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2 RAJAT SINGH AND ROMESH KUMAR

1. I NTRODUCTION AND PRELIMINARIES

In the paper of Li and Yorke [13], the concept of “Chaos" was first introduced into mathemat-
ical literature in the context of interval map and became popular. Godefroy and Shapiro [10]
used Devaney’s notion of chaos and were the first to introduce chaos into linear dynamics. Over
the last two decades various authors have explored chaotic operators intensively. An operator
on a Frechet space is hypercyclic and has a dense set of periodic points, then it is referred to be
chaotic. Hypercyclic and chaotic operators are covered in depth in the books [1], [2], [10], [11]
and [17].
Some other essential concepts of chaos are Li-Yorke chaos, distributional chaos and specifica-
tion property etc. see ([5], [6] and [13]). Several authors have purposed various variations of
these concepts. We will focus on Li-Yorke chaos and some of its variations. There are several
intriguing Li-Yorke chaotic results for operators on Banach space in [6]. N. C. Bernardes Jr et
al. extended the major results of [6] about Li-Yorke chaos to the Frechet space setting and fur-
ther for operators onLp space. The purpose of this note is to look into the concept of Li-Yorke
chaos and some of its variations for Lorentz spaces framework. For more details on Lorentz
spaces one can see ([3], [14]) and references therein. For more details on Li-Yorke we refer to
[5], [6] and [13] and reference therein.
The paper is structured as follows: Section 1 is introductory and we cite certain definitions and
results which will be used throughout this paper. In Section 2 and Section 3, we explore the Li-
Yorke composition operators and discuss expansive composition operators on Lorentz spaces
respectively.

We assume thatX = (X, A, µ) be a measure space withµ(X) 6= 0. Let τ : X → X be a
measurable non-singular transformation(i.e., µ(τ−1(A)) = 0 for eachA ∈ A wheneverµ(A) =
0).
We define the distribution functionµg of g, for λ ≥ 0 as

µg = µ ({x ∈ X : |g(x)| > λ}) .

The non-increasing rearrangement ofg is

g∗(t) = inf{λ > 0 : µg(λ) ≤ t} = sup{λ > 0 : µg(λ) > t}.
The norm of the measurable functiong is defined as

||g||pq =


{

q
p

∫∞
0

(t
1
p g∗∗(t))q dt

t

} 1
q
, if 1 < p < ∞, 1 ≤ q < ∞

sup
t>0

t
1
p g∗∗(t), if 1 < p ≤ ∞, q = ∞;

where1 < p ≤ ∞, 1 ≤ q ≤ ∞.
The Lorentz spaceLpq(X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ are defined as

Lpq(X) = {g ∈ L(µ) : ||g||pq < ∞}.
Note that the Lorentz spaces are the Banach spaces for1 ≤ q ≤ p < ∞, or p = q = ∞ and by
using [3, Page 251]

||χA||qpq =
q

p

∫ ∞

0

(t
1
p χ∗∗A (t))q dt

t

= p
′
(µ(A))

q
p

where1
p

+ 1
p′

= 1.
We now defineCτ as the the linear transformation onLpq(X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞
into the linear space of all complex valued measurable function on measure space(X, A, µ) by
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L I-YORKE AND EXPANSIVITY FOR COMPOSITION OPERATORS ONLORENTZ SPACE 3

Cτg = g ◦ τ , ∀g ∈ Lpq(X). Here the non-singularity ofτ ensures that the operator is well
defined in this case. IfCτ maps theLpq(X) into itself, then we call it composition operator on
Lorentz space induced byτ . Let θ be a complex valued measurable function defined onX. We
define the mappingMθ : g → θ.g, a multiplication operator induced byθ. For composition
operator on different function spaces see [17] and [18] and reference therein.

First of all we recall the basic definitions which will be used for further research.

