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ABSTRACT. In this paper we introduce an alternative definition of the fractional derivatives and
also a characteristic class of so called ideal functions, which admit arbitrary fractional derivatives
(also integrals). Further some ideal functions are found, which lead to representations of the
Bernoulli and Euler numbersBk andEk for any real numberk, via fractional derivatives of
some functions atx = 0.
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1. SOME NEW THEORETICAL RESULTS FOR THE FRACTIONAL DERIVATIVES

Several authors have considered and introduced different methods for calculating of frac-
tional derivatives of a given function (see [1]). An old idea for more than 170 years is to use
power series and to apply the fractional derivatives to each summand. Later this method was
considered by J. Liouville and B. Riemann. Recently it was developed [2, 3], such that

(1.1)
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wherex! = Γ(x + 1). Notice that(−1)! = (−2)! = · · · = ±∞. The summands fori ∈ Z−

play important role, although these summands are equal to zero. Indeed, assuming that the
coefficientsaj (j ≥ 0) are known, then only for special choices of the coefficientsa−j (j >
0) can yield to satisfactory results, called "natural" representation. For example, the natural
representations for the functionsex, sin x andcos x are the following:
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(1.3) sin x =
∞∑

i=−∞

(−1)i x2i+1
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,

(1.4) cos x =
∞∑
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(−1)i x2i

(2i)!
,

such that we obtained [2, 3] from them the usual classical fractional derivatives. In this paper
we consider the "natural" representations for the functionsx cot x, xex

ex−1
, x

sin x
and some other

functions. In this section we represent an improved version of this idea, by distinguishing a
class of analytical functions which have "natural" representations fori ∈ Z.

Now let us assume that an analytical functionf can be written in the form

(1.5) f(x) =
∞∑

i=−∞

ai
xα+i

(α + i)!
, (x 6= 0 if α /∈ Z),

which means that the sum of the right side, including the summation of divergent series, is just
f(x), for x 6= 0. The summation of any divergent series in this paper is assumed to be done
via analytical continuation of functions, which is considered in more details in [2]. The formal
calculation of the(α + i)-th derivative atx = 0 yields thatf (α+i)(0) = ai. Hence

(1.6) f(x) =
∞∑

i=−∞

f (α+i)(0)
xα+i

(α + i)!
,

whereα is an arbitrary real number. More generally

(1.7) f(x) =
∞∑

i=−∞

f (α+i)(x0)
(x− x0)

α+i

(α + i)!
, (x 6= x0 if α /∈ Z),

which generalizes the ordinary Taylor’s series.
On the other hand, iff admits fractional derivatives (integrations are also included) of arbi-

trary order, letg = f (α). If we write g in the following form

g(x) =
∞∑

i=−∞

ai
xi

i!
,
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then

f(x) = g(−α)(x) =
∞∑

i=−∞

ai
xα+i

(α + i)!

andf can be written in the required form. Namely, we proved the following theorem.

Theorem 1.1.If f admits fractional derivatives of arbitrary order, thenf satisfies the equalities
(1.6) and (1.7).

The previous discussion naturally yields to the following definition of fractional derivatives.
For the sake of simplicity we can suppose first that the considered functions are real, and the
summing of divergent series is done via analytical continuation of real functions.

Definition 1.1. Assume that a real analytical mappingf can be written in the following form

(1.8) f(x) =
∞∑

i=−∞

Ci
(x− x0)

α+i

(α + i)!
, (x0 ∈ R, x > x0),

for eachα ∈ R. Thenf together with the above representations is called ideal function and we
definef (α+i)(x0) := Ci, (i ∈ Z).

The functionsex, sin x andcos x are ideal and the corresponding representations for arbitrary
α are the following (see [2, 3])

ex =
∞∑

i=−∞

xα+i

(α + i)!
,

sin x =
∞∑

i=−∞

sin
(α + i)π

2
· xα+i

(α + i)!
,

cos x =
∞∑

i=−∞

cos
(α + i)π

2
· xα+i

(α + i)!
.

Using the new definition we come to anatural representationof any ideal function. Namely,

let f be such an analytical function and let in Taylor series it is written as
∞∑
i=0

ai
xi

i!
. The problem

is how to find the coefficientsa−1, a−2, . . . form the "zero part" off . Let g = f (−α) and letbi,
(i ∈ Z) andα /∈ Z are such that

g(x) =
∞∑

i=−∞

bi
xα+i

(α + i)!
.

Then

f(x) = g(α)(x) =
∞∑

i=−∞

bi
xi

i!
.

