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ABSTRACT. We consider the Banach algel#*4.5), with convolution, where5 is a band semi-
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introduce a bounded linear map. By iteration in each step, we achieve our goal.

Key words and phrasesSimplicial homology; Banach algebra; Simplicial cohomology.

2000Mathematics Subject Classificat/orPrimary 46H20. Secondary 43A20, 16E40.

ISSN (electronic): 1449-5910
(© 2020 Austral Internet Publishing. All rights reserved.


https://ajmaa.org/
mailto:<yasser.farhat@adpoly.ac.ae>
mailto:<farhat.yasser.1@gmail.com>
https://www.ams.org/msc/

2 YASSERFARHAT

1. INTRODUCTION

Computing the simplicial cohomology groupsétsS), whereS is anormal bandsemigroup
(particular case dbandsemigroup), was done inl[2] 3]. The general case, of band semigroup,
was done in[[1]. In this last paper, Choi et all have identified the cyclic cohomology groups, in
three steps. Using the Connes-Tzygan exact sequence [8], they determined that the simplicial
cohomology groups vanishes. This same strategy was used in 5, 6, 7].

Determining the simplicial cohomology directly will prove on effective method for its compre-
hensive. In this way, we provided in/[4] an explicit contracting homotopy, which allows us to
get an explicit result for the simplicial cohomology of the Banach algélyfa, ). Also, a direct

method can aid in generalizing for other Banach algebras (especially those which do not respect
Connes-Tzygan lemma). For this goal, we follow three steps. In the first step, the important
step, we give two methods, Sectigns|3.2 3.2. The second and third steps (subjse¢tions 4.1
and 4.2 respectively) are compatible with the methods of the first step.

2. BACKGROUND AND DEFINITIONS

2.1. Simplicial cohomology. We now briefly establish our notation and recall some defini-
tions. For a Banach algebr4, we regard4*, the topological dual space of, as a Banach
A-bimodule in the usual way.
Forn > 1, we denote the Banach space of bounddithear operator fromd™ := A x --- x A
N ——

to A* by C"(A, A*). We define the boundary operatdr: C"(A, A*) — C"T1(A, A*) gs the
bounded linear operator given by

(6nT) (al, Ce 7an+1)(an+2) = T(CLQ, Ce ,an+1)(an+2a1)
+ Z<—1)jT(a17 QGG - Gngr) (An2)
7j=1

+(=1)""T (a1, ..., an)(Gni10n12)
whereT' € C"( A, A*).

By convention, fom = 0, we haveC"(A, A*) := A*, ands” : C°(A, A*) — C1(A, A*)is
given by(sO(T> (a1)<a2) = T(CLQCL1> — T(alag).

ForT € C"(A, A*) we say thatl" is ann-cocycleif 6"T = 0, and we say thal’ is n-
coboundaryif T = §"'S, for someS € C" (A4, A"). Let Z"(A, A*) the subspace of
n—cocycles, and3” (A, A*) the subspace of—coboundaries. Knowing that o 6"~! = 0, the
n' simplicial conomology group ofl is the spacé("(A, A*) := %.

Elements o€" (A, A*) may be regarded as bounded linear functional on the ghdck A) :=
A&t the (n + 1)-fold completed projective tensor product df The bounded linear op-
eratoré” : C"(A, A*) — C""1(A, A*) is then the adjoint of the bounded linear operator

d" : Cpi1(A,A) — C,(A, A) defined on elementary tensaks = a1 @ a3 ® -+ ® ay12 €
n+1

Cni1(A,A) byd™(X) = > d*(X) where
=0

dg(X) = e ®--Q® Ap41 X Qp4207,
d?(X> = (_1)ia1®"'®aia’i+l®"'®an+27 22177n+1
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2.2. Band semigroup.

Definition 2.1.

(1) A band is a semigroup in which every element is idempotent.
(2) A rectangular band is a semigroup in which the identity aba always holds.
(3) A semilattice is a commutative band semigroup.

Note that, fora,b,c € S, rectangular band semigroup, we haxde = ac. In particular, a
rectangular band semigroup is a band semigroup. A characterization of band semigroup is
given in [9, Theorem 4.4.5] by:

Theorem 2.2. Any band semigrouf' can be represented as a disjoint unigj R, whereL
a€el
is a semilattice, eaclR,, is a rectangular band given by, x B,, the left and right index sets,

and the following properties are satisfied:
I RyRs C Rypforall o, e L;
i forz = (a1,b1) € R, andy = (aq, b2) € Rg witha < 3, xy andy have the same right
index (i. e.xy = (., b)), whileyz andy have the same left index
(i. e.yz = (a2,.));
il the product is associative.