Definition 1.1. [4, Page 1] A continuous mapg : (M, d) → (M, d) is said to be Li-Yorke
chaotic if there exists an uncountable scrambled setS ⊂ M such that each pair of distinct
pointsp, q ∈ S is a Li-Yorke pair forg i.e.,

lim
n→∞

inf d(gn(p), gn(q)) = 0 and lim
n→∞

sup d(gn(p), gn(q)) > 0.

where(M, d) is a metric space.

We say thatg is densely (generically) Li-Yorke chaotic wheneverS can be chosen to be dense
(residual) inM .

Definition 1.2. [2, Page 47]

(a) If T is a linear operator and a vectorz ∈ X, then we say thatz is an irregular vector for
T if

lim
n→∞

inf ||T nz|| = 0 and lim
n→∞

sup ||T nz|| = ∞.

(b) If T is a linear operator and a vectorz ∈ X, then we say thatz is semi-irregular vector
for T if

lim
n→∞

inf ||T nz|| = 0 and lim
n→∞

sup ||T nz|| > 0.

Following result gives the equivalent conditions for any continuous linear operatorT on any
Banach space to be Li-Yorke.

Theorem 1.1. [6, Theorem 9]If T ∈ L(X), then the following are equivalent

(i) T is Li-Yorke chaotic.
(ii) T admits a semi-irregular vector.

(iii) T admits irregular vector.

Definition 1.3. [15, Page 3] LetT ∈ L(X) be linear operator. Then

(a) T is said to be (positively) expansive if for allx ∈ SX there existsn ∈ Z(n ∈ N) such
that||T nx|| ≥ 2, whereSX = {x ∈ X : ||x|| = 1}.

(b) T is (positively) uniformly expansive if there existsn ∈ N such that for allx ∈ SX ,
||T nx|| ≥ 2 or ||T−nx|| ≥ 2 (for all x ∈ SX , ||T nx|| ≥ 2).

Theorem 1.2. [8, Proposition 19]LetX be a Banach space andT be operator onX. Then
(a) sup

n∈N
||T nx|| = ∞ if and only ifT is positively expansive, for each0 6= x ∈ X.

(b) lim
n∈∞

||T nx|| = ∞ uniformly onSX if and only ifT is uniformly positively expansive.

If T is invertible, then
(c) sup

n∈Z
||T nx|| = ∞ if and only ifT is expansive, for each0 6= x ∈ X.

(d) SX = A ∪ B where lim
n∈∞

||T nx|| = ∞ uniformly on A andlim
n∈∞

||T−nx|| = ∞ uniformly on

B if and only ifT is uniformly expansive.
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4 RAJAT SINGH AND ROMESH KUMAR

2. L I -YORKE COMPOSITION OPERATOR ON L ORENTZ SPACE

In this section, we have proved a necessary and sufficient condition for composition operator
to be Li-Yorke.

Theorem 2.1.Let(X, A, µ) be a measure space andτ : X → X be a non-singular measurable
transformation. Then composition operatorCτ on Lpq(X) 1 ≤ p < ∞, 1 ≤ q ≤ ∞ is Li-
Yorke chaotic iff there is an increasing sequence of positive integers and non-empty family of
measurable setsAi of finite positive measureµ such that

(i) lim
j→∞

µ(τ−αj(Ai)) = 0, ∀ i ∈ N.

(ii) sup
{

µ◦τ−n(Ai)
µ(Ai)

: i ∈ I, n ∈ N
}

= ∞.

Proof. SupposeCτ is Li-Yorke chaotic andg ∈ Lpq(X) be an irregular vector forCτ . Now,
let the measurable setAi = {x ∈ X : 2i−1 < |g(x)| < 2i} andI = {i ∈ Z : µ(Ai) > 0}.
Then,0 < µ(Ai) < ∞. As g be an irregular vector forCτ , so there is an increasing sequence of
positive number{αj}j∈N such thatlim

j→∞
||Cταj g||pq = 0. This implies that (i) holds.

Now, suppose that the condition (ii) does not holds. Then there is a positive constantM < ∞
such that

µ ◦ τ−n(Ai) ≤ Mµ(Ai), wheneveri ∈ Z, n ∈ N.