Obviouslybi = ai for i ∈ N0 = N ∪ {0} and we defineai = bi for i ∈ Z−. Hencef is written

in the required "natural representation"
∞∑

i=−∞
ai

xi

i!
. Moreover, the coefficientsa−1, a−2, . . . do

not depend on the choice ofα. Notice that if we know the natural representation of an ideal
functionf , then all fractional derivatives off are known. So the main problem in examining
of an ideal function is to find its natural representation. Notice that natural representation may
exists also if the function is not ideal. In that case we can use it for calculating the fractional
derivatives according to the old definition of [2, 3].
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Looking at this theory axiomatically, we have a classI (ideal functions) of analytical func-
tionsf , such that

(i) for eachf ∈ I and eachα ∈ (R \ Z) there exists the expansion

(1.9) f(x) =
∞∑

i=−∞

Ci
(x− x0)

α+i

(α + i)!
, (x > x0)

which has the same meaning discussed for (1.5), such thatx should be replaced also byx− x0,
and where we defineCi = f (α+i)(x0); if α ∈ Z, we choose the natural representation

(1.10) f(x) =
∞∑

i=−∞

Ci
(x− x0)

i

i!
.

(ii) If f ∈ I, then

(1.11) f (β) :=
∞∑

i=−∞

Ci
(x− x0)

α+i−β

(α + i− β)!
∈ I, (β ∈ R),

wheref is given by (1.9).
To the end of this section we give some properties of the ideal functions.
1. The set of ideal functionsI can be separated in a quotient setI/ ∼, where the equivalence

relation∼ is defined byf ∼ g iff there existsα ∈ R, such thatf (α) = g. Each such class

determines unique sequenceai, (i ∈ Z), such that
∞∑

i=−∞
ai

xi

i!
∈ I. Namely, then

∞∑
i=−∞

ai
xα+i

(α + i)!
∼

∞∑
i=−∞

ai
xi

i!
,

for arbitraryα ∈ R. Moreover, from the definition of ideal functions it follows thatxnf(x) is
an ideal function iff(x) is an ideal function wheren is a positive integer.

2. I is a nonempty set becauseex, sin x, cos x ∈ I. The zero function is also an ideal
function. The set of ideal functions is a vector space, such that iff, g ∈ I, thenλf, f + g ∈ I.
Notice that alsof(λx) ∈ I if λ 6= 0 andf(x + λ) ∈ I.

3. If P is a polynomial,P (x)
n∑

k=−∞
ak

xk

k!
, with known coefficientsa0, a1, · · · , an, thena−1,

a−2, a−3,· · · are not uniquely determined such thatP is an ideal function. In the remark of
Section 2 is constructed a wide class of polynomialsP which are ideal functions.

We considered until now only analytical functions of real argument. Notice that the analytical
continuation on the interval(x0,∞) is unique, i.e. it does not yield to multivalued functions.
Now we can expand the previous theory for functions of complex arguments. Letf be a com-
plex ideal function. It means thatf is an ideal function on an interval(x0, x1) of the real
numbers. Simply, using analytical continuation we can expand it in the complex domain. No-
tice that an ideal function means a function together with its expansions for eachα ∈ R. Then
its integralf (−1) is uniquely determined function, because the constant of integration is just the
coefficienta−1 from the "zero part". Also the other integer integrals are uniquely determined.

Notice that the decomposition into the generalized Taylor’s formula (1.6) is a rigorous con-
dition, which any viable method of fractional derivatives should satisfy.

2. REPRESENTATIONS AND NATURAL REPRESENTATIONS OF SOME IDEAL FUNCTIONS

In this section we consider some functions whose coefficients of the Taylor series contain
Bernoulli and Euler numbers.
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Theorem 2.1.The functions x
ex−1

and xex

ex−1
are ideal functions, such that

(i)

(2.1)
x

ex − 1
=

∞∑
i=−∞

(−1)i+αB∗α+i

xα+i

(α + i)!
, α ∈ R,

(ii)

(2.2)
xex

ex − 1
=

∞∑
i=−∞

B∗α+i

xα+i

(α + i)!
, α ∈ R.

Proof.
(i) Using the identity (e2.3) in [4] we obtain

∞∑
i=−∞

(−1)i+αB∗α+i

xα+i

(α + i)!
=

∞∑
i=−∞

(−1)i+α
[ ∞∑

n=1

−(α + i)nα+i−1
] xα+i

(α + i)!

= x

∞∑
n=1

∞∑
i=−∞

(−nx)α+i−1

(α + i− 1)!
= x

∞∑
n=1

e−nx = x
e−x

1− e−x
=

x

ex − 1
.