So forz in a band semigroup there exist a unigyen a semilattice, such thate R, rectan-
gular band. And we defing| = «. Note that fora, 5 belong to semilattice, we write < 3 if
aff = aanda # (. Let'S be a band semigroup. Theft coherent unitss a function denoted
by (.], from S to S and defined as follows: for each rectangular bahd(a belongs to the
semilatticel), fix an elementy, € R, and definex] = zy,, for eachz € R,. Then, the
function(.] : S — S has the following properties:

(1) foreachn € L, (R,] C Ra;

(2) foreachn € L and eachx € R, (z]x = z;

(3) for eachn, § € L such thaty < 3, and eaclr € R, andy € Rg, (xy] = (x].
Using the same methdd) = y,x. We use this notation in the subsection|4.2.
Notations. For the rest of the papes$, is a band semigroup. We denote simply:bthe point
mass atr, §, € ¢*(S). Then,X = 21 @1, ® - - - ® x,,41 Will denote a typicaklementary tensor
in 1S (S)® ... (S). Ifi = (n+ 1), then(i + 1) := 1 sox;, := x,. Moreover, if
1<i<(n+1)then(n+1+41):=14,andx, 1,; := z;. Alsoif i = 1 theni — 1 :=n+ 1 and
LTi—1 = Tp41-
From [1, Definition 5.5], we have:

Definition 2.3. Let X =2, @ 75 ® -+ - @ @41 € ()R (S)® ... @0(S):
(1) We say thafX has a minimal elementf there existl < i < n + 1 such thafz;] < [x]
forall1 <k <n+1.
(2) If X is without minimal element. We say that a cyclic subtensop - - - ® x; of X
has a minimal left elemenif [x;] < [z;] for all 7 in the cyclic intervallk, []. A cyclic

subtensor is aleft-blockif it has a minimal left element and is not strictly included in
another cyclic subtensor which has a minimal left element.

Notation For an elementary tensor without minimal element, it is easy to seeXthads a
unique decomposition into left-blocks, and, therefore, we can define

Ix ={ie{1,2,3,...,n+ 1} : x; is the first component of a left — block}.

It is easy to see that for an elementary tensowithout minimal element we have < |Ix| <
n + 1.
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To prove that for eacli’ € Kerd" there existR € C"(¢'(S), £*(S)*) such that™ ' (R) =
T, it is sufficient to prove that there exist bounded linear meps C.(¢*(S),1(S)) —
Crs1(C1(S),01(9)), k € {n — 1,n}, such that(I — (r"~'d"~* + d"r"))(X) = 0, forall X €
Co(£1(S),6*(S)) **. Note that(I — (r"td"=' + dmr™)) (I — (s"'d" + d"s™)) = (I —
(¢"'d"* + d"q™)). So, we can prove the conditidh with two steps or more. To achieve
our goal, we can prove that there exist s*, ¢* : C(¢*(S),0*(S)) — Cr1(£1(S), £1(S9)),
k € {n — 1,n}, bounded linear maps such that:

(1) ForallX € Cp,(¢'(S),*(S)), we have(I — (r"~td™' + d"r™))(X) € Fy e

(2) ForallX € F, ., we have(I — (s"'d"' + d"s™))(X) € Fy cons-

(3) ForallX € F, cons, We have(I — (¢"'d" ! + d"¢q™))(X) = 0.
WhereF, . = lin{X € C,(¢'(5),¢*(S)) : X has minimal elemeRt F, .., = lin{X €
Co(01(S),01(9)) : X =21 ® 33+ ® Tpyq @Nd[z1] = [o] = -+ = [2,,41]}. In the rest of our
work we need also the following subspace and definitigh= lin{X € C, (¢!(S5),*(S)) : X
has at mosj left-blocks}.

Definition 2.4. If T is a finite semilattice, and < T, the height otx in T is the length of the
longest descending chain ‘ihwhich starts atv. That is,

hr(a) := sup{m : there existy, t,...,t,, € TWitha =t,, = t,_1 = -+ = to}.
If X =21 ®2,® - @ x,41 iS an elementary tensor i@, (¢'(5), £1(5)), let T(X) be the finite
semilattice that is generated by the $ét1], 2], ..., [z,11] }, and define th@eight of X to be

n+1

h(X) = Z hrx)([zk])-

It is clear that forX” without minimal element we havg + 1) < h(X) < n(n+1). We denote
by F}" = lin{X € C,(01(S),€'(9)) : X has at mos} left-blocks with height at most}q
And we denote by, ;, = lin{FI" + FJ~'}.

