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2 RAJAT SINGH AND ROMESH KUMAR

1. INTRODUCTION AND PRELIMINARIES

In the paper of Li and Yorke [13], the concept of “Chaos" was first introduced into mathemat-
ical literature in the context of interval map and became popular. Godefroy and Shapiro [10]
used Devaney'’s notion of chaos and were the first to introduce chaos into linear dynamics. Over
the last two decades various authors have explored chaotic operators intensively. An operator
on a Frechet space is hypercyclic and has a dense set of periodic points, then it is referred to be
chaotic. Hypercyclic and chaotic operators are covered in depth in the bhooks [1], [2]/[10], [11]
and [17].

Some other essential concepts of chaos are Li-Yorke chaos, distributional chaos and specifica-
tion property etc. seel([5], [6] and [13]). Several authors have purposed various variations of
these concepts. We will focus on Li-Yorke chaos and some of its variations. There are several
intriguing Li-Yorke chaotic results for operators on Banach spacelin [6]. N. C. Bernardes Jr et
al. extended the major results of [6] about Li-Yorke chaos to the Frechet space setting and fur-
ther for operators oi.” space. The purpose of this note is to look into the concept of Li-Yorke
chaos and some of its variations for Lorentz spaces framework. For more details on Lorentz
spaces one can se2!([3], [14]) and references therein. For more details on Li-Yorke we refer to
[5], [6] and [13] and reference therein.

The paper is structured as follows: Section 1 is introductory and we cite certain definitions and
results which will be used throughout this paper. In Section 2 and Section 3, we explore the Li-
Yorke composition operators and discuss expansive composition operators on Lorentz spaces
respectively.

We assume thak’ = (X, A, ) be a measure space witti.X') # 0. LetT : X — X bea
measurable non-singular transformatiéa., .(77*(A)) = 0 for eachA € A whenevep(A) =
0).

We define the distribution functiom, of g, for A > 0 as

o= n{z € X :lg(2)| > A}).
The non-increasing rearrangementyoé

g (t) =inf{A > 0: p,(A) <t} =sup{A>0:p,(\) >t}
The norm of the measurable functigns defined as

1
{gfooo(tig**(t))q%}q , ifl<p<oo, 1<g<oo

gllpg = :
) suptrgT(), if 1 <p<oo, qg=o00;

wherel < p < oo, 1 <¢q < o0.
The Lorentz spacé??(X), 1 < p < oo, 1 < ¢ < oo are defined as

LP(X) =A{g € L(n) : |lgllpg < o0}
Note that the Lorentz spaces are the Banach spacésfay < p < oo, or p = ¢ = oo and by
using [3, Page 251]

q — g /oo t% (¢ q@
[Ixallzg o (XA (1)
= p(p(A)r

where; + ;= 1.
We now defineC’. as the the linear transformation d?(X), 1 < p < o0, 1 < ¢ < x©
into the linear space of all complex valued measurable function on measure(3pdce:) by
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C.g = gorT, Yg € LP(X). Here the non-singularity of ensures that the operator is well
defined in this case. If’. maps thel.*?(X) into itself, then we call it composition operator on
Lorentz space induced by Let 6 be a complex valued measurable function definekoiwe
define the mappind/, : ¢ — 6.9, a multiplication operator induced l# For composition
operator on different function spaces se€ [17] and [18] and reference therein.

First of all we recall the basic definitions which will be used for further research.

Definition 1.1. [4, Page 1] A continuous mag : (M,d) — (M,d) is said to be Li-Yorke
chaotic if there exists an uncountable scrambledSset A such that each pair of distinct
pointsp, ¢ € S is a Li-Yorke pair forg i.e.,

Tim inf d(g"(p), g"(¢)) = 0 :and lim supd(g"(p), g"(¢)) > 0.
where(M, d) is a metric space.

We say thay is densely (generically) Li-Yorke chaotic wheney#can be chosen to be dense
(residual) inM.
Definition 1.2. [2, Page 47]
(a) If T'is a linear operator and a vectoe X, then we say that is an irregular vector for
T if
lim inf ||T"z|| = 0 and lim sup ||T"z|| = 0o
(b) If T"is a linear operator and a vector X, then we say that is semi-irregular vector
for T if
lim inf ||T"z|| = 0 and lim sup ||7"z|| > 0.
Following result gives the equivalent conditions for any continuous linear opératarany
Banach space to be Li-Yorke.
Theorem 1.1.[6, Theorem 9)f T' € L(X), then the following are equivalent

(i) T is Li-Yorke chaotic.
(i) T admits a semi-irregular vector.
(i) T admits irregular vector.

