 3.9. If X is an elementary tensor without minimal element, then

Pm1
X
◦ PmX

(X) = D + S

+

{ 1
m1

XmX
dn

0s
n
n+1(d

n
0s

n
n+1(X)) if n + 1 ∈ IX and[x2] ≺ [x1] ≺ [xn+1],

0 else,

whereD ∈ D1(X) andS ∈ Gn,j,h−1.

Proof. We know that, ifY has no minimal element then| m′
Y |6= 0, and somY 6= 0.

Pm1
X
◦ PmX

(X) = Pm1
X
(D) + Pm1

X
(S) + D1 + S1

+

{ 1
m1

XmX
dn

0s
n
n+1(d

n
0s

n
n+1(X)) if n + 1 ∈ IX and[x2] ≺ [x1] ≺ [xn+1],

0 else,

whereD, D1 ∈ D1(X) andS, S1 ∈ Gn,j,h−1. To get our result, we have only to see that,
∀m ≥ 1, Pm(D) (respectivelyPm(S)) ∈ D1(X) + Gn,j,h−1.

By iteration in the previous corollary we get, ifX has no minimal element, then

Pmn−2
X

◦ · · · ◦ PmX
(X) = D + S

+(−1)n−1

{
1

cX
(dn

0s
n
n+1)

(n−1)(X) if n + 1 ∈ IX and[xn−1] ≺ · · · ≺ [x1] ≺ [xn+1],
0 else,

wheremk
X = m(dn

0 sn
n+1)(k)(X), cX = mXm1

Xm2
X . . . mn−2

X , D ∈ D1(X) andS ∈ Gn,j,h−1.
This motivates the next corollary:

Corollary 3.10. Let X an elementary tensor. ThenP (n)(X) = D + S, whereD ∈ D1(X),
S ∈ Gn,j,h−1 andP = P1 ◦ P2 ◦ · · · ◦ Pn+1.

Remark By calculation, we verify thatPm ◦ Pm′ = Pm′ ◦ Pm, for all m,m′. The equality is
independent with the definition ofsk. We use this remark in the other sections also.

Proof. If mk
X 6= 0, for k = 0, 1, . . . , n− 1 thenP (n)(X) = Qmn−1

X
◦ · · · ◦QmX

◦ Pmn−1
X

◦ · · · ◦
PmX

(X) = D+S, whereD ∈ D1(X), S ∈ Gn,j,h−1 andQr = P1◦· · ·◦Pr−1◦Pr+1◦· · ·◦Pn+1.
Note that, ifmY = 0 thenY has a minimal element. So ifmk

X = 0 andmk−1
X 6= 0 then

Pmk−1
X
◦· · ·◦PmX

(X) = D+S, whereD ∈ D1(X), S ∈ Gn,j,h−1. And the result is immediate.

As P n(S) ∈ Gn,j,h−1, if S ∈ Gn,j,h−1, and by the previous corollary we get the below result.
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Corollary 3.11. Let X an elementary tensor. Then,P 2n(X) ∈ D2(X) + Gn,j,h−1. Moreover,

as0 ≤ desc(X) ≤ n(n− 1) we getP
(

n2(n−1)
)
(X) ∈ Gn,j,h−1.

Proposition 3.12.LetX an elementary tensor. Then,P

(
n5(n−1)

)
(X) ∈ Fn,me.

Proof. By Corollary 3.11, we haveP
(

n2(n−1)
)
(X) = U +V , whereU ∈ F j−1

n andV ∈ F j,h−1
n .

So P

(
n2(n−1)

)
(V ) = U1 + V1, whereU1 ∈ F j−1

n andV1 ∈ F j,h−2
n . We note that(n + 1) ≤

h(X) ≤ n(n + 1), if X has no minimal element. Then,P

(
n4(n−1)

)
(X) ∈ F j−1

n . Moreover, as

2 ≤| IX |≤ n + 1, if X has no minimal element, then we getP

(
n5(n−1)

)
(X) ∈ Fn,me.