3. WITHOUT MINIMAL ELEMENT

In this section we will show that there exist : Cp.(¢1(S),*(S)) — Cr1(£1(S), 01(S)),
k € {n—1,n}, bounded linear map such that for each elementary texiseiC, (¢'(S), ¢*(.9)),
we have(I — (s"~'d"™ + d"s"))(X) € F.. From [1, equation (5.3)] we have the following
definition:

Definition 3.1. For k € {n — 1,n} and1 < i < k + 1 let the linear bounded mag} :
Cr(€1(S), £1(S)) — Cry1 (£1(S), £1(S)) defined by

Sf($1®$2®“'®$k+1) =(-1)'1® @] @1 ® Ty,
and

(X)) =) sH(X).

i€lx
If X has a minimal elemerttx = 0), s*(X) := 0.
By using the above* Choi et al showed their result for the cyclic cohomology. In addition,
they used Connes-Tzygan lemma to conclude their result for the simplicial cohomology. In

this section, we show, with two methods, how we manage'd"~! + d"s") to avoid cyclic
cohomology and Connes-Tzygan lemma.
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3.1. First method. In [1, Proposition 5.12] and [1, Remark 5.13] we have, Xgran elemen-
tary tensor without minimal element:

Proposition 3.2. Let X an elementary tensor iA?". Then
(s" T+ dmsM) (X)) = ) | X + ey @ (1w @ 1Ty @ @

i€lx

— 01 (T @ TiTi11 ® .nfij| mod G, jh-1.

Wheree;, | @ (z;x;11|Q@x;zi 11 R0, ; =21 Q- Q@x; 1 @(XT;Ti11]| QTiZit1 QT2 - @ Tpiq
ande; | ® (7] @ rizip1 Qe =11 @ @ T @ (T3] @ TiTip1 @Tiy2 @+ @ Tpyr. When
n+ 1 € Ix, the corresponding term in square brackets should be interpreted as

X4+ (-1)"22 Q@ @y @ (Tp1121] @ Tpp1z1 + (=1)"M2e @ - @ 2 @ (Ty11] @ Tpy121.

In order to analyse the above result, we nééd [1, Definition 5.14]:

Definition 3.3. A left-block of length one is calledane-block A one-blockz, in an elementary
tensorX is called ablock-unitif z; = (x| andzyzy 1 = Tpyq.

GivenX =21 @1, ® -+ ® 41, let
Rx ={i € Ix : x; is a one — block but not block unit, and [z;] > [z;41]},
clearly Rxy may be empty. By [1, Lemma 5.16] we have:

Lemma 3.4. Let X be an elementary tensor ifi/, and leti € Ix. Then precisely one of the
following four cases can occur

i) z;is not a one-block inX, in which case,
01 ®(TiTit1] ® TiTip1 @ 0 = 0,1 @ (7] @ 2;Ti41 @ @,
i) «; is a one-block andlz;] % [z;41], in which case, the tensor
01 ® (] 1w @

either has fewer left-blocks, or lower height (and the same number of left-blocks), than
X;

i) z; is a block-unit, in which case;,_; ® (x;] ® x;z;11 ® 0, ; = X;

iV) 1 € Rx.

In casesi), iii), iv) the tensow;_| @ (z;7,41] @ z;2,41 ® o,,_; has fewer left-blocks thaX .

Corollary 3.5. Let X an elementary tensor ifi’*. Then
(st dns)(X) = (| mix [+ By )X = 3 Vi(X)

1<i<n
i€Rx

+{ disi (X) ifn+1elyandn] < [vanl, G

0 else,

wherem’y = {i € Ix :i =n+1 or [zy1] A [z]}, Ry = {1 <i <n:i€ Rx},
Vi(X) = 01 @ (] @ 22511 @ @,
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Remark If | Ix |# 0, it is simple to verify that m/; |# 0. Therefore, ifX has no minimal
element, then:

1

Puy(X) == (I——(s"'d" ' +d"s™))(X)
mx
1
= — ) ViX)
X 1<i<n
B modysy (X)) ifn4 1€ Ix and[z1] < [z,41],
0 else,

+  mod Gn,j,hfl

wheremyx =| m’y | + | R |.

It is easy to see thafjs) ,(X) has at most the same number of left-blockskXgfand at most
the same height ok’ (if [z,] < [x,41] we have equalities). To eliminat& s, (X) we use an
original idea. And to eliminat&;(.X') we adapt some notions froml [1].

Definition 3.6. Let X = 271 ® 5 ® - - - ® x,,,1 an elementary tensor without minimal element.

