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ABSTRACT. The well known Jordan decomposition theorem gives the useful characterization
that any function of bounded variation can be written as the difference of two increasing func-
tions. Functions which can be expressed in this way can be used to formulate an exclusion test
for the recent Cellular Exclusion Algorithms for numerically computing all zero points or the
global minima of functions in a given cellular domain [2, 8, 9]. In this paper we give an algo-
rithm to approximate such increasing functions when only the values of the function of bounded
variation can be computed. For this purpose, we are led to introduce the idea of ε-increasing
functions. It is shown that for any Lipschitz continuous function, we can find two ε-increasing
functions such that the Lipschitz function can be written as the difference of these functions.
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1. INTRODUCTION

In the theorem of optimization, we have the problem of finding the global minimum of a func-
tion defined on a compact domain. In order to solve this problem, Cellular Exclusion Algo-
rithms is used for numerically computing the global minima of functions in a given domain
[2, 8, 9]. These algorithms formulate an exclusion test to discard cells that does not contain
the global minimum. One of the tests, that are used in Exclusion Algorithms, can be applied to
functions that can be written as the difference of two increasing functions [2].

The exclusion test in [2] was applied only to polynomials because they can be easily written
as the difference of two increasing polynomials. However, if the function is not a polynomial,
we find ourselves in some need of the concept of ε-increasing condition which is weaker than
increasing condition. As a consequence, we have got a solution to the optimization problem as
shown in Theorem 3.1.

The well known Jordan decomposition theorem gives the useful characterization that any
function of bounded variation can be written as the difference of two increasing functions. In
practice, these functions can not be computed explicit. Therefore, we approximate these two
functions and then prove that these functions are ε-increasing in Theorem 3.1.

The notion of functions of bounded variation plays a very significant and important role in the
theory of real functions [1, 5], numerical analysis [3, 4] and optimization [8]. In the literature,
several properties of these functions have been discussed (see for example [1, 6, 7, 8, 10]);
nevertheless, we focus our attention to one of these properties known as Jordan Decomposition
Theorem JDT.

Decomposable functions, which result from JDT, plays an important role in optimization
[2, 8]. For example, the Exclusion Algorithm uses decomposable functions as a test function
for the minimization condition [2, 9].

Let f : [a, b] → R be a function and P := {xi ∈ [a, b] : a = x0 < x1 < . . . < xm+1 = b} be
a partition of [a, b]. We recall that the variation of f over P is the nonnegative real number

VP [f ; a, b] =
m+1∑
i=1

|f(xi)− f(xi−1)|.

The function f is a function of bounded variation if there exists a number M such that for every
partition P of [a, b], we have

m+1∑
i=1

|f(xi)− f(xi−1)| ≤ M.

The total variation of f on [a, b] is defined to be the number

(1.1) Vf [a, b] := sup
P |[a,b]

m+1∑
i=1

|f(xi)− f(xi−1)|,

where P |[a, b] means “P is a partition of [a, b]" [7]. For simplicity, we will write supP instead
of supP |[a,b]. The set of all functions of bounded variation on [a, b] is denoted by BV[a, b] and
we have the following proposition which follows immediately from the definition of functions
of bounded variation.

Proposition 1.1. [7] If f : [a, b] → R is a Lipschitz function on [a, b] (i.e., there is a constant
C such that

(1.2) |f(x)− f(y)| ≤ C|x− y| ∀x, y ∈ [a, b]),
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then f ∈ BV[a, b].

If we view the sum in (1.1) as a sum of positive and negative parts of the differences f(xi)−
f(xi−1), then we can define Pf [a, b] to be the summation of the positive parts of f(xi)−f(xi−1)
and Nf [a, b] to be the summation of the negative parts, i.e.,

Pf [a, b] : = sup
P

m+1∑
i=1

(f(xi)− f(xi−1))
+,

Nf [a, b] : = sup
P

m+1∑
i=1

(f(xi)− f(xi−1))
−,

(1.3)

where x+ := max{0, x} and x− := max{0,−x}, then we have

Vf [a, b] = Pf [a, b] + Nf [a, b],

f(b)− f(a) = Pf [a, b]−Nf [a, b].