Definition 1.3. [15, Page 3] Lef” € L(X) be linear operator. Then

(a) T is said to be (positively) expansive if for alle Sy there exists: € Z(n € N) such
that||7T"x|| > 2, whereSx = {x € X : ||z|]| = 1}.

(b) T is (positively) uniformly expansive if there existsc N such that for allz € Sy,
||T"x|| > 2o0r||T"z|| > 2 (forall z € Sx, ||T"xz|| > 2).

Theorem 1.2.[8, Proposition 19] et X be a Banach space arid be operator onX. Then
@) sup ||T"x|| = oo if and only if T is positively expansive, for eabh# = € X.
(b) hm ||T"x|| = oo uniformly onSx if and only ifT" is uniformly positively expansive.

If T |s |nvert|ble then

(€)sup ||[T"z|| = oo if and only ifT" is expansive, for eadh # = € X.
nez

(d) Sx = AU B wherelim ||T"z|| = oo uniformly on A andlim ||7"z|| = oo uniformly on
neoo neoo
B if and only ifT" is uniformly expansive.
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2. L1-YORKE COMPOSITION OPERATOR ON L ORENTZ SPACE

In this section, we have proved a necessary and sufficient condition for composition operator
to be Li-Yorke.

Theorem 2.1.Let(X, A, 1) be a measure space and X — X be a non-singular measurable
transformation. Then composition operator on LP4(X) 1 < p < o0, 1 < ¢ < oo is Li-
Yorke chaotic iff there is an increasing sequence of positive integers and non-empty family of
measurable setd; of finite positive measure such that

() lim pu(r7%(A;)=0,VieN.

Jj—00
i o "(Ai) . . _
(i) sup{“MT c1el,ne N} = o0.

Proof. Suppose’; is Li-Yorke chaotic andy € LPY(X) be an irregular vector fo€’.. Now,
let the measurable set; = {x € X : 27! < |g(x)| < 2} and] = {i € Z : u(A;) > 0}.
Then,0 < u(A;) < oco. As g be an irregular vector faf’;, so there is an increasing sequence of
positive numbef o, } ey such thatlim ||C’«; g||,, = 0. This implies that (i) holds.

J—00

Now, suppose that the condition (ii) does not holds. Then there is a positive cahbtanio
such that

pwot "(A;) < Mu(A;), wheneveri € Z,n € N.
Thus, foreacm € N, ¢t > 0
(gor™)(t) = Y inf{s>0:pufr € X :|g(r"(x))| > s} <t}

neN

= Zinf{s >0:pur ™{xe X |glx)] > s} <t}

neN

Zinf{s >0: Mu{x e X :|g(x)] > s} <t}

neN

‘ , t
Zinf {221 >0:p{r € X :|glx)] >271} < M}
neN

> (ar)

neN

IN

IN

IN

Consequently we get

Thus forg # oo, we have

[Consll = |2 [ @ Cg) 0

IA
1
SIS
o\

.8

~

S |-
s
*
*
7 N\
<
N———
=
I3
—_
-

1
= M~lgllpq-
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Also for g = oc.

[Crngllpe = sup 12 (Crng)™(2)

0<t<oo

< o (4)

su P —

o 0<t<poo J M
1

< M7 ||g]|poc-

i.e.,C-orbit of g is bounded, which is contradiction to the fact thatorbit of g is unbounded.
Conversely, Suppose condition (i) and (ii) holds andvlet {x,. : i € I} be a closed linear
span inL??(X). Then setR; of all vectorsg in Y, whereC’ -orbit has sub-sequence converging
to zero is residual i because of condition (i).

Now, fori € I, letg; = L X4 €Y.Then,
(p’ . g

~
Sl

—~
Sl

w(Asi))
u(r(4:))
f1(A:)
Thus, by conditions (ii)sup ||C:= |y || = oo and so by using the Banach Steinhaus theorem, the
neN

[lg:ll = 1 and|[Crngil[pg =

setR, of all vectorsg in Y whoseC'--orbit is unbounded is residual 1. Also, asg € R1 N R»
is an irregular vector fo€'., we conclude that’, is Li-Yorke chaotic.a

Corollary 2.2. If 7 is injective, then composition operat6y. is Li-Yorke chaotic if there exists
a measurable set of finite positiveu-measure such that