Thus, for eachn ∈ N, t ≥ 0

(g ◦ τn)(t) =
∑
n∈N

inf{s > 0 : µ{x ∈ X : |g(τn(x))| > s} ≤ t}

=
∑
n∈N

inf{s > 0 : µτ−n{x ∈ X : |g(x)| > s} ≤ t}

≤
∑
n∈N

inf{s > 0 : Mµ{x ∈ X : |g(x)| > s} ≤ t}

≤
∑
n∈N

inf

{
2i−1 > 0 : µ{x ∈ X : |g(x)| > 2i−1} ≤ t

M

}
≤

∑
n∈N

g∗
(

t

M

)
.

Consequently we get

(g ◦ τn)∗∗(t) ≤
∑
n∈N

g∗∗
(

t

M

)
.

Thus forq 6= ∞, we have

||Cτng||pq =

[
q

p

∫ ∞

0

(t
1
p (Cτng)∗∗(t))q dt

t

] 1
q

≤
∑
n∈N

[
q

p

∫ ∞

0

(t
1
p g∗∗

(
t

M

)
)q dt

t

] 1
q

=
∑
n∈N

[
q

p

∫ ∞

0

(M
1
p t

1
p g∗∗(t))q dt

t

] 1
q

= M
1
p ||g||pq.
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Also for q = ∞.

||Cτng||p∞ = sup
0<t<∞

t
1
p (Cτng)∗∗(t)

≤ sup
0<t<∞

t
1
p (g)∗∗

(
t

M

)
≤ M

1
p ||g||p∞.

i.e.,Cτ -orbit of g is bounded, which is contradiction to the fact thatCτ -orbit of g is unbounded.
Conversely, Suppose condition (i) and (ii) holds and letY = {χAi

: i ∈ I} be a closed linear
span inLpq(X). Then setR1 of all vectorsg in Y , whereCτ -orbit has sub-sequence converging
to zero is residual inY because of condition (i).
Now, for i ∈ I, let gi = 1

(p′)
1
p (µ(Ai))

1
p
.χAi

∈ Y. Then,

||gi|| = 1 and||Cτngi||pq =
µ(τ−n(Ai))

µ(Ai)
.

Thus, by conditions (ii),sup
n∈N

||Cτn|Y || = ∞ and so by using the Banach Steinhaus theorem, the

setR2 of all vectorsg in Y whoseCτ -orbit is unbounded is residual inY . Also, asg ∈ R1 ∩R2

is an irregular vector forCτ , we conclude thatCτ is Li-Yorke chaotic.

Corollary 2.2. If τ is injective, then composition operatorCτ is Li-Yorke chaotic if there exists
a measurable setA of finite positiveµ-measure such that

(a) lim
n→∞

inf µ(τ−n(A)) = 0,

(b) sup{ µ(τn(A))
µ(τm(A))

: n ∈ Z, m ∈ I, n < m} = ∞.

Remark 2.1. If τ is not injective in above Corollary 2.2, thenCτ need not Li-Yorke chaotic.
Here is an example:

Example 2.1. Let us considerA = P (X) andX = (Z × {0}) ∪ (N × N). The bimeasurable
mapτ : X → X be

τ(i, 0) = (i + 2, 0) andτ(n, j) = (n, j − 1) i ∈ Z andn, j ∈ N.

The measureµ : A → [0,∞) be defined by

µ({(i, 0)}) =
1

3|i|
andµ({(n, j)}) =

{
1

3n−j , 1 ≤ j < n
1, j ≥ n

If A = {(0, 0)}, then clearly conditions of Corollary 2.2 are satisfies. But however, ifA ∈ A is
non-empty and satisfies condition (i) of Theorem 2.1 thenAi ⊂ {(k, 0) : k ≤ 0} and so

sup
n∈N

µ(τ−n(Ai))

µ(Ai)
=

1

9
.

Thus, by Theorem 2.1,Cτ is not Li-Yorke Chaotic.

