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ABSTRACT. In this paper we introduce an alternative definition of the fractional derivatives and
also a characteristic class of so called ideal functions, which admit arbitrary fractional derivatives
(also integrals). Further some ideal functions are found, which lead to representations of the

Bernoulli and Euler number®;, and E}, for any real numbek:, via fractional derivatives of
some functions at = 0.
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2 KOSTADIN TRENCEVSKI AND ZIVORAD TOMOVSKI

1. SOME NEW THEORETICAL RESULTS FOR THE FRACTIONAL DERIVATIVES

Several authors have considered and introduced different methods for calculating of frac-
tional derivatives of a given function (se€ [1]). An old idea for more than 170 years is to use
power series and to apply the fractional derivatives to each summand. Later this method was
considered by J. Liouville and B. Riemann. Recently it was developéd [2, 3], such that

0 2 (a) o0 ri—a
(1) (_Z}o“ i) - i_zooal (i—a)
wherez! = T'(z + 1). Notice that(—1)! = (=2)! = --- = +oo. The summands for € Z~
play important role, although these summands are equal to zero. Indeed, assuming that the
coefficientsa; (j > 0) are known, then only for special choices of the coefficients (j >
0) can yield to satisfactory results, called "natural" representation. For example, the natural
representations for the function®, sin = andcos x are the following:

r OO xi
(1.2) e” = Z =
. o0 2t
(13) ST = Z_z_:oo(—]_) m,
o0 2
(1.4) cosT = Z':z:m(—l) 2

such that we obtained![2] 3] from them the usual classical fractional derivatives In this paper
we consider the "natural” representations for the functioas x, 6§€f1, =— and some other
functions. In this section we represent an improved version of this idea, by distinguishing a
class of analytical functions which have "natural” representationsd€or .

Now let us assume that an analytical functibonan be written in the form

o Oé+1

T
15 = i)
(1.5) f(@) Zooa ]
which means that the sum of the right side, including the summation of divergent series, is just
f(z), for z # 0. The summation of any divergent series in this paper is assumed to be done
via analytical continuation of functions, which is considered in more details in [2]. The formal
calculation of thg« + i)-th derivative atr = 0 yields thatf“*9(0) = a;. Hence

a+1

(x#0 if a¢ 2),

1=—

1.6 ()
(1.6) Z;f T
where« is an arbitrary real number. More generally
- a+1
(L.7) Z Fle( w, (e 420 if ag2),

(a+1)!

which generalizes the ordinary Taylor’s series.
On the other hand, if admits fractional derivatives (integrations are also included) of arbi-
trary order, lety = (). If we write ¢ in the following form

g<x) - Z ai%?
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then

o0 CM+’L

fla) = g"0@) = 37 ai

= (a+i)
and f can be written in the required form. Namely, we proved the following theorem.

Theorem 1.1.If f admits fractional derivatives of arbitrary order, thgrsatisfies the equalities
(L.8) and [L.]).

The previous discussion naturally yields to the following definition of fractional derivatives.
For the sake of simplicity we can suppose first that the considered functions are real, and the
summing of divergent series is done via analytical continuation of real functions.

Definition 1.1. Assume that a real analytical mappifigan be written in the following form

> x — xo)t
(18) f(I) = Z CI%, (ZEQ - R, x > ZL’())7

for eacha € R. Thenf together with the above representations is called ideal function and we
define @+ (xy) := C, (i € Z).

The functions:”, sin x andcos x are ideal and the corresponding representations for arbitrary
« are the following (see [2,3])
e xa+i
e’ =  ——
l_z_;o (a+2)l

= . (atim ozt
SINT = Z S1n 9 : (O[+Z)"

i=—00

a+1

R (a4 =z
cosx—i;ocos T

Using the new definition we come tanatural representatiof any ideal function. Namely,
let f be such an analytical function and let in Taylor series it is writteEa@f—f. The problem
=0

is how to find the coefficients_,, a_,, ... form the "zero part" off. Letg = f(=* and letb;,
(1 € Z) anda ¢ Z are such that

e xa—l—i
g(x) = ZZ:OO bi—(a )
Then '
_ @) — z

Obviouslyb; = a; fori € Ny = N U {0} and we define,; = b; fori € Z~. Hencef is written

in the required "natural representationy aﬂi—f. Moreover, the coefficients_,,a_», ... do

not depend on the choice af Notice that if we know the natural representation of an ideal
function f, then all fractional derivatives of are known. So the main problem in examining

of an ideal function is to find its natural representation. Notice that natural representation may
exists also if the function is not ideal. In that case we can use it for calculating the fractional
derivatives according to the old definition of [2, 3].
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Looking at this theory axiomatically, we have a clgs@deal functions) of analytical func-
tions f, such that
(i) for eachf € 7 and eachy € (R \ Z) there exists the expansion

oz—l—z

fﬂ — X
(2.9) l_z:oo C; a +0Z (x > x0)

which has the same meaning discussed foi (1.5), such ttauld be replaced also by— xz,
and where we defin€; = f(*+9)(z); if a € Z, we choose the natural representation

— . (z—x0)
(1.10) fla) = Z i
(i) If f € Z,then
_ a-H B
(1.11) Z C, xaff Grel Bem,

wheref is given by [1.9).
To the end of this section we give some properties of the ideal functions.
1. The set of ideal functioris can be separated in a quotientB¢t~, where the equivalence

relation~ is defined byf ~ g iff there existsa € R, such thatf® = g. Each such class
determines unique sequenge(i € Z), such that > aif.—: € Z. Namely, then

> xa-{—i 0 CL’i
Z,_Zm“@(aﬂ')! ~ i_zooam ’
for arbitrarya € R. Moreover, from the definition of ideal functions it follows theitf (x) is
an ideal function iff (z) is an ideal function where is a positive integer.