(a) nh_}rglo inf u(r7"(A)) =0,

(b) sup{“(Tn((‘z)))) n€Zmeln<m}=oc0.

p(rm

Remark 2.1. If 7 is not injective in above Corollafy 2.2, the&r need not Li-Yorke chaotic.
Here is an example:

Example 2.1. Let us consideA = P(X) and X = (Z x {0}) U (N x N). The bimeasurable
map7 : X — X be

7(i,0) = (i+2,0) and7(n,j) = (n,j — 1) i € Zandn,j € N.
The measure : A — [0, o) be defined by

n({(i,0)}) = % andu({(n,j)}) = { 3;—1 1j§23ﬁ< n

If A= {(0,0)}, then clearly conditions of Corollafy 2.2 are satisfies. But howevet,df A is
non-empty and satisfies condition (i) of Theofen 2.1 thea {(k,0) : £ < 0} and so

neN ,U(Az) 9
Thus, by Theorem 2.4, is not Li-Yorke Chaotic.
Theorem 2.3.If p is finite andr is injective, then the following are equivalent:

(i) C; is Li-Yorke chaotic.
(i) there existy € LP?(X) such thaty # 0 and lim inf ||C;ng||,, = 0.

(iii) there existd € A such thatu(A) > 0 and lim p(r77"(A4)) = 0.
(iv) there existA € A such thatu(A) > 0 and lim p(7"(A)) = 0.
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(v) there existA € A suchthaf(A) > 0, lim inf u(77"(A)) = 0and lim inf u(7"(A)) =

n—oo
0

(vi) there existd € A such thatu(A) > 0, lim inf u(77"(A)) = 0 and
lim sup u(77"(A)) > 0.
(vil) C, admits a characteristic function as a semi-irregular vector.

Proof. (i) = (i) SinceC; is Li-Yorke chaotic. Then it admits a semi-irregular vector
g € LP1(X). Thus, by definition of semi-irregularity, # 0 and lim inf ||C;-g|| = 0.

(1) = (iii) Supposey satisfies the condition (ii). Then there exigts> 0 such that
A={x € X :|g(x)| > c}. Clearly,A is measurable and(A) > 0. Hence,

.t

Casllyy = & [T Cory o]

p

u(r="(A)) d
Q/ (t%c)q_t
D Jo t
p(r(A

4 /

D Jo
. u(r7"(A)

By using (ii), we see tha}}im inf u(77"(A)) = 0.

The implication(iii) = (iv), (iv) = (v) and(v) = (vi) will follows as in [9].
(vi) = (wvit) By takingg = x4 for someA € A, we have

v

v

) dt
(t%)q7

>

)

’

_ q
1Cgll5g = 11Crxalliy = X7k (a5 = P (n(77*(A)))>.

so, (vi) and (vii) are equivalent properties.
(vii) = (i) is obvious, because the existence of semi-irregular vector itself implie§’that
is Li-Yorke chaotic.n

Theorem 2.4.Let (X, A, i) be ac-finite measure space and: X — X be a non-singular
measurable transformation. TH&, is then topological transitive if and only @'. is densely
Li-Yorke chaaotic.

Proof. Since in[[6], it has been established that the continuous linear operator admits a dense set
of irregular vectors for separable Banach space if and only if it admits a dense set of irregular
vectors. By ([6, Remark 22]), if an operator is topologically transitive, it is densely Li-Yorke
chaotic. From this direct part follows because Lorentz space are separable.

Conversely, let us supposed that composition opexdtas densely Li-Yorke chaotic and let

e € (0,min{1, u(X)}). Then there is an irregular vectgifor C.. such that

g — xxIb, <e

TakingA = {x € X : |g(z) — 1] < €}. Thenu(X \ A) <.
Noteg and)  g(A)x 4 areu-a.e. For each € N, defineC.« by

Crng = Z Q(A)Xf—k(A)-

keN
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Then for each\ = 1 — ¢, we have

e, < S (A

keN, |g(A)|>A
o BETEA))
= keII\I) ,U(A) |g(AZ)|>/\M(A)
p(r"(A))
Sl e
and so we obtain
p(r+(4)) u(r+(4)

Crrgl|P, < sup 9llpg < €sup
ICossll, < sup gl < esup M

ThusT}Lrgo inf u(77%(A)) = 0, becausey is an irregular vector foc’.. By using [6, Lemma
2.1], there exist a measurable §BtC A such that
w(X \ W) < eand nh_)ngo inf u(7%(W)) =0
So,C» is topologically transitiven
In the next theorem, we discuss the Li-Yorke multiplication operators on Lorentz space.
Theorem 2.5. Multiplication operator\j is not Li-Yorke chaotic oi”?(.X).