(ii) xex

ex−1
is an ideal function becausexex

ex−1
= f(−x), wheref(x) = x

ex−1
is an ideal func-

tion.
From (2.2) it follows that for eachα ∈ R, dα

dxα

(
xex

ex−1

)∣∣∣
x=0

= B∗α.

Remark.In Theorem 2.1 were obtained the natural representations forx
ex−1

and xex

ex−1
:

x

ex − 1
=

∞∑
i=−∞

(−1)iB∗i
xi

i!
,

xex

ex − 1
=

∞∑
i=−∞

B∗i
xi

i!
.

Both functions xex

ex−1
and x

ex−1
with the corresponding representations are ideal and hence their

difference

(2.3) h(x) =
xex

ex − 1
− x

ex − 1
= x + 2B∗−1

x−1

(−1)!
+ 2B∗−3

x−3

(−3)!
+ 2B∗−5

x−5

(−5)!
+ · · ·

is also an ideal function.
This functionh generates a family of ideal polynomialsP, using the following generator

transformations:
(i) if P ∈ P, thenP (α) ∈ P for eachα ∈ Z,

(ii) if P ∈ P, thenxnP ∈ P for each nonnegative integern,
(iii) if P, Q ∈ P, thenλP + µQ ∈ P for each scalarsλ, µ.

The proof of the following theorem is analogous to the Theorem 2.1.

Theorem 2.2.The functionsx · cot x, x
sin x

, xex

ex+1
, andx tanh x are ideal functions, such that

(i)

(2.4) x · cot x =
∞∑

j=−∞

2α+j cos
(α + j)π

2
·B∗α+j

xα+j

(α + j)!
, α ∈ R,

(ii)

(2.5)
x

sin x
=

∞∑
i=−∞

B∗α+i(2− 2α+i) cos
(α + i)π

2
· xα+i

(α + i)!
, α ∈ R,
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(iii)

(2.6)
xex

ex + 1
=

∞∑
i=−∞

(2α+i − 1)B∗α+i

xα+i

(α + i)!
, α ∈ R,

(iv)

(2.7) x tanh x =
∞∑

i=−∞

(2α+i − 1)B∗α+i · 2α+i xα+i

(α + i)!
, α ∈ R.

From (2.4-2.7) it just follows that for eachα ∈ R,

(2.8)
dα

dxα
(x · cot x)

∣∣∣
x=0

= 2α cos
απ

2
·B∗α,

(2.9)
dα

dxα

( x

sin x

)∣∣∣
x=0

= (2− 2α) cos
απ

2
·B∗α.

(2.10)
dα

dxα

( xex

ex + 1

)∣∣∣
x=0

= (2α − 1)B∗α.

(2.11)
dα

dxα
(x tanh x)

∣∣∣
x=0

= (2α − 1)B∗α · 2α.

Theorem 2.3.The functions 1
cos x

and 1
cosh x

are ideal functions, such that

(2.12)
1

cos x
=

∞∑
j=−∞

Eα+j
xα+j

(α + j)!
, α ∈ R,

(2.13)
1

cosh x
=

∞∑
i=−∞

(−1)α+iEα+i

(α + i)!
xα+i.

Proof. Using the formulaEα = 2 cos απ
2

∑∞
n=1 nα · cos(n− 1)π

2
(see [4], sec. 3) we obtain

∞∑
j=−∞

Eα+j
xα+j

(α + j)!

=
∞∑

j=−∞

2 cos
(α + j)π

2

( ∞∑
n=1

nα+j · cos(n− 1)
π

2

) xα+j

(α + j)!

=
∞∑

n=1

cos(n− 1)
π

2

∞∑
j=−∞

2 cos
(α + j)π

2
nα+j · xα+j

(α + j)!

=
∞∑

n=1

cos(n− 1)
π

2

∞∑
j=−∞

[
ei

(α+j)π
2 + e−i

(α+j)π
2

]
nα+j · xα+j

(α + j)!

=
∞∑

n=1

cos(n− 1)
π

2

∞∑
j=−∞

[(eiπ/2 · nx)α+j

(α + j)!
+

(e−iπ/2 · nx)α+j

(α + j)!

]
=

∞∑
n=1

cos(n− 1)
π

2
(einx + e−inx) = 2

∞∑
n=1

cos(n− 1)
π

2
cos nx =

1

cos x
.

From (2.12) it just follows that for eachα ∈ R, Eα = dα

dxα

(
1

cos x

)∣∣∣
x=0

.
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The function 1
cosh x

is an ideal function, because1
cosh x

= f(ix), wheref(x) = 1
cos x

, and
moreover (2.13) is satisfied.
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