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2 S.S. DRAGOMIR

1. I NTRODUCTION

Let (H; 〈·, ·〉) be an inner product space over the real or complex number fieldK.
In the earlier paper [13], we have obtained the following simple reverse of Schwarz’s inequal-

ity

0 ≤ ‖x‖2 ‖a‖2 − |〈x, a〉|2(1.1)

≤ ‖x‖2 ‖a‖2 − [Re 〈x, a〉]2 ≤ r2 ‖x‖2 ,

provided

(1.2) ‖x− a‖ ≤ r < ‖a‖ ,

wherea, x ∈ H andr > 0. The quantityc = 1 in front of r2 is best possible in the sense that it
cannot be replaced by a smaller one.

This result has then been employed to prove (see [13]) that

‖x‖2 ‖y‖2 ≤ 1

4
·
{
Re
[(

Γ̄ + γ̄
)
〈x, y〉

]}2

Re (Γγ̄)
(1.3)

≤ 1

4
· |Γ + γ|2

Re (Γγ̄)
|〈x, y〉|2 ,

provided, forx, y ∈ H andγ, Γ ∈ K with Re (Γγ̄) > 0, either

(1.4) Re 〈Γy − x, x− γy〉 ≥ 0,

or, equivalently,

(1.5)

∥∥∥∥x− γ + Γ

2
y

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖y‖ ,

holds. In both inequalities(1.3), 1
4

is the best possible constant.
The inequality (1.3) implies the following additive version of reverse Schwarz’s inequality

(1.6) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· |Γ− γ|2

Re (Γγ̄)
|〈x, y〉|2 .

Here the constant1
4

is also the best.
If the condition (1.2) is satisfied, then one may deduce the following reverse of the triangle

inequality [13]

(1.7) 0 ≤ ‖x‖+ ‖a‖ − ‖x + a‖ ≤
√

2r

√√√√√ Re 〈x, a〉√
‖a‖2 − r2

(√
‖a‖2 − r2 + ‖a‖

) .

If M > m > 0, x, y ∈ H and either (1.4) or, equivalently, (1.5) holds forM, m instead of
Γ, γ, then the following simpler reverse of the triangle inequality may be stated as well

(1.8) 0 ≤ ‖x‖+ ‖y‖ − ‖x + y‖ ≤
√

M −
√

m
4
√

Mm

√
Re 〈x, y〉.

Moving now onto Grüss type inequalities, we note that ifx, y, e ∈ H, with ‖e‖ = 1 and
r1, r2 ∈ (0, 1) are such that

(1.9) ‖x− e‖ ≤ r1, and ‖y − e‖ ≤ r2,

then one has the inequality [13]

(1.10) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ r1r2 ‖x‖ ‖y‖ .
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SCHWARZ, TRIANGLE AND BESSELINEQUALITIES 3

The inequality (1.10) is sharp in the sense that the constantc = 1 in front of r1r2 cannot be
replaced by a smaller constant.

If we assumed that, forx, y, e ∈ H with ‖e‖ = 1 and γ, Γ, φ, Φ ∈ K with Re (Γγ̄) ,
Re
(
Φφ̄
)

> 0, either the condition

(1.11) Re 〈Γe− x, x− γe〉 , Re 〈Φe− y, y − γφ〉 ≥ 0

or, equivalently,

(1.12)

∥∥∥∥x− γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ| ,

∥∥∥∥y − φ + Φ

2
e

∥∥∥∥ ≤ 1

2
|Φ− φ| ,

holds, then we have the inequality

(1.13) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
· |Γ− γ| |Φ− φ|√

Re (Γγ̄) Re
(
Φφ̄
) |〈x, e〉 〈e, y〉| .

Here the constant1
4

is also the best possible.
In the case that both〈x, e〉 , 〈e, y〉 6= 0 (which is actually the interesting case), we have

(1.14)

∣∣∣∣ 〈x, y〉
〈x, e〉 〈e, y〉

− 1

∣∣∣∣ ≤ 1

4
· |Γ− γ| |Φ− φ|√

Re (Γγ̄) Re
(
Φφ̄
) .

Now, for an orthornormal family of vectors inH, i.e., we recall that〈ei, ej〉 = 0 if i, j ∈ N,
i 6= j and‖ei‖ = 1 for i ∈ N, the following inequality, called theBessel inequality

(1.15)
∞∑
i=1

|〈x, ei〉|2 ≤ ‖x‖2 , x ∈ H;

holds.
If (H; 〈·, ·〉) is an infinite dimensional Hilbert space over the real or complex number fieldK,

(ei)i∈N is an orthornormal family inH, λ = (λi)i∈N ∈ `2 (K) andr > 0 is with the property
that

(1.16)
∞∑
i=1

|λi|2 > r2,

then, forx ∈ H with

(1.17)

∥∥∥∥∥x−
∞∑
i=1

λiei

∥∥∥∥∥ ≤ r,

one has the inequalities [13]

‖x‖2 ≤
(∑∞

i=1 Re
[
λ̄i 〈x, ei〉

])2∑∞
i=1 |λi|2 − r2

≤
∣∣∑∞

i=1 λ̄i 〈x, ei〉
∣∣2∑∞

i=1 |λi|2 − r2
(1.18)

≤
∑∞

i=1 |λi|2∑∞
i=1 |λi|2 − r2

∞∑
i=1

|〈x, ei〉|2 .