3.2. Second method.A part of working in the previous subsection was considered to eliminate
dn

0s
n
n+1(X). To work around this problem, we use a new idea. We simply takesn

n+1 = 0. And
we getsn =

∑
i∈IX
i6=n+1

sn
i . With this definition, and by adapting the proof of [1, Proposition 5.12],

we get:

Proposition 3.13.LetX an elementary tensor inF j,h
n . Then

(sn−1dn−1 + dnsn)(X) =
∑
i∈IX

1≤i≤n−1

[
X + •i−1 ⊗ 〈xixi+1]⊗ xixi+1 ⊗ •n−i

− •i−1 ⊗ 〈xi]⊗ xixi+1 ⊗ •n−i

]
+ dn

ns
n
n(X) + dn

n+1s
n
n(X) mod Gn,j,h−1.

In the next lemma, we illustrate the behaviour ofdn
ns

n
n anddn

n+1s
n
n.

Lemma 3.14.LetX an elementary tensor. Then

(1) dn
ns

n
n(X) =

{
X if n ∈ IX ,
0 else.

(2) dn
n+1s

n
n(X) =


0 if n 6∈ IX ,
Y if n ∈ IX and [xn+1] � [xn],
dn

n+1s
n
n(X) if n ∈ IX , [xn+1] � [xn] anddn

n+1s
n
n(X) 6= −X,

−X else,
whereY ∈ Gn,j,h−1.

By the previous lemma we get

dn
ns

n
n(X)+dn

n+1s
n
n(X) =


0 if n 6∈ IX ,
X + Y if n ∈ IX and[xn+1] � [xn],
X + dn

n+1s
n
n(X) if n ∈ IX , [xn+1] � [xn] anddn

n+1s
n
n(X) 6= −X,

0 else.

Corollary 3.15. LetX an elementary tensor inF j,h
n . Then

(sn−1dn−1 + dnsn)(X) = (| m′′
X | + | R′′

X |)X −
∑

1≤i≤n−1
i∈RX

Vi(X)

+

{
dn

n+1s
n
n(X) if n ∈ IX , [xn+1] � [xn] anddn

n+1s
n
n(X) 6= −X,

0 else,
+ mod Gn,j,h−1

wherem′′
X =

{
i ∈ IX : 1 ≤ i ≤ n−1, [xi+1] ⊀ [xi]

}
∪

{
n ∈ IX :

(
[xn+1] � [xn]

)
or

(
[xn+1] �

[xn], dn
n+1s

n
n(X) 6= −X

)}
, R′′

X = {1 ≤ i ≤ n− 1 : i ∈ RX}, Vi(X) = •i−1 ⊗ 〈xi]⊗ xixi+1 ⊗
•n−i.
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Lemma 3.16. If IX 6= ∅ thenm′′
X 6= ∅.

Proof. Let X = x1 ⊗ x2 ⊗ · · · ⊗ xn+1 with no minimal element(IX 6= ∅). In this case, we have
|IX | ≥ 2. Suppose thatm′′

X = ∅.
First case IX = {n, n + 1}. In this case we have, on one hand,[xn+1] � [xi], for i ∈
{1, 2, . . . , n − 1}. On other hand, asn ∈ IX and n 6∈ m′′

X we get [xn+1] � [xn]. Then,
we deduce that[xn+1] is a minimal element forX, impossible.
Second case{1, 2, . . . , n−1}∩IX 6= ∅. Let i0 = min1≤i≤n−1{i ∈ IX}. So{x1, x2, . . . , xi0−1}
are in the same left minimal block that containxn+1 (1). As i0 ∈ IX and i0 6∈ m′′

X then
[xi0+1] ≺ [xi0 ] and soi0 + 1 ∈ IX . If i0 + 1 ≤ n − 1 we get also[xi0+2] ≺ [xi0+1] and so
i0 + 2 ∈ IX . By iteration we get[xn] ≺ [xn−1] ≺ · · · ≺ [xi0 ] (2) andn ∈ IX . As n ∈ IX and
n 6∈ m′′

X we get[xn+1] � [xn] (3). By (1), (2)and(3) we have thatxn+1 is a minimal element
for X, impossible.
We have our result.