(1) Define a descending block i to be a cyclic subtensar, ® - - - ® x; with the property
that [.I‘k] — [Ik_H] e [ZL’[], while [ZL’k_l] ?l- [l’k] and [l’l] ;l- [xl—i-l]-

(2) Let1l < i < n+ 1, we define the descent ef in X, desc;(X), to bel — i, wherez,
is the last element in the unique descending block that contaifthis is interpreted
cyclically).

(3) We definelesc(X) = > desc;(X).

i€Rx
By [1, Lemma 5.19] we have:

Lemma3.7.Let X = 7; ® --- ® 7,41 be a tensor without minimal element, such that is
non-empty, and lete Ry. Then

desc(V;(X)) < desc(X).
ForX € F2hlet Di(X) = lin{Y € G, : desc(Y) < desc(X) — k}. So, we have

P.,(X) = D+S
B %dgsZH(X) if n+1¢€ Ixand[zi] < [xn11],
0 else,

whereD € Dy(X)andS € G, jn-1. Formy = Man e (x) We have, ifn + 1 € Iy and
[21] < [zn41] then

By (dgsp1 (X)) = D+S
[ ardisiia(dgsi o (X)) if 1€ Iy andfzs] < [z1] < [z,
0 else,
whereD € Dy(djsy, (X)) andS € G, ;,—1. Letus prove thaD; (di s, (X)) C D:i(X).

Lemma 3.8.1f n + 1 € Ix and[z] < [z,41] thendesc(dg sy, (X)) < desc(X) and
Dy(dgsni1(X)) C Di(X).
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Proof. As [21] < [2,41] itis evident thal Igs, (x) [=| Ix | andh(dgsy,, (X)) = h(X).
To get our result, we have to proof thétsc(dg sy, (X)) < desc(X). We havedgan(X) =
(=) @ - @ 2y @ (Tpy1] @ Tpyrwy. LetZ = 29 @ 2, @ 1,41 @ x1. It is clear that
desc(Z) = desc(X).
(1) If n € Ry then, by Lemma 3|7desc(V,(Z)) < desc(Z). As desc(djsp,,(X)) =
desc(V,(Z)) anddesc(Z) = desc(X) we have our result.
(2) If n ¢ R thenan is a block-unit. ThUS,<£Cn+1] = Tp+1 and Tpy1T1 = Tq. So,
desc(dgsp, (X)) = desc(Z) = desc(X). And we have our result.

Remark If X has no minimal element and,| < [z,41], thend(s?, ,(X) has no minimal
element.

Corollary 3.9. If X is an elementary tensor without minimal element, then
Pmko PmX(X) :D+S

] s ————dgsn_ (dysp, (X)) ifn+1elxand[zy] < [z1] < [2n4],
0 else,

whereD € Dy(X)andS € G, jp—1.
Proof. We know that, ifY” has no minimal element thénn}. |# 0, and somy # 0.
P oPpy(X) = P (D) + P (S) + D1+ 5
N { ———dgsp, (dfsp, (X)) ifn+1elxand[zy] < [z1] < [2ni1],

mmX

0 else,

whereD,D; € Dy(X) andS,S; € G, ;n—1. To get our result, we have only to see that,
Vm > 1, P, (D) (respectivelyP,,(S)) € D1(X) + Gy jn-1- 1

By iteration in the previous corollary we get,Xf has no minimal element, then
Pm}fzo---oPmX(X) =D+S
(1) (d03n+1) (X)) ifn+1€ Iy and[z, 1] < - < [21] < [T041],
0 else,

wherem®, = Mgngn ) (X)r CX = mxmim3 ...m% 2, D€ Dy(X)andS € Ghjh-1-
This motivates the next corollary:

Corollary 3.10. Let X an elementary tensor. TheA™(X) = D + S, whereD € D;(X),
SEGW-’h_l andP:PloPgo---oPn+1.

Remark By calculation, we verify thaf,, o P,,, = P, o P, for all m,m’. The equality is
independent with the definition af. We use this remark in the other sections also.

Proof. If mk # 0,fork =0,1,...,n — 1thenP™(X) = Q,n-10--0Quuy 0 Pyn-10---0
P (X)=D+S,whereD € Di(X),S € G, jn—1andQ@, = Pio---0P,_j0P.10---0PF, ;.

Note that, ifmy = 0 thenY has a minimal element. Soif%, = 0 and m’}{l # 0 then
Pméf,{lo. 0P, (X) = D+S,whereD € Di(X),S € G, ;»-1. And the resultis immediata.