An additive version of interest is [13]

(1.19) 0 ≤ ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2 ≤
r2∑∞

i=1 |λi|2 − r2

∞∑
i=1

|〈x, ei〉|2 .
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4 S.S. DRAGOMIR

Finally, if Γ = (Γi)i∈N , γ = (γi)i∈N ∈ `2 (K) are such that
∑∞

i=1 Re (Γiγi) > 0 and forx ∈ H,
either

(1.20)

∥∥∥∥∥x−
∞∑
i=1

γi + Γi

2
ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Γi − γi|
2

) 1
2

or, equivalently,

(1.21) Re

〈
∞∑
i=1

Γiei − x, x−
∞∑
i=1

γiei

〉
≥ 0

holds, then [13]

‖x‖2 ≤ 1

4
·
(∑∞

i=1 Re
[(

Γ̄i + γ̄i

)
〈x, ei〉

])2∑∞
i=1 Re (Γiγ̄i)

≤ 1

4
·
∣∣∑∞

i=1

(
Γ̄i + γ̄i

)
〈x, ei〉

∣∣2∑∞
i=1 Re (Γiγ̄i)

(1.22)

≤ 1

4
·
∑∞

i=1 |Γi + γi|
2∑∞

i=1 Re (Γiγ̄i)

∞∑
i=1

|〈x, ei〉|2 .

The constant1
4

is best possible in all inequalities (1.22).
The following additive version may be stated as well [13]

(1.23) 0 ≤ ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2 ≤
1

4
·
∑∞

i=1 |Γi − γi|
2∑∞

i=1 Re (Γiγ̄i)

∞∑
i=1

|〈x, ei〉|2 .

Here the constant1
4

is also best possible.
The present paper is a continuation of [13]. Here we point out different reverses of the

Schwarz, triangle and Bessel inequalities that are also sharp. Applications for Grüss type in-
equalities are provided. Some integral inequalities that are natural consequences of the above,
are stated as well.

2. NEW REVERSES OF SCHWARZ ’ S I NEQUALITY

The following simple result holds.

Theorem 2.1. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K, x, a ∈ H andr > 0. If

(2.1) x ∈ B̄ (a, r) := {z ∈ H| ‖z − a‖ ≤ r} ,

then we have the inequalities:

0 ≤ ‖x‖ ‖a‖ − |〈x, a〉| ≤ ‖x‖ ‖a‖ − |Re 〈x, a〉|(2.2)

≤ ‖x‖ ‖a‖ − Re 〈x, a〉 ≤ 1

2
r2.

The constant1
2

is best possible in (2.2) in the sense that it cannot be replaced by a smaller
quantity.

Proof. The condition (2.1) is clearly equivalent to

(2.3) ‖x‖2 + ‖a‖2 ≤ 2 Re 〈x, a〉+ r2.

Using the elementary inequality

(2.4) 2 ‖x‖ ‖a‖ ≤ ‖x‖2 + ‖a‖2 , a, x ∈ H
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SCHWARZ, TRIANGLE AND BESSELINEQUALITIES 5

and (2.3), we deduce

(2.5) 2 ‖x‖ ‖a‖ ≤ 2 Re 〈x, a〉+ r2,

giving the last inequality in (2.2). The other inequalities are obvious.
To prove the sharpness of the constant1

2
, assume that

(2.6) 0 ≤ ‖x‖ ‖a‖ − Re 〈x, a〉 ≤ cr2

for anyx, a ∈ H andr > 0 satisfying (2.1).
Assume thata, e ∈ H, ‖a‖ = ‖e‖ = 1 ande ⊥ a. If r =

√
ε, ε > 0 and if we define

x = a +
√

εe, then‖x− a‖ =
√

ε = r showing that the condition (2.1) is fulfilled.
On the other hand,

‖x‖ ‖a‖ − Re 〈x, a〉 =

√∥∥a +
√

εe
∥∥2 − Re

〈
a +

√
εe, a

〉
=

√
‖a‖2 + ε ‖e‖2 − ‖a‖2

=
√

1 + ε− 1.

Utilising (2.6), we conclude that

(2.7)
√

1 + ε− 1 ≤ cε for anyε > 0.

Multiplying (2.7) by
√

1 + ε + 1 > 0 and then dividing byε > 0, we get

(2.8)
(√

1 + ε + 1
)

c ≥ 1 for any ε > 0.

Lettingε → 0+ in (2.8), we deducec ≥ 1
2
, and the theorem is proved.

The following result also holds.