In the Corollary 3.15 it is simple to see that ifn ∈ IX thenVn(X) = −dn
n+1s

n
n(X).

Remark If | IX |6= 0 then

PmX
(X) =

(
I − 1

mX

(sn−1dn−1 + dnsn)
)
(X)

=
1

mX

∑
1≤i≤n−1

i∈RX

Vi(X)

+
1

mX

{
· · · •n−1 ⊗〈xn]⊗ xnxn+1 if n ∈ IX , [xn+1] � [xn] anddn

n+1s
n
n(X) 6= −X,

0 else,

+ mod Gn,j,h−1,

wheremX =| m′′
X | + | R′′

X |.
By lemma 3.7 we getPmX

(X) = D + S

+
1

mX

{
· · · •n−1 ⊗〈xn]⊗ xnxn+1 if n ∈ IX , [xn+1] � [xn] anddn

n+1s
n
n(X) 6= −X,

0 else,

whereD ∈ D1(X) and S ∈ Gn,j,h−1. It is clear that ifn ∈ IX and [xn+1] � [xn] then
IVn(X) 6= ∅. So mVn(X) 6= ∅ and PmVn(X)

◦ PmX
(X) = D + S whereD ∈ D1(X) and

S ∈ Gn,j,h−1. We have the next corollary:

Corollary 3.17. LetX an elementary tensor. ThenP (2)(X) = D + S, whereD ∈ D1(X) and
S ∈ Gn,j,h−1, whereP = P1 ◦ P2 ◦ · · · ◦ Pn+1.

With similar proofs to those of Corollary 3.11 and Proposition 3.12, we get the next corollary.

Corollary 3.18. LetX an elementary tensor. ThenP
(
2n4(n−1)

)
(X) ∈ Fn,me.

4. W ITH MINIMAL ELEMENT

4.1. Non constant element.In this section we will show that there are linear bounded maps
sk : Ck(`

1(S), `1(S)) −→ Ck+1(`
1(S), `1(S)), k ∈ {n − 1, n}, such that for each elementary

tensorX ∈ Fk,me we have
(
I − (sn−1dn−1 + dnsn)

)
(X) ∈ Fk,cons. By adapting the maps in

[1, subsection 5.1], we have our goal.

Definition 4.1. Let X = x1 ⊗ x2 ⊗ · · · ⊗ xn+1 ∈ Cn

(
`1(S), `1(S)

)
. We say that a cyclic

subtensorxk ⊗ · · · ⊗ xl of X is a minimal left blockif [xk] = · · · = [xl] = [X] for all i in the
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cyclic interval[k, l], where[X] = [x1x2 . . . xn+1]. A cyclic subtensor is aminimal-blockif it is
a minimal left block, and it is not strictly included in another minimal left block.

Notation If X is without minimal element (respectively, a constant tensor) we define:IX := ∅.
If not, it is easy to see thatX has a unique decomposition into minimal-blocks, and, therefore,
we can define

IX = {i ∈ {1, 2, 3, . . . , n + 1} : xi is the first component of a minimal− block}.

Definition 4.2. For k ∈ {n − 1, n} and 1 ≤ i ≤ k + 1 let the linear bounded mapsk
i :

Ck(`
1(S), `1(S)) −→ Ck+1(`

1(S), `1(S)) defined by

sk
i (x1 ⊗ x2 ⊗ · · · ⊗ xk+1) = (−1)i x1 ⊗ · · · ⊗ 〈xi]⊗ xi ⊗ · · · ⊗ xk+1,

and
sk(X) =

∑
i∈IX

sk
i (X).

If IX = ∅ we definesk(X) := 0.