Theorem 2.3. If µ is finite andτ is injective, then the following are equivalent:

(i) Cτ is Li-Yorke chaotic.
(ii) there existsg ∈ Lpq(X) such thatg 6= 0 and lim

n→∞
inf ||Cτng||pq = 0.

(iii) there existA ∈ A such thatµ(A) > 0 and lim
n→∞

µ(τ−n(A)) = 0.

(iv) there existA ∈ A such thatµ(A) > 0 and lim
n→∞

µ(τn(A)) = 0.
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6 RAJAT SINGH AND ROMESH KUMAR

(v) there existA ∈ A such thatµ(A) > 0, lim
n→∞

inf µ(τ−n(A)) = 0 and lim
n→∞

inf µ(τn(A)) =

0.
(vi) there existA ∈ A such thatµ(A) > 0, lim

n→∞
inf µ(τ−n(A)) = 0 and

lim
n→∞

sup µ(τ−n(A)) > 0.

(vii) Cτ admits a characteristic function as a semi-irregular vector.

Proof. (i) =⇒ (ii) SinceCτ is Li-Yorke chaotic. Then it admits a semi-irregular vector
g ∈ Lpq(X). Thus, by definition of semi-irregularity,g 6= 0 and lim

n→∞
inf ||Cτng|| = 0.

(ii) =⇒ (iii) Supposeg satisfies the condition (ii). Then there existsc > 0 such that
A = {x ∈ X : |g(x)| > c}. Clearly,A is measurable andµ(A) > 0. Hence,

||Cτkg||ppq =
q

p

∫ ∞

0

(t
1
p (Cτnf)∗(t))q dt

t

≥ q

p

∫ µ(τ−n(A))

0

(t
1
p c)q dt

t

≥ cp q

p

∫ µ(τ−n(A))

0

(t
1
p )q dt

t

≥ cp.µ(τ−n(A)).

By using (ii), we see thatlim
k→∞

inf µ(τ−k(A)) = 0.

The implication(iii) =⇒ (iv), (iv) =⇒ (v) and(v) =⇒ (vi) will follows as in [9].
(vi) =⇒ (vii) By takingg = χA for someA ∈ A, we have

||Cτkg||qpq = ||CτkχA||qpq = ||χτ−k(A)||qpq = p
′
(µ(τ−k(A)))

q
p .

so, (vi) and (vii) are equivalent properties.
(vii) =⇒ (i) is obvious, because the existence of semi-irregular vector itself implies thatCτ

is Li-Yorke chaotic.

Theorem 2.4. Let (X, A, µ) be aσ-finite measure space andτ : X → X be a non-singular
measurable transformation. TheCτ is then topological transitive if and only ifCτ is densely
Li-Yorke chaotic.

Proof. Since in [6], it has been established that the continuous linear operator admits a dense set
of irregular vectors for separable Banach space if and only if it admits a dense set of irregular
vectors. By ([6, Remark 22]), if an operator is topologically transitive, it is densely Li-Yorke
chaotic. From this direct part follows because Lorentz space are separable.
Conversely, let us supposed that composition operatorCτ is densely Li-Yorke chaotic and let
ε ∈ (0, min{1, µ(X)}). Then there is an irregular vectorg for Cτ such that

||g − χX ||ppq < ε.

TakingA = {x ∈ X : |g(x)− 1| < ε}. Thenµ(X \ A) < ε.
Noteg and

∑
g(A)χA areµ-a.e. For eachk ∈ N, defineCτk by

Cτkg =
∑
k∈N

g(A)χτ−k(A).
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Then for eachλ = 1− ε, we have

µC
τkg(λ) ≤

∑
k∈N, |g(A)|>λ

µ(τ−k(A))

≤ sup
k∈N

µ(τ−k(A))

µ(A)

∑
|g(A)|>λ

µ(A)

≤ sup
k∈N

µ(τ−k(A))

µ(A)
µg(λ).

and so we obtain

||Cτkg||ppq ≤ sup
k∈N

µ(τ−k(A))

µ(A)
||g||pq ≤ ε sup

k∈N

µ(τ−k(A))

µ(A)
.