Theorem 2.2. Let (H; 〈·, ·〉) be an inner product space overK and x, y ∈ H, γ, Γ ∈ K
(Γ 6= −γ) so that either

(2.9) Re 〈Γy − x, x− γy〉 ≥ 0,

or, equivalently,

(2.10)

∥∥∥∥x− γ + Γ

2
y

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖y‖

holds. Then we have the inequalities

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉|(2.11)

≤ ‖x‖ ‖y‖ −
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉

]∣∣∣∣
≤ ‖x‖ ‖y‖ − Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉

]
≤ 1

4
· |Γ− γ|2

|Γ + γ|
‖y‖2 .

The constant1
4

in the last inequality is best possible.

Proof. The proof of the equivalence between the inequalities (2.9) and (2.10) follows by the
fact that in an inner product space,Re 〈Z − x, x− z〉 ≥ 0 for x, z, Z ∈ H is equivalent to∥∥∥∥x− z + Z

2

∥∥∥∥ ≤ 1

2
‖Z − z‖ ,
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6 S.S. DRAGOMIR

(see for example [9]).
Consider fora, y 6= 0, a = Γ+γ

2
· y andr = 1

2
|Γ− γ| ‖y‖ . Thus from (2.2), we get

0 ≤ ‖x‖
∣∣∣∣Γ + γ

2

∣∣∣∣ ‖y‖ − ∣∣∣∣Γ + γ

2

∣∣∣∣ |〈x, y〉|

≤ ‖x‖
∣∣∣∣Γ + γ

2

∣∣∣∣ ‖y‖ − ∣∣∣∣Re

[
Γ̄ + γ̄

2
〈x, y〉

]∣∣∣∣
≤ ‖x‖

∣∣∣∣Γ + γ

2

∣∣∣∣ ‖y‖ − Re

[
Γ̄ + γ̄

2
〈x, y〉

]
≤ 1

8
· |Γ− γ|2 ‖y‖2 .

Dividing by 1
2
|Γ + γ| > 0, we deduce the desired inequality (2.11).

To prove the sharpness of the constant1
4
, assume that there exists ac > 0 such that:

(2.12) ‖x‖ ‖y‖ − Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉

]
≤ c · |Γ− γ|2

|Γ + γ|
‖y‖2 ,

provided either (2.9) or (2.10) holds.
Consider the real inner product space(R2, 〈·, ·〉) with 〈x̄, ȳ〉 = x1y1 + x2y2, x̄ = (x1, x2) ,

ȳ = (y1, y2) ∈ R2. Let ȳ = (1, 1) andΓ, γ > 0 with Γ > γ. Then, by (2.12), we deduce

(2.13)
√

2
√

x2
1 + x2

2 − (x1 + x2) ≤ 2c · (Γ− γ)2

Γ + γ
.

If x1 = Γ, x2 = γ, then

〈Γȳ − x̄, x̄− γȳ〉 = (Γ− x1) (x1 − γ) + (Γ− x2) (x2 − γ) = 0,

showing that the condition (2.9) is valid. Replacingx1 andx2 in (2.13), we deduce

(2.14)
√

2
√

Γ2 + γ2 − (Γ + γ) ≤ 2c
(Γ− γ)2

Γ + γ
.

If in (2.14) we chooseΓ = 1 + ε, γ = 1− ε with ε ∈ (0, 1) , then we have

2
√

1 + ε2 − 2 ≤ 2c
4ε2

2
,

giving

(2.15)
√

1 + ε2 − 1 ≤ 2cε2.

Finally, multiplying (2.15) with
√

1 + ε2 + 1 > 0 and thus dividing byε2, we deduce

(2.16) 1 ≤ 2c
(√

1 + ε2 + 1
)

for any ε ∈ (0, 1) .

Lettingε → 0+ in (2.16) we getc ≥ 1
4
, and the sharpness of the constant is proved.

For some recent results in connection to Schwarz’s inequality, see [2], [14] and [16].
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3. REVERSES OF THE TRIANGLE I NEQUALITY

The following reverse of the triangle inequality in inner product spaces holds.

Proposition 3.1. Let(H; 〈·, ·〉) be an inner product space over the real or complex number field
K, x, a ∈ H andr > 0. If ‖x− a‖ ≤ r, then we have the inequality

(3.1) 0 ≤ ‖x‖+ ‖a‖ − ‖x + a‖ ≤ r.

Proof. Since
(‖x‖+ ‖a‖)2 − ‖x + a‖2 ≤ 2 (‖x‖ ‖a‖ − Re 〈x, a〉) ,

then by Theorem 2.1 we deduce

(3.2) (‖x‖+ ‖a‖)2 − ‖x + a‖2 ≤ r2,

from where we obtain

(3.3) ‖x‖+ ‖a‖ ≤
√

r2 + ‖x + a‖2 ≤ r + ‖x + a‖ ,

giving the desired result (3.1).

We may state the following result as well.

Proposition 3.2. Let (H; 〈·, ·〉) be an inner product space overK andx, y ∈ H, M > m > 0
such that either

(3.4) Re 〈My − x, x−my〉 ≥ 0,

or, equivalently,

(3.5)

∥∥∥∥x− M + m

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ ,

holds. Then we have the inequality

(3.6) 0 ≤ ‖x‖+ ‖y‖ − ‖x + y‖ ≤
√

2

2
· (M −m)√

M + m
‖y‖ .