To simplify the study of(sn−1dn−1 + dnsn), we write it as:
n−1∑
k=1

(sn−1
k dn−1

0 + dn
0s

n
k+1) +

∑
1≤j<k≤n

(sn−1
k dn−1

j + dn
j s

n
k+1) +

∑
1≤k<j≤n

(sn−1
k dn−1

j + dn
j+1s

n
k)

+(sn−1
n dn−1

0 + dn
n+1s

n
n+1 + dn

0s
n
1 + dn

0s
n
n+1) +

n∑
i=1

(sn−1
i dn−1

i + dn
i s

n
i + dn

i s
n
i+1 + dn

i+1s
n
i ).

Lemma 4.3. For X = x1 ⊗ x2 ⊗ · · · ⊗ xn+1 we have the following:

(1) If 1 ≤ k ≤ n + 1 and k ∈ IX then [xk] = [X], k + 1 /∈ IX and [xk−1] 6= [X] so
k − 1 /∈ IX . Alsok ∈ Idn−1

k (X).
(2) If 1 ≤ k ≤ n + 1 and [xkxk+1] 6= [X] then[xk] 6= [X] and [xk+1] 6= [X].
(3) If 0 ≤ j ≤ n then[dn−1

j (X)] = [X].
(4) If 2 ≤ k ≤ n− 1 andk + 1 ∈ IX thenk ∈ Idn−1

0 (X).
(5) If 1 ≤ k ≤ n− 1 andk ∈ Idn−1

0 (X) thenk + 1 ∈ IX .
(6) If 1 ≤ j < k ≤ n andk ∈ Idn−1

j (X) thenk + 1 ∈ IX .
(7) If 1 ≤ j + 1 < k ≤ n andk + 1 ∈ IX thenk ∈ Idn−1

j (X).
(8) If 1 ≤ k < j ≤ n andk ∈ Idn−1

j (X) thenk ∈ IX .

(9) If
(
1 ≤ k < j ≤ n− 1 or 2 ≤ k < j ≤ n

)
andk ∈ IX thenk ∈ Idn−1

j (X).

Proof.

(1) Trivial.
(2) Trivial.
(3) Trivial.
(4)

X = x1 ⊗ x2 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ xk+2 ⊗ · · · ⊗ xn ⊗ xn+1,

dn−1
0 (X) = x2 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ xk+2 ⊗ · · · ⊗ xn ⊗ xn+1x1.

If 2 ≤ k ≤ n − 1 andk + 1 ∈ IX then [xk+1] = [X] and [xk] 6= [X]. It is easy to
see that[xk+1] = [dn−1

0 (X)]. As 2 ≤ k ≤ n − 1 and[xk] 6= [dn−1
0 (X)] we deduce that

k ∈ Idn−1
0 (X).
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(5)

X = x1 ⊗ x2 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ xk+2 ⊗ · · · ⊗ xn ⊗ xn+1,

dn−1
0 (X) = x2 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ xk+2 ⊗ · · · ⊗ xn ⊗ xn+1x1.

If 1 ≤ k ≤ n − 1 andk ∈ Idn−1
0 (X) then [xk+1] = [dn−1

0 (X)] and [xk] 6= [dn−1
0 (X)].

As = [dn−1
0 (X)] = [X] we deduce that[xk+1] = [X] and [xk] 6= [X], which means

k + 1 ∈ IX .
(6)

X = x1 ⊗ · · · ⊗ xj ⊗ xj+1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xn+1,

(−1)jdn−1
j (X) = x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xn+1.

If 1 ≤ j < k ≤ n and k ∈ Idn−1
j (X) then [xk+1] = [X] and [xk] 6= [X] (even if

k = j + 1 ∈ Idn−1
j (X) we have[xj+1] 6= [X]), which means thatk + 1 ∈ IX .

(7)

X = x1 ⊗ · · · ⊗ xj ⊗ xj+1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xn+1,

(−1)jdn−1
j (X) = x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xn+1.