Thus lim
n→∞

inf µ(τ−k(A)) = 0, becauseg is an irregular vector forCτ . By using [6, Lemma

2.1], there exist a measurable setW ⊂ A such that

µ(X \W ) < ε and lim
n→∞

inf µ(τ k(W )) = 0

So,Cτk is topologically transitive.

In the next theorem, we discuss the Li-Yorke multiplication operators on Lorentz space.

Theorem 2.5.Multiplication operatorMθ is not Li-Yorke chaotic onLpq(X).

Proof. Suppose on the contrary thatMθ is Li-Yorke chaotic. Then it admits a irregular vector
g ∈ Lpq(X). Let (nk) be increasing sequence of positive integers such thatµ((Mθ)

nkg) → 0 in
Lpq(X). Thenµ((θ(x))nkg(x)) → 0, ∀ x ∈ X.
Let E = {x ∈ X : |θ(x)| < 1}. Then, clearlyE is measurable set with positive measure. The
distribution function forMθ is:

µMθg(s) = µ{x ∈ X : |Mθg(x)| > s}
= µ{x ∈ X : |θ(x)g(x)| > s}
≤ µ{x ∈ X : |g(x)| > s}.

Then fort ≥ 0,

(Mθg)∗(t) = inf{x ∈ X : µMθg(s) ≤ t}
≤ inf{x ∈ X : µ{x ∈ X : |g(x)| > s} ≤ t}
≤ g∗(t).

Thus,(Mθg)∗∗(t) ≤ g∗∗(t). Thus, for1 < p ≤ ∞, 1 ≤ q < ∞

||Mθg||qpq =
q

p

∫ ∞

0

(t
1
p (Mθg)∗∗(t))q dt

t

≤ q

p

∫ ∞

0

(t
1
p g∗∗(t))q dt

t

≤ ||g||qpq.

Hence, forq = ∞

||Mθg||qp∞ ≤ sup
0<t<∞

t
1
p (Mθg)∗∗(t)

= ||g||qp∞,

which contradicts our assumption thatg is irregular vector, which completes the proof.
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8 RAJAT SINGH AND ROMESH KUMAR

3. EXPANSIVE COMPOSITION OPERATORS ON L ORENTZ SPACE

In this section, we give a necessary and sufficient condition for composition operators to be
expansive and uniformly expansive onLpq(X, A, µ).

Theorem 3.1. Let (X, A, µ) be aσ-finite measure space andτ be a non-singular measurable
transformation. ThenCτ is positively expansive iff for eachA ∈ A with positive measure,
sup
n∈Z

µ(τ−n(A)) = ∞.

Proof. First of all suppose thatCτ is expansive. Then by [8, Proposition 19],

sup
n∈Z

||Cn
τ g||pq = ∞, for eachg ∈ Lpq(X) \ {0}.

Let A ∈ A with µ(A) > 0 and takingg = χA. Then for eachn ∈ Z, the non-increasing
re-arrangement ofχA is

χ∗A(t) = χ[0,µ(A))(t).

Therefore,

||χA||qpq =
q

p

∫ ∞

0

(t
1
p χ∗∗A (t))q dt

t

= p
′
(µ(A))

q
p .

So, for eachn ∈ Z and for1 ≤ q < ∞,

||Cn
τ χA||ppq = ||χτ−n(A)||ppq

=
∑
n∈Z

µ(τ−n(A)).

For q = ∞, 1 < p ≤ ∞, we have

||Cn
τ χA||ppq = sup

t≥µ(A)

t
1
p χ∗∗A (t)

= sup
t≥µ(A)

µ(τ−n(A))

and so we get,sup
n∈Z

µ(τ−n(A)) = ∞. This proves the direct part.