Proof. By Theorem 2.2 forΓ = M, γ = m, we have the inequality

(3.7) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

4
· (M −m)2

(M + m)
‖y‖2 .

Then we may state that

(‖x‖+ ‖y‖)2 − ‖x + y‖2 = 2 (‖x‖ ‖y‖ − Re 〈x, y〉)

≤ 1

2
· (M −m)2

M + m
‖y‖2 ,

from where we get

‖x‖+ ‖y‖ ≤

√
1

2
· (M −m)2

M + m
‖y‖2 + ‖x + y‖2(3.8)

≤ ‖x + y‖+
(M −m)√
2 (M + m)

‖y‖ ,

giving the desired inequality (3.6).

For some results related to triangle inequality in inner product spaces, see [3], [18], [19] and
[20].

AJMAA, Vol. 1, No. 1, Art. 1, pp. 1-18, 2004 AJMAA

http://ajmaa.org


8 S.S. DRAGOMIR

4. SOME GRÜSSTYPE I NEQUALITIES

We may state the following result.

Theorem 4.1. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K andx, y, e ∈ H with ‖e‖ = 1. If r1, r2 > 0 and

(4.1) ‖x− e‖ ≤ r1, ‖y − e‖ ≤ r2,

then we have the inequalities

|〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

2
r1r2

√
‖x‖+ |〈x, e〉| ·

√
‖y‖+ |〈y, e〉|(4.2)

≤ r1r2 ‖x‖ ‖y‖ .

The constant1
2

is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Apply Schwarz’s inequality for the vectorsx− 〈x, e〉 e, y − 〈y, e〉 e to get (see also [9])
that:

(4.3) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤
(
‖x‖2 − |〈x, e〉|2

) (
‖y‖2 − |〈y, e〉|2

)
.

Using Theorem 2.1 fora = e, we have

0 ≤ ‖x‖2 − |〈x, e〉|2(4.4)

= (‖x‖ − |〈x, e〉|) (‖x‖+ |〈x, e〉|)

≤ 1

2
r2
1 (‖x‖+ |〈x, e〉|) ≤ r2

1 ‖x‖ ,

and, in a similar way

0 ≤ ‖y‖2 − |〈y, e〉|2(4.5)

≤ 1

2
r2
2 (‖y‖+ |〈y, e〉|) ≤ r2

2 ‖y‖ .

Utilising (4.3) – (4.5), we may state that

|〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤ 1

4
r2
1r

2
2 (‖x‖+ |〈x, e〉|) (‖y‖+ |〈y, e〉|)(4.6)

≤ r2
1r

2
2 ‖x‖ ‖y‖ ,

giving the desired inequality (4.2).
To prove the sharpness of the constant1

2
, let assume thatx = y in (4.2), to get

(4.7) ‖x‖2 − |〈x, e〉|2 ≤ 1

2
r2
1 (‖x‖+ |〈x, e〉|) ,

provided‖x− e‖ ≤ r1. If x 6= 0, then dividing (4.7) with‖x‖+ |〈x, e〉| > 0 we get

(4.8) ‖x‖ − |〈x, e〉| ≤ 1

2
r2
1

provided‖x− e‖ ≤ r1, ‖e‖ = 1. However, (4.8) is in fact (2.2) fora = e, for which we have
shown that1

2
is the best possible constant.

The following result also holds.

Theorem 4.2.With the assumptions of Theorem 4.1, we have the inequality

(4.9) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ r1r2

√
1

4
r2
1 + |〈x, e〉| ·

√
1

4
r2
2 + |〈y, e〉|.
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SCHWARZ, TRIANGLE AND BESSELINEQUALITIES 9

Proof. Note that, from Theorem 2.2, we have

(4.10) ‖x‖ ‖a‖ ≤ |〈x, a〉|+ 1

2
r2

provided‖x− a‖ ≤ r.
Taking the square in (4.10) and arranging the terms, we obtain:

(4.11) 0 ≤ ‖x‖2 ‖a‖2 − |〈x, a〉|2 ≤ r2

(
1

4
r2 + |〈x, a〉|

)
,

provided‖x− a‖ ≤ r.
Using the assumption of the theorem, we then have

(4.12) 0 ≤ ‖x‖2 − |〈x, e〉|2 ≤ r2
1

(
1

4
r2
1 + |〈x, e〉|

)
,

and

(4.13) 0 ≤ ‖y‖2 − |〈y, e〉|2 ≤ r2
2

(
1

4
r2
2 + |〈y, e〉|

)
.

Utilising (4.3), (4.12) and (4.13), we deduce the desired inequality (4.9).

The following result may be stated as well.