If 1 ≤ j + 1 < k ≤ n andk + 1 ∈ IX then[xk+1] = [X] and[xk] 6= [X], which means
[xk+1] = [dn−1

j (X)] and[xk] 6= [dn−1
j (X)]. Sok ∈ Idn−1

j (X).
(8)

X = x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xj ⊗ xj+1 ⊗ · · · ⊗ xn+1,

(−1)jdn−1
j (X) = x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xn+1.

If 1 ≤ k < j ≤ n andk ∈ Idn−1
j (X) then[xk] = [X] and[xk−1] 6= [X], which means

k ∈ IX .
(9)

X = x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xj ⊗ xj+1 ⊗ · · · ⊗ xn+1,

(−1)jdn−1
j (X) = x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xn+1.

If
(
1 ≤ k < j ≤ n − 1 or 2 ≤ k < j ≤ n

)
andk ∈ IX then[xk] = [X] = [dn−1

j (X)]

and[xk−1] 6= [X] = [dn−1
j (X)], sok ∈ Idn−1

j (X).

Lemma 4.4.

(1)
∑

1≤k≤n−1

(
sn−1

k dn−1
0 + dn

0s
n
k+1

)
(X) =

{
Y or
0

whereY is an elementary tensor with more minimal elements thanX.

(2)
∑

1≤j<k≤n

(sn−1
k dn−1

j + dn
j s

n
k+1)

{
Y or
0

whereY is an elementary tensor with more minimal elements thanX.
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(3)
∑

1≤k<j≤n

(sn−1
k dn−1

j + dn
j+1s

n
k)(X) =

{
Y or
0

whereY is an elementary tensor with more minimal elements thanX.

Proof.

(1) By using [lemma 4.3, 4 and 5] it is easy to check that:
∑n−1

k=1

(
sn−1

k dn−1
0 +dn

0s
n
k+1

)
(X) =(

sn−1
1 dn−1

0 +dn
0s

n
2

)
(X). By [lemma 4.3, 5] we can see that it is enough to study the case

k + 1 = 2 ∈ IX .
If k + 1 = 2 ∈ IX then[x2] = [X] and[x1] 6= [X].
(a) If k = 1 ∈ Idn−1

0 (X) then it is easy to see that(sn−1
1 dn−1

0 + dn
0s

n
2

)
(X) = 0.

(b) If k = 1 /∈ Idn−1
0 (X) then(sn−1

1 dn−1
0 + dn

0s
n
2

)
(X) = dn

0s
n
2 (X).

dn−1
0 (X) = x2 ⊗ · · · ⊗ xn ⊗ xn+1x1. As [x2] = [dn−1

0 (X)] = [X] andx2 is not
beginning of minimal-block fordn−1

0 (X) (because1 /∈ Idn−1
0 (X)) then[xn+1x1] =

[dn−1
0 (X)] = [X]. We havedn

0s
n
2 (X) = 〈x2]⊗ x2 ⊗ · · · ⊗ xn ⊗ xn+1x1

dn
0s

n
2 (X) = 〈x2]⊗ x2 ⊗ · · · ⊗ xn ⊗ xn+1x1,

X = x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ xn+1.

As [x1] 6= [X], [〈x2]] = [x2] = [X] and[X] = [x1xn+1] � [xn+1] we can see that
dn

0s
n
2 (X) has more minimal elements thanX.

(2) Using [lemma 4.3, 6 and 7], it is easy to check that:
∑

1≤j<k≤n

(sn−1
k dn−1

j + dn
j s

n
k+1) =∑

1≤j≤n−1

(sn−1
j+1 dn−1

j + dn
j s

n
j+2). By [lemma 4.3, 6] we can see that it is enough to study

the casej+2 ∈ IX , for 1 ≤ j ≤ n−1. Let us assume thatj+2 ∈ IX and1 ≤ j ≤ n−1.
Then we have[xj+2] = [X] and[xj+1] 6= [X].
(a) If j + 1 ∈ Idn−1

j (X) then it is easy to see that(sn−1
j+1 dn−1

j + dn
j s

n
j+2

)
(X) = 0.