As P*(S) € G, jn1, it S € G, ;,-1, and by the previous corollary we get the below result.
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Corollary 3.11. Let X an elementary tensor. TheR**(X) € Dy(X) + G, j»—1. Moreover,
as0 < desc(X) < n(n —1) we getP(”Q("‘”) (X) € Gpjn-1-

Proposition 3.12. Let X an elementary tensor. Theﬁ,("5(”‘1)) (X) € Foyme-

Proof. By Corollary|3.11, we have (*(+-1) (X) =U+V,wherelU € Fi~'andV e Fih1,
So P(”Q(”‘l))(v) = U, + Vi, whereU; € Fi~tandV;, € F/"2, We note thain + 1) <
h(X) < n(n + 1), if X has no minimal element. Theﬁ’,(”4(”‘1))(X) € FJ~1. Moreover, as
2 <| Ix |< n+1,if X has no minimal element, then we gé{"S("‘l)) (X) € Fyme- I

3.2. Second method.A part of working in the previous subsection was considered to eliminate
dysy 1 (X). To work around this problem, we use a new idea. We simply #gke = 0. And
we gets” = > sP. With this definition, and by adapting the proof of [1, Proposition 5.12],

i€lx
i#n+1

we get:
Proposition 3.13.Let X an elementary tensor ifi". Then

("t 4 ds")(X) = Z [X + 01 @ (Tiip1] @ T @ 0,5

i€lx
1<i<n—1

- 01 ®(Ti] ®TiTit1 ® @

+ drsn(X)+dy 50 (X) mod Gy jpi.
In the next lemma, we illustrate the behavioury$), andd;, s;.
Lemma 3.14.Let X an elementary tensor. Then

non . X ifne Ix,
0 ifn ¢ Ix,
- Y ifne Ix and [ZBn_H] ﬁ [.Tn]
(@) dorsi(X) = gn sn(X) i n € Iy, [wns] < ] anddr,,s2(X) # — X,
-X else,

whereY € G, jn-1.
By the previous lemma we get

0 ifn¢glx,
- ) ) x4y if n € Iy and[z,.1] £ [z.],
Bt GasE) =0 X a0 i€ Iy, o] = o] anddg,,si(X) # - X,
0 else.

Corollary 3.15. Let X an elementary tensor iR7". Then
(s"ldm =t dnst)(X) = (Imk [+ | Ry )X = 30 Vi(X)

1<i<n—1
i€Ry
n i =< 7 —
_|_{ g +18 (X) enl:snee [X1 [$n+l] - [xn] andd -‘rls ( ) 7£ X’ + mOd Gn,j,h—l

wherem = {i € Iy : 1 <i<n—1,[zi1] £ [w]}U{n € Ix : ([#31] £ [30]) or ([Tpga] =<
(], drsi(X) # X)) Ry ={1<i<n—1:1€ Rx}, Vi(X) =01 ® (1;] ® 22141 ®

&
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Lemma 3.16.If Ix # () thenm/, # 0.

Proof. Let X = 21 ® 25 ® - - - ® 1,41 With no minimal element(y # 0). In this case, we have
|Ix| > 2. Suppose that} = 0.

First case Ix = {n,n + 1}. In this case we have, on one hand,.,| < [z;], fori €
{1,2,...,n — 1}. On other hand, as € Iy andn ¢ m/; we get|z,,1] = [z,]. Then,
we deduce thdtr,,. 1] is @ minimal element foX, |mp033|ble

Second Ca3¢1, 2,...,n— ]_}QIX 7é (Z) Letio = minlgign_l{i c IX} SO{ZEl,ZL’Q, e »xio—l}

are in the same left minimal block that contaip,.; (1). Asi, € Ix andi, ¢ m’ then

[Tig+1] < [z5,] @nd s0ip + 1 € Ix. If ig+1 < n — 1 we get alsqx;, 2] < [x;,+1] @and so
io + 2 € Ix. By iteration we gefz,| < [z,—1] < -+ < [z;,] (2) andn € Ix. Asn € Ix and

n & m'y we getjz,+1] = [z,] (3). By (1), (2) and(3) we have that:,, ., is a minimal element
for X, impossible.

We have our resuliy

In the Corollary 3.1p it is simple to see thatife Iy thenV,,(X) = —d.,,s(X).
Remark If | Ix |# 0then

1 — n— n _n

Py (X) = (1 - m—X(s” Y+ drsM)) (X)

1
=— Y  Vi(X)
mx 1Si<n—1
i€ER x
L e @ @m0 € L, () < [ra] anddy,s5(X) £ X,
mx | 0 else,

4+ mod anh—la
wheremyx =| m% | + | R% |.
By lemm4 3.7 we gerX( )=D+S

1 { 0 (L) ® Tppg i€ Iy, [1p41] X (2] @anddy | s1(X) # - X,
T 1 0 |
Mix else,

whereD € Dy(X) andS € G, jn—1. ltis clear that ifn € Iy andz,41] < [z,] then
Iy,x) # 0. Somy,x) # 0 and P, ., o Pn(X) = D+ S whereD € D,(X) and
S e Gw,h 1. We have the next corollary:

Corollary 3.17. Let X an elementary tensor. Thét? (X) = D + S, whereD € D;(X) and
S € Gnjn1,WhereP =P oPyo---0P,,.