For the converse part, supposesup
n∈Z

µ(τ−n(A)) = ∞ for eachA ∈ A with µ(A) > 0. Let

g ∈ Lpq(X) \ {0}. Then there exist anh > 0 such that the setA
′
= {x ∈ X : |g(x)| > h} has

positive measure.
Now, for eachn ∈ Z

||Cn
τ g||ppq =

q

p

∫ ∞

0

(t
1
p (Cτng)∗(t))q dt

t

≥ q

p

∫ µ(τ−n(A
′
))

0

(t
1
p h)q dt

t

≥ hp q

p

∫ µ(τ−n(A
′
))

0

(t
1
p )q dt

t

≥ hp.µ(τ−n(A
′
)).

This implies thatsup
n∈Z

||Cn
τ g||pq = ∞. Thus, it follows thatCτ is expansive.
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Corollary 3.2. Let (X, A, µ) be aσ-finite measure space andτ be a non-singular measurable
transformation. ThenCτ is positively expansive iff for eachA ∈ A with positive measure,
sup
n∈N

µ(τ−n(A)) = ∞.

The proof will directly follows from the above theorem by replacingZ by N.

Theorem 3.3. Let (X, A, µ) beσ-finite measure space andτ be the non-singular measurable
transformation. LetAn be all the atoms ofX and assume thatµ(An) = an > 0, for each n.
ThenCτ is uniformly positively expansive iff

lim
n→∞

µ(τ−n(A))

µ(A)
= ∞

uniformly with respect toA ∈ A+, whereA+ = {A ∈ A : 0 < µ(A) < ∞}.

Proof. SupposeCτ is uniformly positively expansive. Then by Theorem 1.2

lim
n→∞

||Cn
τ g||pq = ∞, uniformly onSLpq(X).

Let g = χA

µ(A)
1
p

, for all A ∈ A+. Then

||Cn
τ g||ppq = ||Cn

τ

χA

µ(A)
1
p

||ppq

=
||χτ−n(A)||ppq

µ(A)

= (p
′
)

p
q
µ(τ−n(A))

µ(A)

and so,

∞ = lim
n→∞

||Cn
τ g||ppq = (p

′
)

p
q lim

n→∞

µ(τ−n(A))

µ(A)
.

This implies that,lim
n→∞

µ(τ−n(A))

µ(A)
= ∞, uniformly onA ∈ A+.

For the converse part, according to Theorem1.2, it will be enough to show thatlim
n→∞

||Cn
τ g||pq =

∞, uniformly onSLpq(X) for simple functions.
By the given conditions, letM > 0, there existsm ∈ N such that for each atomsAn,
µ(τ−n(An))

µ(An)
> M, ∀ n ≥ m.

Let g ∈ SLpq(X) be simple functions i.e.,g =
∑

g(An)χAn
, where(X, A, µ) be atomic with

atomsAn. Note thatg and
∑

g(An)χAn
are equalµ-a.e. Then forn ≥ m andλ > 0, we have

µCn
τ g(λ) =

∑
n≥m,|g(An)|>λ

µ(τ−n(An))

≥
∑

n≥m,|g(An)|>λ

Mµ(An)

= M
∑

n≥m,|g(An)|>λ

µ(An).

Therefore,||Cn
τ g||ppq ≥ M ||g||ppq ≥ M.

Thus, for eachM > 0, there existn ≥ m such that for each simple functiong ∈ SLpq(X),

||Cn
τ g||ppq ≥ M, ∀n ≥ m
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10 RAJAT SINGH AND ROMESH KUMAR

i.e., lim
n→∞

||Cn
τ g||ppq = ∞.

Theorem 3.4. Let (X, A, µ) be aσ-finite measure space andτ be a non-singular measurable
transformation. LetAn be all the atoms ofX and assume thatµ(An) = an > 0, for each n.
ThenCτ is uniformly expansive iffA+ can be splitted asA+ = A+

B ∪ A+
C where

lim
n→∞

µ(τn(A))

µ(A)
= ∞, uniformly onA+

B,

lim
n→∞

µ(τ−n(A))

µ(A)
= ∞, uniformly onA+

C .

Proof. SupposeCτ is uniformly expansive. Then by part(d) of Theorem1.2,SLpq(X) = B ∪ C,
where

lim
n→∞

||Cn
τ g||pq = ∞, uniformly on B and lim

n→∞
||C−n

τ (g)||pq = ∞, uniformly on C.