(b) If j + 1 6∈ Idn−1
j (X) then(sn−1

j+1 dn−1
j + dn

j s
n
j+2)(X) = dn

j s
n
j+2(X).

dn
j s

n
j+2(X) = x1 ⊗ · · · ⊗ xjxj+1 ⊗ 〈xj+2]⊗ xj+2 ⊗ · · · ⊗ xn+1,

X = x1 ⊗ · · · ⊗ xj ⊗ xj+1 ⊗ xj+2 ⊗ · · · ⊗ xn+1.

As [xj+1] 6= [X], [〈xj+2]] = [xj+2] = [X] and[xjxj+1] � [xj] thendn
j s

n
j+2(X) has

more minimal elements thanX.
(3) Using [lemma 4.3, 8 and 9] it is easy to check that:

∑
1≤k<j≤n

(sn−1
k dn−1

j + dn
j+1s

n
k) =

(sn−1
1 dn−1

n + dn
n+1s

n
1 ). By [lemma 4.3, 8] we can see that it is enough to study the case

1 ∈ IX . Let us assume that1 ∈ IX . Then[x1] = [X] and[xn+1] 6= [X].
(a) If 1 ∈ Idn−1

n (X) then it is easy to see that
(
sn−1
1 dn−1

n + dn
n+1s

n
1

)
(X) = 0.

(b) If 1 /∈ Idn−1
n (X) then

(
sn−1
1 dn−1

n + dn
n+1s

n
1

)
(X) = dn

n+1s
n
1 (X).

dn−1
n (X) = (−1)n−1x1 ⊗ x2 ⊗ · · · ⊗ xn−1 ⊗ xnxn+1. As [x1] = [X] andx1 is not

the beginning of a minimal block fordn−1
n (X), because1 /∈ Idn−1

n (X), we deduce
that [xnxn+1] = [X].

(−1)n+2dn
n+1s

n
1 (X) = 〈x1]⊗ x1 ⊗ x2 ⊗ · · · ⊗ xn−1 ⊗ xnxn+1,

X = x1 ⊗ x2 ⊗ · · · ⊗ xn−1 ⊗ xn ⊗ xn+1.

As [〈x1]] = [x1xn+1] = [X] and[xn+1] 6= [X] we deduce that(−1)n+2dn
n+1s

n
1 (X)

has more minimal elements thanX.
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Lemma 4.5. For 1 ≤ i ≤ n we have(
sn−1

i dn−1
i + dn

i s
n
i + dn

i s
n
i+1 + dn

i+1s
n
i

)
(X) =

{
X + Y if i ∈ IX

Y else
whereY is zero or an elementary tensor with more minimal element thanX.

Proof.

• sn−1
i dn−1

i (X) =

{
x1 ⊗ · · · ⊗ 〈xixi+1]⊗ xixi+1 ⊗ · · · ⊗ xn+1 if i ∈ Idn−1

i (X)

0 else

• dn
i s

n
i (X) =

{
X if i ∈ IX

0 else

• dn
i s

n
i+1(X) =

{
−x1 ⊗ · · · ⊗ xi〈xi+1]⊗ xi+1 ⊗ · · · ⊗ xn+1 if i + 1 ∈ IX

0 else

• dn
i+1s

n
i (X) =

{
−x1 ⊗ · · · ⊗ 〈xi]⊗ xixi+1 ⊗ · · · ⊗ xn+1 if i ∈ IX

0 else

If i + 1 ∈ IX then [xi+1] = [X] and [xi] 6= [X]. So [xi〈xi+1]] = [X]. It is easy to see that
dn

i s
n
i+1(X) has more minimal elements thanX. Note that ifi + 1 /∈ IX thendn

i s
n
i+1(X) = 0.