Theorem 4.3. Let (H; 〈·, ·〉) be an inner product space overK andx, y, e ∈ H with ‖e‖ = 1.
Suppose also thata, A, b, B ∈ K (K = C, R) so thatA 6= −a, B 6= −b. If either

(4.14) Re 〈Ae− x, x− ae〉 ≥ 0, Re 〈Be− y, y − be〉 ≥ 0,

or, equivalently,

(4.15)

∥∥∥∥x− a + A

2
e

∥∥∥∥ ≤ 1

2
|A− a| ,

∥∥∥∥y − b + B

2
e

∥∥∥∥ ≤ 1

2
|B − b| ,

holds, then we have the inequality

|〈x, y〉 − 〈x, e〉 〈e, y〉|(4.16)

≤ 1

4
· |A− a| |B − b|√

|A + a| |B + b|

√
‖x‖+ |〈x, e〉| ·

√
‖y‖+ |〈y, e〉|

≤ 1

2
· |A− a| |B − b|√

|A + a| |B + b|

√
‖x‖ ‖y‖.

The constant1
4

is best possible in (4.16).

Proof. From Theorem 2.2, we may state that

0 ≤ ‖x‖2 − |〈x, e〉|2(4.17)

= (‖x‖ − |〈x, e〉|) (‖x‖+ |〈x, e〉|)

≤ 1

4
· |A− a|2

|A + a|
(‖x‖+ |〈x, e〉|) ,

and

(4.18) 0 ≤ ‖y‖2 − |〈y, e〉|2 ≤ 1

4
· |B − b|2

|B + b|
(‖y‖+ |〈y, e〉|) .

Making use of (4.3) and (4.17), (4.18), we deduce the first inequality in (4.16).
The best constant follows by the use of Theorem 2.2, and we omit the details.
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Finally, we may state the following theorem as well.

Theorem 4.4.With the assumptions of Theorem 4.3, we have the inequality

(4.19) |〈x, y〉 − 〈x, e〉 〈e, y〉|

≤ 1

2
· |A− a| |B − b|√

|A + a| |B + b|

√
1

8
· |A− a|2

|A + a|
+ |〈x, e〉| ·

√
1

8
· |B − b|2

|B + b|
+ |〈y, e〉|.

Proof. Using Theorem 2.1, we may state that

0 ≤ ‖x‖ − |〈x, e〉| ≤ 1

4
· |A− a|2

|A + a|
.

This inequality implies that

‖x‖2 ≤ |〈x, e〉|2 +
1

2
|〈x, e〉| · |A− a|2

|A + a|
+

1

16
· |A− a|4

|A + a|2

giving

(4.20) 0 ≤ ‖x‖2 − |〈x, e〉|2 ≤ 1

2
· |A− a|2

|A + a|

[
|〈x, e〉|+ 1

8
· |A− a|2

|A + a|

]
.

Similarly, we have

(4.21) 0 ≤ ‖y‖2 − |〈y, e〉|2 ≤ 1

2
· |B − b|2

|B + b|

[
|〈y, e〉|+ 1

8
· |B − b|2

|B + b|

]
.

By making use of (4.3) and (4.20), (4.21), we deduce the desired inequality (4.19).

For some recent results on Grüss type inequalities in inner product spaces, see [4], [6] and
[21].

5. REVERSES OF BESSEL’ S I NEQUALITY

Let (H; 〈·, ·〉) be a real or complex infinite dimensional Hilbert space and(ei)i∈N an or-
thornormal family inH, i.e., we recall that〈ei, ej〉 = 0 if i, j ∈ N, i 6= j and‖ei‖ = 1 for
i ∈ N.

It is well known that, ifx ∈ H, then the series
∑∞

i=1 |〈x, ei〉|2 is convergent and the following
inequality, calledBessel’s inequality,

(5.1)
∞∑
i=1

|〈x, ei〉|2 ≤ ‖x‖2 ,

holds.
If

`2 (K) :=

{
a = (ai)i∈N ⊂ K

∣∣∣∣∣
∞∑
i=1

|ai|2 < ∞

}
,

whereK = C or K = R, is the Hilbert space of all real or complex sequences that are
2−summable andλ = (λi)i∈N ∈ `2 (K) , then the series

∑∞
i=1 λiei is convergent inH and

if y :=
∑∞

i=1 λiei ∈ H, then‖y‖ =
(∑∞

i=1 |λi|2
) 1

2 .
We may state the following result.
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Theorem 5.1. Let (H; 〈·, ·〉) be an infinite dimensional Hilbert space over the real or complex
number fieldK, (ei)i∈N is an orthornormal family inH, λ = (λi)i∈N ∈ `2 (K) , λ 6= 0 and
r > 0. If x ∈ H is such that

(5.2)

∥∥∥∥∥x−
∞∑
i=1

λiei

∥∥∥∥∥ ≤ r,

then we have the inequality

(5.3) 0 ≤ ‖x‖ −

(
∞∑
i=1

|〈x, ei〉|2
) 1

2

≤ 1

2
· r2(∑∞

i=1 |λi|2
) 1

2

.

The constant1
2

is best possible in (5.3) in the sense that it cannot be replaced by a smaller
constant.