With similar proofs to those of Corollafy 3.]l11 and Proposifion 3.12, we get the next corollary.
Corollary 3.18. Let X an elementary tensor. Thdﬁ<2”4(”_1)) (X) € Frme-

4. WITH MINIMAL ELEMENT

4.1. Non constant element.In this section we will show that there are linear bounded maps
B Cp(0H(S), 01(S)) — Cra (1(S),£1(S)), k € {n — 1,n}, such that for each elementary

tensorX € Fj, . We have(l — (s"'d"™! + d"s"))(X) € Ficons- By adapting the map in

[1, subsection 5.1], we have our goal.

Definition 4.1. Let X = 21 @ 25 @ -+ @ 211 € C,(€1(5),*(S)). We say that a cyclic
subtensor;, ® - - - ® x; of X is a minimal left blockif [z;] = --- = [z;] = [X] for all i in the
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cyclic interval(k, ], where[X| = [z1xs ... z,41]. A cyclic subtensor is einimal-blockif it is
a minimal left block, and it is not strictly included in another minimal left block.

Notation If X is without minimal element (respectively, a constant tensor) we defipe= (.
If not, it is easy to see that has a unique decomposition into minimal-blocks, and, therefore,
we can define

Ix={ie{1,2,3,...,n+ 1} : x; is the first component of a minimal — block}.
Definition 4.2. For k € {n — 1,n} and1 < i < k + 1 let the linear bounded mag} :

Cu(1(S), 01(S)) — Cry1 (£1(S), £1(S)) defined by
Sf(%@%@”'@xkﬂ) = (—1)i$1®"'®<Ii]®$i®---®$k+17
and

F(X) =) sH(X).

ielx

If I = 0 we defines*(X) := 0.

To simplify the study of s"~*d"~! + d"s"), we write it as:

—_

3

(il +dysi) + ) (TG i)+ Y (T T )

1 1<j<k<n 1<k<j<n

o~
Il

+H(sp T sy dst A dysi) + > (s - dy s d s+ d ST,
=1

Lemma4.3.For X =21 ® 25 ® - - - ® x,,1 We have the following:

DIf1 <k <n+landk € Iy thenjzy] = [X], k+1 ¢ Ix and[z;_;] # [X] so
k—1¢Ix. Alsok € L1y

(2) If 1 <k <n+1and[zgziq] # [X] then[z,] # [X] and[zg41] # [X].
BRfo<;< nthen[d?‘l(X)] = [X].
@ If2<k<n-—1landk+ 1€ Ixthenk € Idg_l(X).
B)If1<k<n-—1landk € Idg_l(x) thenk +1 € Iy.
B)If1<j<k<nandke Id?_l(X) thenk + 1 € Ix.
Mf1<j+1<k<nandk+1e€ Ixthenk e Id;hl(X).
B)If1 <k<j<nandke Id?_l(X) thenk € Ix.
@ If(1<k<j<n—-1lor2<k<j<n) andk € Iy thenk € I ).

Proof.
(1) Trivial.
(2) Trivial.
(3) Trivial.
(4)
X - xl®x2®"'®xk®xk+1®$k+2®'~~®xn®xn+17
dBLil(X) = 5U2®"'®$k®l‘k+1®xk+2®---®xn®xn+1x1.

If 2 <k <n-—1landk+1 € Ix then[zy1] = [X] and|[z,] # [X]. Itis easy to
see thafzy 1] = [d0 ' (X)]. As2 < k < n — 1 and[z;] # [df'(X)] we deduce that
kf E [dg_l(X)'
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(5)
X = ZL’l®$2®"'®l’k®l‘k+1®$k+2®"'®$n®xn+la
dg_l(X) = T QT QL1 @ T2 @ QT & Tpy127.