This impliesA+ = A+
B ∪ A+

C , whereA+
B = {A ∈ A+ : χA

(µ(A))
1
p
∈ B} andA+

C = {A ∈ A+ :
χA

(µ(A))
1
p
∈ C}. So, by Theorem3.3, we see that

lim
n→∞

µ(τn(A))

µ(A)
= ∞, uniformly onA+

B and lim
n→∞

µ(τ−n(A))

µ(A)
= ∞, uniformly onA+

C ,

which proves the direct part.
In order to prove the converse part, it is sufficient to prove using again part(d) of Theorem1.2,
the existence ofB andC such thatSLpq(X) = B ∪ C, with

lim
n→∞

||Cn
τ g||pq = ∞, uniformly on B and lim

n→∞
||C−n

τ g||pq = ∞, uniformly on C.

By given hypothesis, forM > 0, there existm ∈ N, such that for all functions of typeg =
χA

(µ(A))
1
p

with A ∈ A+, ||Cn
τ g||ppq ≥ M, or ||C−n

τ g||ppq ≥ M, ∀n ≥ m. We have proved it for

simple functiong ∈ SLpq(X). Let ŜLpq(X) be the collection of all simple functions inSLpq(X).
First we find the two sets of simple function in̂SLpq(X), denoted byB̂ andĈ such that one has
ŜLpq(X) = B̂ ∪ Ĉ, with

lim
n→∞

||Cn
τ g||pq = ∞, uniformly onB̂ and lim

n→∞
||C−n

τ g||pq = ∞, uniformly onĈ.

By hypothesis, forM > 0, there exist̄n ∈ N such that for eachn ≥ n̄,

µ(τn(A))

µ(A)
> M, for eachA ∈ A+

B̂
and

µ(τ−n(A))

µ(A)
> M, for eachA ∈ A+

Ĉ
.

Let g ∈ ŜLpq(X) be simple function i.e.,g =
∑

g(An)χAn
, whereAn is atom with measure

space(X, A, µ) is atomic. Writeg = gA+
B

+ gA+
C
∈ ŜLpq(X). Then

gA+
B

=
∑

An∈A+
B

g(An)χAn
andgA+

C
=

∑
An∈A+

C

g(An)χAn
.
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Since||g||ppq = ||gA+
B
||ppq + ||gA+

C
||ppq = 1. So, either||gA+

B
||ppq ≥ 1

2
or ||gA+

C
||ppq ≥ 1

2
.

In the very first case, for eachn ≥ n̄, λ > 0 and forAn ∈ A+
B, we have

µC−n
τ g(λ) =

∑
n≥n̄,|g(An)|>λ

µ(τn(An))

≥
∑

n≥n̄,|g(An)|>λ

Mµ(An)

= M
∑

n≥n̄,|g(An)|>λ

µ(An).

Therefore,||C−n
τ g||ppq ≥ M ||g||ppq > M

2
.

Further, for eachn ≥ n̄, λ > 0 and forAn ∈ A+
C , we have

µCn
τ g(λ) =

∑
n≥n̄,|g(An)|>λ

µ(τ−n(An))

≥
∑

n≥n̄,|g(An)|>λ

Mµ(An)

= M
∑

n≥n̄,|g(An)|>λ

µ(An).

Therefore,||Cn
τ g||ppq ≥ M ||g||ppq > M

2
.

From above, it follows that̂SLpq(X) = B̂ ∪ Ĉ, we have

B̂ = {g ∈ ŜLpq(X) : ||gA+
B
||ppq ≥

1

2
} andĈ = {g ∈ ŜLpq(X) : ||gA+

C
||ppq ≥

1

2
}.

Thus result is proved for simple functions. Since simple functions are dense inLpq(X), it
follows thatSLpq(X) = B ∪ C with

lim
n→∞

||Cn
τ g||pq = ∞, uniformly on B and lim

n→∞
||C−n

τ g||pq = ∞, uniformly on C.
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