(1) If i ∈ IX . Then i ∈ Idn−1
i (X). It is clear that〈xixi+1] = 〈xi]. We can see that

sn−1
i dn−1

i (X) + dn
i+1s

n
i (X) = 0.

(2) If i /∈ IX .
(a) If i /∈ Idn−1

i (X). Thensn−1
i dn−1

i (X) + dn
i+1s

n
i (X) = 0.

(b) If i ∈ Idn−1
i (X). Then [xixi+1] = [X] and [xi−1] 6= [X]. Therefore[xi] 6= [X](

because if[xi] = [X] and as[xi−1] 6= [X] we geti ∈ IX , which is not the case
)
.

As [〈xixi+1]] = [X] and[xi] 6= [X] we can see thatsn−1
i dn−1

i (X) has more minimal
elements thatX.

Lemma 4.6.
(
sn−1

n dn−1
0 + dn

n+1s
n
n+1 + dn

0s
n
1 + dn

0s
n
n+1

)
(X) =

{
X + Y if n + 1 ∈ IX

Y else
whereY is zero or an elementary tensor with more minimal elements thanX.

Proof. The proof is similar to that of lemma 4.5.

With lemmas 4.4, 4.5 and 4.6, we get:

Proposition 4.7. (sn−1dn−1 + dnsn)(X) =
∑

1≤k≤n+1
k∈IX

X + S, whereS is zero or a finite sum of

elementary tensors with more minimal elements thanX.

Lemma 4.8. For an elementary tensorX = x1 ⊗ · · · ⊗ xn+1, if IX 6= ∅ then1 ≤ |IX | ≤ n+1
2

.

Proof. ForX = x1 ⊗ · · · ⊗ xn+1 let us assume thatIX 6= ∅. Without loss of generality we can
suppose that1 ∈ IX . So2 6∈ IX andn + 1 6∈ IX . If 3 ∈ IX then4 6∈ IX . By iteration, we get
thatIX ⊆ {1, 3, 5, . . . }. As n + 1 6∈ IX we get our answer.

Let

ne =

{
n
2

if n is even,
n−1

2
else.

Let Qm = I − 1
m

(sn−1dn−1 + dnsn) andQ = Q1 ◦Q2 ◦ · · · ◦Qn.
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Corollary 4.9. If X is an elementary tensor with minimal element thenQ(n+1)e−1(X) is a linear
sum of constant element.

4.2. Constant element. In this section, we will show that there are linear bounded mapssk :
Ck(`

1(S), `1(S)) −→ Ck+1(`
1(S), `1(S)), k ∈ {n− 1, n}, such that for each elementary tensor

X ∈ Fk,cons we have
(
I − (sn−1dn−1 + dnsn)

)
(X) = 0.

Definition 4.10. Letn ≥ 1 andsk : Ck(A,A) −→ Ck+1(A,A) the bounded linear map defined
by

sn(x1 ⊗ · · · ⊗ xn+1) =

{
(−1)n+1x1 ⊗ x2 ⊗ · · · ⊗ 〈xn+1]⊗ [xn+1〉 if [x1] = · · · = [xn+1],
0 else.

Proposition 4.11.LetX ∈ Cn(A,A) a constant element. Then(
I − (sn−1dn−1 + dnsn)

)
(X) = 0.

Proof. We verify easily that:(sn−1dn−1+dnsn)(X) =
n∑

i=0

(
sn−1dn−1

i +dn
i s

n
)
(X)+dn

n+1s
n(X) =

X .

5. CONCLUSION

By Propositions 3.12, 4.11, and Corollary 4.9 we see that there existsk : Ck(`
1(S), `1(S)) −→

Ck+1(`
1(S), `1(S)), k ∈ {n − 1, n}, bounded linear maps such that for all elementary tensors

X ∈ Ck(`
1(S), `1(S)), we have

(
I − (sn−1dn−1 + dnsn)

)
(X) = 0. This means that simplicial

(co)-homology of̀ 1(S) vanishes in all degrees.
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