Proof. Suppose on the contrary thaf, is Li-Yorke chaotic. Then it admits a irregular vector
g € LP(X). Let(ny,) be increasing sequence of positive integers suchfidty)"g) — 0in
LPi(X). Thenu((6(z))™g(x)) — 0, Vo € X.

Let £ = {z € X :|6(z)| < 1}. Then, clearlyE’ is measurable set with positive measure. The
distribution function forM, is:

targg(s) = pfx € X+ [Mpg(z)| > s}
= p{z e X :|0(z)g(z)| > s}
p{z € X t]g(z)| > s}.

IA

Then fort > 0,
(Mog)(t) = inf{ € X : piyy(s) < 1}
inf{z € X : p{r € X : |g(z)| > s} <t}
g (t).
Thus,(Myg)**(t) < g**(t). Thus, forl < p < oo, 1 < ¢ < o0

IAINA

q [ 1 x g @
gl = % [ (65 ag) ()7
P Jo
q [, 1 dt
< = trg™ (1) —
RGO
< lollz,

Hence, forg = oo
1 kk
[Moglljoe < sup tr(Mpg)™(t)

0<t<oo
= 19][poo>

which contradicts our assumption thgais irregular vector, which completes the prosf.
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3. EXPANSIVE COMPOSITION OPERATORS ON LORENTZ SPACE

In this section, we give a necessary and sufficient condition for composition operators to be

expansive and uniformly expansive af (X, A, u).

Theorem 3.1.Let (X, A, 1) be ao-finite measure space andbe a non-singular measurable
transformation. Ther(; is positively expansive iff for each € A with positive measure,

sup (7" (A)) = oo,

nez

Proof. First of all suppose that’, is expansive. Then by [8, Proposition 19],
sup ||C2 gl = oo, for eachy € LP(X)\ {0}.
nez

Let A € A with u(A) > 0 and takingg = x4. Then for eachn € Z, the non-increasing
re-arrangement of , is

*

Xa(t) = Xpo,uay (t)-

Therefore,
q — g/oo tl ol t Q@
o> ) (XA ()"
/ q
= p(u(4))?.
So, foreachn € Z and forl < ¢ < oo,
1CTXAllhy = |Xenllpg
= > ulr(A).
neZ
Forqg = 00,1 < p < oo, we have
l kok
1CTxallpy = sup trxi(t)
t>p(A)
= sup p(r "(4))
t>p(A)

and so we getup u(7""(A)) = oco. This proves the direct part.
nez
For the converse part, suppose u(7 "(A)) = oo for eachA € A with u(A) > 0. Let
nez

g € LP(X)\ {0}. Then there exist ah > 0 such that the set’ = {z € X : |g(z)| > h} has
positive measure.
Now, for eachn € Z

n q [ 1 g dt
czally, = 2 [ @ Caar oG

p
p(r=m(ah)
> 2/ (t%h)qﬂ
P Jo t
n(r="(A") dt
> hpg/ (t%)q—
P Jo t

’

> hP.p(r(A)).
This implies thatup ||C} g||,, = oco. Thus, it follows that”; is expansiven
neL
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Corollary 3.2. Let (X, A, 1) be ac-finite measure space andbe a non-singular measurable
transformation. Ther(; is positively expansive iff for each € A with positive measure,

sup u(7"(A)) = oo.
neN
The proof will directly follows from the above theorem by replacigy N.

Theorem 3.3.Let (X, A, ) be o-finite measure space andbe the non-singular measurable
transformation. Let4,, be all the atoms o and assume thai(A4,) = a, > 0, for each n.
ThenC; is uniformly positively expansive iff

L A)
wo p(A)

uniformly with respect tol € A™, whereAt = {A € A : 0 < u(A) < oo},
Proof. Suppose”.. is uniformly positively expansive. Then by Theorpm|1.2
lim ||C}g|[pg = oo, uniformly onSp(x).

Letg = X4 forall A € AT. Then
n(A)P

mn n XA

HCTgng = “CTM(A>117”§(1
X 7= (a)llbg

1(A)

e (77" (A))

—= p q —
W) )

oo = lim [[CTg|p, = (p)7 lim M

nse (A
o (A
This implies that,lim %
n—oo M
For the converse part, according to The - 1.2, it will be enough to shovithdtC’ g||,, =
oo, uniformly on Sy x) for simple functions.