If 1 <k <n—1landk € Ipy thenfzp] = [dy~(X)] and[zy] # [d5~"(X)].
As = [di~'(X)] = [X] we deduce thalr,.,] = [X] and[z;] # [X], which means
k+1e€ Ix.
(6)
X = 010 QT Q2j11 Q- QT QTpy1 @ -+ @ T,
(—1/dy N (X) = 2@ QTxj1 @ @ T @ Ty @ -+ @ T

If1 <j <k <nandk € Id;hl(x) then [z,1] = [X] and[zx] # [X] (even if
k=j+1¢€ Id;?’l(X) we have[z; 4] # [X]), which means that + 1 € Ix.
(7)
X = 110 Q7;®Tj31® - QT @ Tpt1 @+ @ T,
(_1)jd?_1(X) = 10 - QTTj11Q QT QT Q-+ Q Tpy1-

If1<j+1<k<nandk+1 e Ixthenz,] = [X] and[z,] # [X], which means
[54a] = [dj 1 (X)] and[zy] # [d}(X)]. Sok € Lp=1(x)-
(8)
X = 2@ Q0,001 Q@ Q1 @Tjy @+ @ Tpy,
(_1)jd?_1(X) = 1Q QTR @ RTT g @ @ Ty

If1<k<j<nandk € Id;_l(X) then[z;] = [X] and[z;_1] # [X], which means
ke lx.
(9)
X = 710 Q041 Q- QT QTjy1 @+ @ Tpy1,
(_1)jd?_1<X) = Q0 QT QTk1 Q- QTjTjr1 Q- & Tpy1.

f (1<k<j<n-—1lor2<k<j<n)andk e Ix then[z;] = [X] = [0} (X))
and[z;_] # [X] = [d}'(X)], sok € Ly=1(x)-

|
Lemma 4.4.
n— mn— mn -n Y or
L > (Sk 'y 1+d03k+1)(X): 0
1<k<n-—1

whereY is an elementary tensor with more minimal elements thian
el m— n o Y or
2 > (s 1dj 1+dj5k+1){ 0

1<j<k<n
whereY is an elementary tensor with more minimal elements tkian
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Y or
® T Gratransnen={
1<k<j<n
whereY is an elementary tensor with more minimal elements thian

Proof.

(1) By using [lemma 43, 4 and 5] itis easy to check thafi_} (sp~'dy " +dsy, ;) (X) =
(si'dg~" +dys3)(X). By lemmd 4.8, 5] we can see that it is enough to study the case
k+1=2¢ Ix.

If k41 =2 € Iy then[zy] = [X] and|z,] # [X].

(@) If k=1 € In1(x thenitis easy to see that! ~'dy " + djs3) (X) = 0.

(0) Ik =1¢ In-1.y) then(si™'dy ™" + dgsy ) (X) = dgs5(X).
diHX) = 20® - @ 2 @ Tpy11. AS 23] = [diH(X)] = [X] anda, is not
beginning of minimal-block forl} ' (X) (becausd ¢ Ip-1(x)) then[z, 2] =
[di1(X)] = [X]. We havedlsi(X) = (23] ® 20 @ -+ - @ 2 @ Tpy 1173

dBsH(X) = (12] @22 @ ® Ty ® Tpp1 21,
X = 1R T2® @ xp @ Tpyr.

As [x1] # [X], [(xs]] = [2o] = [X] and[X] = [z12,41] = [zn41] We can see that

dy sy (X) has more minimal elements than
(2) Using [Iemm, 6 and 7], it is easy to check thatd" (sp 'd} " + d7sp,,) =

1<j<k<n

> (shidit +djst,,). By [lemmal4.8, 6] we can see that it is enough to study
1<j<n—1
thecasg+2 € Iy,forl < j <n—1.Letusassumethat+2 € Ixyandl <j <n-—1.
Then we havéz; -] = [X] and|z;] # [X].

(@) If j + 1 € Iy, then itis easy to see thet! [ di ' + dis?,,)(X) = 0.

(b) If j + 1 & Lyos () then(sio{di ! + d7sr, ) (X) = dfs? o (X).

disy o(X) = 1@ @ xTjn @ (Tjpa] @ Tjya @ -+ @ Tpya,
X = 110 Q1;® Tj31Q Tjr2® - ® Tyy1.