Proof. Let a :=
∑∞

i=1 λiei ∈ H. Then by Theorem 2.1, we have

‖x‖

∥∥∥∥∥
∞∑
i=1

λiei

∥∥∥∥∥−
∣∣∣∣∣
∞∑
i=1

λ̄i 〈x, ei〉

∣∣∣∣∣ ≤ 1

2
r2,

giving

(5.4) ‖x‖

(
∞∑
i=1

|λi|2
) 1

2

≤ 1

2
r2 +

∣∣∣∣∣
∞∑
i=1

λ̄i 〈x, ei〉

∣∣∣∣∣ ,
since ∥∥∥∥∥

∞∑
i=1

λiei

∥∥∥∥∥ =

(
∞∑
i=1

|λi|2
) 1

2

.

Using the Cauchy-Bunyakovsky-Schwarz inequality, we may state that

(5.5)

∣∣∣∣∣
∞∑
i=1

λ̄i 〈x, ei〉

∣∣∣∣∣ ≤
(
∞∑
i=1

|λi|2
) 1

2
(
∞∑
i=1

|〈x, ei〉|2
) 1

2

,

and thus, by (5.4) and (5.5), we may state that

‖x‖

(
∞∑
i=1

|λi|2
) 1

2

≤ 1

2
r2 +

(
∞∑
i=1

|λi|2
) 1

2
(
∞∑
i=1

|〈x, ei〉|2
) 1

2

,

from where we get the desired inequality in (5.3).
The best constant, follows by Theorem 2.1 on choosing(ei)i∈N = {e} , with ‖e‖ = 1 and we

omit the details.
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Remark 5.1. Under the assumptions of Theorem 5.1, and if we multiply by‖x‖+
(∑∞

i=1 |〈x, ei〉|2
) 1

2 >
0, we deduce from (5.3), that

0 ≤ ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2(5.6)

≤ 1

2
·
r2
(
‖x‖+

(∑∞
i=1 |〈x, ei〉|2

) 1
2

)
(∑∞

i=1 |λi|2
) 1

2

≤ r2 ‖x‖(∑∞
i=1 |λi|2

) 1
2

,

where for the last inequality, we have used Bessel’s inequality(
∞∑
i=1

|〈x, ei〉|2
) 1

2

≤ ‖x‖ , x ∈ H.

The following result also holds.

Theorem 5.2. Assume that(H; 〈·, ·〉) and (ei)i∈N are as in Theorem 5.1. IfΓ = (Γi)i∈N ,
γ = (γi)i∈N ∈ `2 (K) , with Γ 6= −γ, andx ∈ H are with the property that, either

(5.7)

∥∥∥∥∥x−
∞∑
i=1

Γi + γi

2
· ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Γi − γi|
2

) 1
2

or, equivalently,

(5.8) Re

〈
∞∑
i=1

Γiei − x, x−
∞∑
i=1

γiei

〉
≥ 0

holds, then we have the inequality

(5.9) 0 ≤ ‖x‖ −

(
∞∑
i=1

|〈x, ei〉|2
) 1

2

≤ 1

4
·
∑∞

i=1 |Γi − γi|
2(∑∞

i=1 |Γi + γi|
2) 1

2

.

The constant1
4

is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. SinceΓ, γ ∈ `2 (K) , then we have that1
2
(Γ± γ) ∈ `2 (K) , showing that the series

∞∑
i=1

∣∣∣∣Γi + γi

2

∣∣∣∣2 ,

∞∑
i=1

∣∣∣∣Γi − γi

2

∣∣∣∣2
are convergent. In addition, the series

∑∞
i=1 Γiei,

∑∞
i=1 γiei and

∑∞
i=1

Γi+γi

2
ei are also conver-

gent in the Hilbert spaceH.
The equivalence of the conditions (5.7) and (5.8) follows by the fact that, in an inner prod-

uct space we have, forx, z, Z ∈ H, Re 〈Z − x, x− z〉 ≥ 0 is equivalent to
∥∥x− z+Z

2

∥∥ ≤
1
2
‖Z − z‖ , and we omit the details.
Now, we observe that the inequality (5.9) follows from Theorem 5.1 on choosingλi = Γi+γi

2
,

i ∈ N andr = 1
2

(∑∞
i=1 |Γi − γi|

2) 1
2 .

The fact that1
4

is the best possible constant in (5.9) follows from Theorem 2.2, and we omit
the details.
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Remark 5.2. With the assumptions of Theorem 5.2, we have

0 ≤ ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2(5.10)

≤ 1

4
·
∑∞

i=1 |Γi − γi|
2(∑∞

i=1 |Γi + γi|
2) 1

2

‖x‖+

(
∞∑
i=1

|〈x, ei〉|2
) 1

2


≤ 1

2
·
∑∞

i=1 |Γi − γi|
2(∑∞

i=1 |Γi + γi|
2) 1

2

‖x‖ .

For some recent results related to Bessel inequality, see [1], [5], [15], and [17].

6. SOME GRÜSSTYPE I NEQUALITIES FOR ORTHONORMAL FAMILIES

The following result holds.