By the given conditions, let/ > 0, there existsn € N such that for each atoms,,
W >M, Vn>m
H{An ’ - )
Let g € Sire(x) be simple functions i.eg = > g(A,)x4,. Where(X, A, 1) be atomic with

atomsA,,. Note thaty and) | g(A,)x,, are equal-a.e. Then fon > m andA > 0, we have

Hopg(N) = Y. alr(AY)

n>m,|g(An)|>A

Z Mp(Ay)

n>m,|g(An)|>A

= M > A

nzm,|g(An)|>A

and so,

= oo, uniformly onA € A™.

v

Therefore||Crg|[P, > M||g||h, > M.
Thus, for each\/ > 0, there exist: > m such that for each simple functigne Sirq(x),

1CTgllpg = M, Vn = m
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i.e.,T}Lrlgo 1CTgllh, = 00 B

Theorem 3.4.Let (X, A, 1) be ao-finite measure space andbe a non-singular measurable
transformation. Let4,, be all the atoms o and assume thai(A4,) = a, > 0, for each n.
ThenC; is uniformly expansive ifi* can be splitted aa&™ = A U AL where

lim ————~ = oo, uniformly onA%,
n—oo pi(A) N

lim pr(4) oo, uniformly onA/.
n—oo u(A)

Proof. Suppos&”; is uniformly expansive. Then by part(d) of Theofem152s.x) = BU C,
where

lim ||C7g||,y = oo, uniformly on B and lim ||C"(g)||,q = oo, uniformly on C

This impliesA™ = A} U A}, whereAf, = {A € AT : X2 ¢ B}andA} = {A € AT :

((A4)?
Xa_ ¢ C}. So, by Theorem3|3, we see that
(u(A))? J y
_ ("(A)) - + o p(r " (A4)) - +
lim ———= = oo, uniformly onA7} and lim —————** = oo, uniformly onA/,
n—s p(A) B () ¢

which proves the direct part.
In order to prove the converse part, it is sufficient to prove using again part(d) of THeorem1.2,
the existence o andC such thatS;»(x) = B U C, with

lim ||C”g||,y = oo, uniformly on B and lim ||C"g||,, = oo, uniformly on C

By given hypothesis, for/ > 0, there existn € N, such that for all functions of typg =

( (Xf;)l with A € A, |[Clgl[r, > M, or |[|C"g||p, > M, ¥n > m. We have proved it for
w(A))P

simple functiong € Spre(x). Let Spee(x) be the collection of all simple functions il »qx.
First we find the two sets of simple function ﬁlpq(x), denoted b)B andC such that one has

3qu(x) = B U é, with

lim ||C"g||py = oo, uniformly onB and lim ||C-"g||,, = oo, uniformly onC'.
By hypothesis, fo/ > 0, there exist: € N such that for each > n,

p(r"(A)) + (7 (A)) +
——- > M, foreachA € A~ and———— > M, foreachA € A’,.
1(A) b 1(A) ¢

Letg € S’qu(x) be simple function i.e.g = > g(A,)x4,, Where A, is atom with measure

N

spaceg X, A, u1) is atomic. Writeg = gat T 9ax € Stra(xy. Then

gar = > 9(A)xa, andgs = Y g(An)xa,.

AneAf An€AL
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Since||gll, = [194: b, + llg.azlb, = 1. So, either|g 4| |5, > 5 or [[g4: [, > 5.
In the very first case, for eaeh> 71, A > 0 and for4,, € A%, we have
Horg(A) = > (A
n2>mn,|g(An)[>A
> > Mp(A)
n2mn,|g(An)[>A
= M ) (4.

n>mn,|g(An)|>A

Therefore||C "g|[F, > M]|g||?,
Further, for eacm > 71, A > 0 and forAn € A}, we have

fong(A) = Y. (A

n21,|g(An)|>A

> Z Mp(Ay)

n>7,|g(An)|>A
= M Z 1(An).
n>7,|g(An)|>A
Therefore||C?g|[2, > M||g|[E, > &
From above, it follows thab..x) = B U C, we have

. N 1 R A 1

B ={g € Straex) t lgagllhg = 5+ andC = {g € Spoacx) : [l9.allpg 2 5

Thus result is proved for simple functions. Since simple functions are denb& (), it
follows thatSrex) = B U C with

hm CTgl|pg = o0, unlformlyonBand hm [|C"g]|pqy = o0, uniformly on C
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