2. T is a nonempty set becaus®g, sinx,cosx € Z. The zero function is also an ideal
function. The set of ideal functions is a vector space, such thfayite Z, then\f, f + g € 7.
Notice that alsof (Az) € Zif A # 0 andf(x + ) eT.

3. If P is a polynomial,P(x) Z ay k,,wnh known coefficients, a4, - - -, a,, thena_y,
k=—oc0

a_s, a_sz, -- are not uniquely determined such thatis an ideal function. In the remark of
Sectior] 2 is constructed a wide class of polynonfRalshich are ideal functions.

We considered until now only analytical functions of real argument. Notice that the analytical
continuation on the intervdle, oo) is unique, i.e. it does not yield to multivalued functions.
Now we can expand the previous theory for functions of complex argumentg. theeta com-
plex ideal function. It means that is an ideal function on an intervak,, x;) of the real
numbers. Simply, using analytical continuation we can expand it in the complex domain. No-
tice that an ideal function means a function together with its expansions foreacR. Then
its integral f(-1) is uniquely determined function, because the constant of integration is just the
coefficienta_; from the "zero part". Also the other integer integrals are uniquely determined.

Notice that the decomposition into the generalized Taylor’s fornjula (1.6) is a rigorous con-
dition, which any viable method of fractional derivatives should satisfy.

2. REPRESENTATIONS AND NATURAL REPRESENTATIONS OF SOME IDEAL FUNCTIONS

In this section we consider some functions whose coefficients of the Taylor series contain
Bernoulli and Euler numbers.
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Theorem 2.1. The functlons— and ze” T are ideal functions, such that

(i)
(2.1) T i (—1)*ep: L eR
er—1 T+ i) ’
(i)
+
2.2 B’ )
(2.2) _ZOO S a€R
Proof.
(i) Using the identity (e2.3) ir_|4] we obtain
i (1) i )y [i + iyt =
= Hla+i) A o (a+in (o +1i)!
B S (—nxaﬂl > o _ v
_x;ZZ (a—|—1—1 g B 1—696_6“?—1'
(ii (—2), wheref(z) = i
tion.
From ) it follows that for each € R, < T (;ﬂ) = B’.
=0
|
x > R xe® > !t
er —1 z:z_:oo( ) N er —1 z:z_:oo gl
Both functionse‘”‘f
difference
re® T —1 -3 -5
2.3 h(x) = — = 2B* 2B* 2B*
@3) b)) =Gy e T Ty PR I s I

is also an ideal function.
This functionh generates a family of ideal polynomial, using the following generator
transformations:
(i) if P € P, thenP ¢ P for eacha € Z,
(i) if P € P, thenz"P € P for each nonnegative integer
(i) if P,Q € P, then\P + uQ € P for each scalars, (.

The proof of the following theorem is analogous to the Thedrein 2.1.

Theorem 2.2. The functionsr - cot z, andz tanh z are ideal functions, such that

sinx’ ez—&-l !

(i)
00 ‘ +])7T anrj
2.4 ~cotr = 29t cos ot Bf € R,
(2.4) x X jZOO 2 i (a + ) “
(i)
] ; a+i
(2.5) Z B}, (2 —2%"") cos (a —; O a € R,

sinx (a+14)!

1=—00
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(ii)
xe” = , ot
2. — 2a+z —1 B* o
e e S L)
(iv)
> a-+i
o a+1 * o+ x
(27) rtanhz = ZZOO(Q — 1)Ba+i -2 m, a € R.
From (2.4F2.7) it just follows that for each € R,
(2.8) @(I - cot ) T 2% cos o B,
(2.9) da( v ) — (2 2%)cos .
' dro \sinx/ le=0 BTy P
(2.10) d—a< re” ) —(2° - 1)B;
' dro\er + 1/ lz=0 «
da (e * (0%
(2.11) %(x tanh x) T (2* -1)B; - 2%
Theorem 2.3. The functions_— and —— are ideal functions, such that
1 = xotd
2.12 - Ea YR )
(2.12) cos T Z a4+ H)! ach
1 oo (_1>a+iEOé+i )
2.13 = gt
(2.13) cosh Z (o +9)! v

Proof. Using the formulakl, = 2cos <& 3" | n® - cos(n — 1)% (see[4], sec. 3) we obtain

0o l‘a+j
E. . :
]ZOO o (Oé + .])‘
(o4 )T [ N gocti
= 2 < a+j 1 _)
J:ZOO cos ;n cos(n )2 1))
00 T 00 (a —+ ])7‘( + xoz—i-]
— — 1= 9 atj
; cos(n — 1) j;oo cos 5 a7
_ i cos(n — 1)? i [eiw " e_i%} i ot
n=1 2 j=—00 (a + j)'
o 00 in/2 a+j —ir/2 a+j
= Zcos(n - 1)E Z [(e nw) N (e nw) }
= Dt = D6 ) <23 oot~ o = L

~ dx> \ cosz

From (2.12) it just follows that for each € R, E, = ﬁ( 1 )‘ .
=0
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The function—— is an ideal function, because’— = f(iz), wheref(z) = _-, and

cosh x coszx’

moreover|[(2.13) is satisfieds
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