Theorem 6.1. Let (H; 〈·, ·〉) be an infinite dimensional Hilbert space over the real or complex
number fieldK and (ei)i∈N an orthornormal family inH. If λ = (λi)i∈N , µ = (µi)i∈N ∈
`2 (K) , λ, µ 6= 0, r1, r2 > 0 andx, y ∈ H are such that

(6.1)

∥∥∥∥∥x−
∞∑
i=1

λiei

∥∥∥∥∥ ≤ r1,

∥∥∥∥∥y −
∞∑
i=1

µiei

∥∥∥∥∥ ≤ r2,

then we have the inequality

(6.2)

∣∣∣∣∣〈x, y〉 −
∞∑
i=1

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
≤ 1

2
r1r2

[
‖x‖+

(∑∞
i=1 |〈x, ei〉|2

) 1
2

] 1
2
[
‖y‖+

(∑∞
i=1 |〈y, ei〉|2

) 1
2

] 1
2

(∑∞
i=1 |λi|2

) 1
4
(∑∞

i=1 |µi|
2) 1

4

≤ r1r2
‖x‖

1
2 ‖y‖

1
2(∑∞

i=1 |λi|2
) 1

4
(∑∞

i=1 |µi|
2) 1

4

.

Proof. Apply Schwarz’s inequality for the vectorsx −
∑∞

i=1 〈x, ei〉 ei, y −
∑∞

i=1 〈y, ei〉 ei, to
get

(6.3)

∣∣∣∣∣
〈

x−
∞∑
i=1

〈x, ei〉 ei, y −
∞∑
i=1

〈y, ei〉 ei

〉∣∣∣∣∣
2

≤

∥∥∥∥∥x−
∞∑
i=1

〈x, ei〉 ei

∥∥∥∥∥
2 ∥∥∥∥∥y −

∞∑
i=1

〈y, ei〉 ei

∥∥∥∥∥
2

.

Since 〈
x−

∞∑
i=1

〈x, ei〉 ei, y −
∞∑
i=1

〈y, ei〉 ei

〉
= 〈x, y〉 −

∞∑
i=1

〈x, ei〉 〈ei, y〉

and ∥∥∥∥∥x−
∞∑
i=1

〈x, ei〉 ei

∥∥∥∥∥
2

= ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2 ,
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then, by (6.3) and (5.6) applied forx andy, we deduce the desired inequality (6.2).

Finally we may state the following theorem.

Theorem 6.2. Assume that(H; 〈·, ·〉) and (ei)i∈N are as in Theorem 6.1. IfΓ = (Γi)i∈N ,
Γ = (Γi)i∈N , φ = (φi)i∈N ,Φ = (Φi)i∈N ∈ `2 (K) , with Γ 6= −γ, Φ 6= −φ, andx, y ∈ H are
such that, either ∥∥∥∥∥x−

∞∑
i=1

Γi + γi

2
· ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Γi − γi|
2

) 1
2

,(6.4)

∥∥∥∥∥y −
∞∑
i=1

Φi + φi

2
· ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Φi − φi|
2

) 1
2

,

or, equivalently,

Re

〈
∞∑
i=1

Γiei − x, x−
∞∑
i=1

γiei

〉
≥ 0,(6.5)

Re

〈
∞∑
i=1

Φiei − y, y −
∞∑
i=1

φiei

〉
≥ 0,(6.6)

holds, then we have the inequality∣∣∣∣∣〈x, y〉 −
∞∑
i=1

〈x, ei〉 〈ei, y〉

∣∣∣∣∣(6.7)

≤ 1

4
·

(
∞∑
i=1

|Φi − φi|
2

) 1
2
(
∞∑
i=1

|Γi − γi|
2

) 1
2

×

[
‖x‖+

(∑∞
i=1 |〈x, ei〉|2

) 1
2

] 1
2
[
‖y‖+

(∑∞
i=1 |〈y, ei〉|2

) 1
2

] 1
2

(∑∞
i=1 |Φi + φi|

2) 1
4
(∑∞

i=1 |Γi + γi|
2) 1

4

≤ 1

2
·
(∑∞

i=1 |Φi − φi|
2) 1

2
(∑∞

i=1 |Γi − γi|
2) 1

2(∑∞
i=1 |Φi + φi|

2) 1
4
(∑∞

i=1 |Γi + γi|
2) 1

4

‖x‖
1
2 ‖y‖

1
2 .

The proof follows by (6.3) and by (5.10) applied forx andy. We omit the details.

7. I NTEGRAL I NEQUALITIES

Let (Ω, Σ, µ) be a measure space consisting of a setΩ, Σ aσ−algebra of parts andµ a count-
ably additive and positive measure onΣ with values inR∪{∞} . Let ρ ≥ 0 be aµ−measurable
function onΩ with

∫
Ω

ρ (s) dµ (s) = 1. Denote byL2
ρ (Ω, K) the Hilbert space of all real or

complex valued functions defined onΩ and2− ρ−integrable onΩ, i.e.,

(7.1)
∫

Ω

ρ (s) |f (s)|2 dµ (s) < ∞.

It is obvious that the following inner product

(7.2) 〈f, g〉ρ :=

∫
Ω

ρ (s) f (s) g (s)dµ (s) ,
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generates the norm

‖f‖ρ :=

(∫
Ω

ρ (s) |f (s)|2 dµ (s)

) 1
2

of L2
ρ (Ω, K) , and all the above results may be stated for integrals.