As [zj11] # [X], [(zj42] = [7512] = [X] and[z;z;141] = [z5] thend}s}, ,(X) has

more minimal elements thak.
(3) Using [Iemm , 8 and 9] it is easy to check thit;Z'< (sp~'di =t + d7yysp) =
<k<j<n
(sp~'dr—t + dn s7). By [lemma[4.8, 8] we can see that it is enough to study the case
1 € Ix. Letus assume thate Ix. Then[z,] = [X] and|x, 1] # [X].
(@) If 1 € In1x thenitis easy to see theg} ~'dr~" + dr,,s7)(X) = 0.
(b) 1 ¢ I xy then (st dn=" +dp, s7) (X) = dpy 57 (X).
AN X)) = ()", @1, @ - @ Ty @ TpuTyy1- AS [z1] = [X] andz; is not
the beginning of a minimal block fof"~!(X'), becausd ¢ In-1x), We deduce
that [z, z,11] = [X].
(_1)n+2d2+15?(X) = (] ®11022Q - @ Tyt ® TnTny1,
X = T RT3 R Ty 1 @ Ty @ Ty

As [(z1]] = [z12n41] = [X] and [z, 1] # [X] we deduce that—1)""?d", s7(X)

has more minimal elements thanh
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|
Lemma4.5.For1 < i < nwe have
1 X+4+Y ifiel
n—1 m—1 n on ngn _ X
whereY is zero or an elementary tensor with more minimal element fKian

Proof.
. sﬂfld’kl(X) _Jn R @ (TiTig1) QT @ - Ty i€ ]d?fl(x)
Lo 0 else

. X ifiel
'disi(X):{O else

e @@ @i ® - @rpg i+ 1€ Ix
=1

° dn n
else

7 z+1

1 Q- QT OTiTi11 @+ Q Ty ifiel
o di'ysi(X ):{01 <] o " else :

If i + 1 € Ix then[z; 1] = [X] and[z;] # [X]. So[z;(z;41]] = [X]. Itis easy to see that
d's? 1 (X) has more minimal elements than Note that if: + 1 ¢ Iy thend}'s ,(X) = 0.
(1) Ifi € Ix. Theni € Ip-1 . Itis clear that(x;z; 1] = (x;]. We can see that
SPAPTHX) + dy st (X) = 0.

(2) Ifi ¢ Iy.
(@) Ifi ¢ L1 (x)- Thensy'dy = (X) + dfys7(X) = 0.
(b) If i € Ip—1(y). Then[zizi] = [X] and[z;1] # [X]. Thereforelz;] # [X]

(because ifz;] = [X] and agz;_1] # [X] we geti € Iy, which is not the cage
As [(z;zi11]] = [X] and[z,] # [X] we can see thaf''d?!(X) has more minimal
elements thak'.
|
§n-1qn- " n omom X+Y ifn+1lely
whereY is zero or an elementary tensor with more minimal elements #han

Proof. The proof is similar to that of lemmja 4.5.
1

With lemmag 4.4, 415 arid 4.6, we get:

Proposition 4.7. (s"1d"~! + d"s")(X) = Y. X + S, whereS is zero or a finite sum of

1<k<n+1
kEIx

elementary tensors with more minimal elements tRan
Lemma 4.8. For an elementary tensoX = 21 ® - -+ ® @, 11, If Ix # D thenl < |[Ix]| < "T“

Proof. ForX = z; ® --- ® z,,,1 let us assume thdi; # (. Without loss of generality we can
suppose that € Ix. S02 ¢ Iy andn+ 1 ¢ Ix. If 3 € Ix thend ¢ Ix. By iteration, we get
that/x C {1,3,5,...}. Asn+ 1 ¢ Ix we get our answen

Let ) .
if nis even,

ne — { )
5 else.

LetQm — I _ %(S’I’L—ldn—l + dnsn) andQ — Ql e} QQ O:+++0 Qn.

3IN3
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Corollary 4.9. If X is an elementary tensor with minimal element thgft =1 (X) is a linear
sum of constant element.

4.2. Constant element. In this section, we will show that there are linear bounded n3é&ps
Cre(01(S), 01(S)) — Cr1(£1(S), 01(9)), k € {n — 1,n}, such that for each elementary tensor
X € Fycons We have(I — (s"1d"! + d"s™))(X) = 0.

Definition 4.10. Letn > 1 ands* : C.(A, A) — Cr11(A, A) the bounded linear map defined
by

—1)+1 i e
P e L LI 7 sa),

Proposition 4.11.Let X € C,(A, A) a constant element. Then
(1 N d“s”)> (X)=0.

Proof. We verify easily that{s"~'d" 1 4+d"s")(X) = 3 (s" 'd} " +d's") (X)+d!,  s"(X) =
=0
X .1

5. CONCLUSION

By Proposition§ 3.12, 4.11, and Corollary|4.9 we see that theresxisl, (¢1(S), £1(S)) —
Cri1(£1(S), 01(S)), k € {n — 1,n}, bounded linear maps such that for all elementary tensors
X € Cu(0(S), €(S)), we have(I — (s"'d"~! + d"s™))(X) = 0. This means that simplicial
(co)-homology off*(S) vanishes in all degrees.
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