It is important to observe that, if

(7.3) Re
[
f (s) g (s)

]
≥ 0 for µ− a.e. s ∈ Ω,

then, obviously,

Re 〈f, g〉ρ = Re

[∫
Ω

ρ (s) f (s) g (s)dµ (s)

]
(7.4)

=

∫
Ω

ρ (s) Re
[
f (s) g (s)

]
dµ (s) ≥ 0.

The reverse is evidently not true in general.
Moreover, if the space is real, i.e.,K = R, then a sufficient condition for (7.4) to hold is:

(7.5) f (s) ≥ 0, g (s) ≥ 0 for µ− a.e. s ∈ Ω.

We provide now, by the use of certain results obtained in Section 2, some integral inequalities
that may be used in practical applications.

Proposition 7.1. Letf, g ∈ L2
ρ (Ω, K) andr > 0 with the property that

(7.6) |f (s)− g (s)| ≤ r for µ− a.e. s ∈ Ω.

Then we have the inequalities

0 ≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

(7.7)

−
∣∣∣∣∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣
≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

−
∣∣∣∣∫

Ω

ρ (s) Re
[
f (s) g (s)

]
dµ (s)

∣∣∣∣
≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

−
∫

Ω

ρ (s) Re
[
f (s) g (s)

]
dµ (s)

≤ 1

2
r2.

The constant1
2

is best possible in (7.7).

The proof follows by Theorem 2.1, and we omit the details.

Proposition 7.2. Letf, g ∈ L2
ρ (Ω, K) andγ, Γ ∈ K so thatΓ 6= −γ, and

(7.8) Re
[
(Γg (s)− f (s))

(
f (s)− γg (s)

)]
≥ 0, for µ− a.e. s ∈ Ω.

AJMAA, Vol. 1, No. 1, Art. 1, pp. 1-18, 2004 AJMAA

http://ajmaa.org


16 S.S. DRAGOMIR

Then we have the inequalities

0 ≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

(7.9)

−
∣∣∣∣∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣
≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

−
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|

∫
Ω

ρ (s) f (s) g (s)dµ (s)

]∣∣∣∣
≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

∫
Ω

ρ (s) f (s) g (s)dµ (s)

]
≤ 1

4
· |Γ− γ|2

|Γ + γ|

∫
Ω

ρ (s) |g (s)|2 dµ (s) .

The constant1
4

is best possible.

Remark 7.1. If the space is real and we assume, forM > m > 0, that

(7.10) mg (s) ≤ f (s) ≤ Mg (s) for µ− a.e. s ∈ Ω,

then by (7.9) we deduce the inequality:

0 ≤
[∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

] 1
2

(7.11)

−
∣∣∣∣∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣
≤ 1

4
· (M −m)2

M + m

∫
Ω

ρ (s) |g (s)|2 dµ (s) .

The constant1
4

is best possible.

The following reverse of the triangle inequality for integrals holds.

Proposition 7.3. Assume that the functionsf, g ∈ L2
ρ (Ω, K) satisfy (7.10). Then we have the

inequality

0 ≤
(∫

Ω

ρ (s) |f (: ifexpand(”s)|2 dµ (s)

)1/2

+

(∫
Ω

ρ (s) |g (s)|2 dµ (s)

)1/2

(7.12)

−
(∫

Ω

ρ (s) |f (s) + g (s)|2 dµ (s)

)1/2

≤
√

2

2
· (M −m)√

M + m

(∫
Ω

ρ (s) |g (s)|2 dµ (s)

)1/2

.

The proof follows by Proposition 3.2.
By making use of Theorem 4.3, we may also state
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Proposition 7.4. Let f, g, h ∈ L2
ρ (Ω, K) be so that

∫
Ω

ρ (s) |h (s)|2 dµ (s) = 1. Suppose also
thata, A, b, B ∈ K with A 6= −a, B 6= −b and

Re
[
(Ah (s)− f (s))

(
f (s)− ah (s)

)]
≥ 0,

Re
[
(Bh (s)− g (s))

(
g (s)− bh (s)

)]
≥ 0

for µ− a.e. s ∈ Ω. Then we have the inequality∣∣∣∣∫
Ω

ρ (s) f (s) g (s)dµ (s)−
∫

Ω

ρ (s) f (s) h (s)dµ (s)

∫
Ω

ρ (s) h (s) g (s)dµ (s)

∣∣∣∣
≤ 1

4
· |A− a| |B − b|√

|A + a| |B + b|

×

√(∫
Ω

ρ (s) |f (s)|2 dµ (s)

)1/2

+

∣∣∣∣∫
Ω

ρ (s) f (s) h (s)dµ (s)

∣∣∣∣
×

√(∫
Ω

ρ (s) |g (s)|2 dµ (s)

)1/2

+

∣∣∣∣∫
Ω

ρ (s) g (s) h (s)dµ (s)

∣∣∣∣.
The constant1

4
is best possible.

Remark 7.2. All the other inequalities in Sections 3 – 6 may be used in a similar manner to
obtain the corresponding integral inequalities. We omit the details.
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