Varying b in (1.3) we get two functions Pf [a, .], Nf [a, .] : [a, b] → R+ ∪ {0} defined by

Pf [a, x] : = sup
P |[a,x]

m+1∑
i=1

(f(xi)− f(xi−1))
+,

Nf [a, x] : = sup
P |[a,x]

m+1∑
i=1

(f(xi)− f(xi−1))
−.

(1.4)

It can be shown that these two functions are increasing on the interval [a, b]. If we take
pJ(x) = Pf [a, x] + f(a) and nJ(x) = Nf [a, x] as Jordan functions then we have the following
theorem.

Theorem 1.1 (Jordan Decomposition). [7] If f is a function of bounded variation on [a, b] then
f can be written as the difference of two increasing functions

f(x) = pJ(x)− nJ(x).

This theorem states that we can write f as the difference of two increasing functions where
each function can be computed by finding the supremum among all partitions. However, the
supremum sum over all partitions cannot be computed numerically. Therefore, we approximate
the functions pJ and nJ by considering the uniform partition P := {a+ i(x−a)/(m+1)}m+1

i=0

of the interval [a, x], where m ∈ N and then study the consequences of this approximation.
In section 2, we explain the need of defining ε-increasing functions. In Section 3, we write

our algorithm to approximate pJ and nJ ; furthermore, we state and prove Theorem 3.1 for the
functions pm and nm resulting from Algorithm 3.1.

2. NEED OF ε-INCREASING DEFINITION

In order to approximate the functions pJ and nJ in Theorem 1.1, we use the uniform partition
P := {a + i(x− a)/(m + 1)}m+1

i=0 of [a, x], where m ∈ N. Then we define Pm(x) and Nm(x)

AJMAA, Vol. 4, No. 2, Art. 18, pp. 1-9, 2007 AJMAA

http://ajmaa.org


4 IBRAHEEM ALOLYAN

to be

Pm(x) : =
m+1∑
i=1

(f(xi)− f(xi−1))
+,

Nm(x) : =
m+1∑
i=1

(f(xi)− f(xi−1))
−.

(2.1)

These two functions approximate the functions Pf [a, x] and Nf [a, x], respectively. Moreover,
Pm and Nm approach Pf [a, x] and Nf [a, x] as m → ∞. Unfortunately, Pm and Nm are not
guaranteed to be increasing if the function f is not monotone. We prove this in the following
proposition.

Proposition 2.1. If the function f : [a, b] → R is not monotone on [a, b], then no m can be
chosen so that the functions Pm and Nm in (2.1) are increasing with respect to the uniform
partition P := {a + i(x− a)/(m + 1)}m+1

i=0 .

Proof. Suppose first that f is increasing on the interval [a, c] and decreasing on the interval [c, d]
for c, d ∈ (a, b] and c < d. In this case, the function Pm is increasing on [a, c]; nevertheless, if
we let e = min{c+(c− a)/m, d} and consider the interval I = (c, e), then Pm(x) is less than
Pm(c) for all x ∈ I . In order to prove that, let x be any point in (c, e), and P be the uniform
partition of [a, x], then f(x) < f(c) and xm = a+m(x−a)/(m+1) ∈ (a+m(c−a)/(m+1), c)
and we have

Pm(x) =
m+1∑
i=1

(f(xi)− f(xi−1))
+

= f(xm)− f(x0) + (f(x)− f(xm))+

< f(xm)− f(x0) + f(c)− f(xm)

= f(c)− f(x0) = Pm(c).

Therefore, the function Pm is not increasing on (c, e). If the function f is decreasing on the
interval [a, j] and increasing on the interval [j, k] for j, k ∈ (a, b] and j < k then the function
Nm is not increasing on the interval (j, k) by the same argument that was done for Pm in the
first case.

We define next the concept of oscillation of a function.

Definition 2.1 (Oscillation). We say that a continuous function f : [a, b] → R oscillates k
times on the interval [a, b] if there are exactly k points s1, s2, . . . , sk ∈ (a, b) such that for all
i = 1, . . . , k, the value f(si) is either a strict local maximum or a strict local minimum. If the
function f has an infinite number of maximum and minimum points on (a, b), we say that f
oscillates infinitely often.

For example, the function f : [−4, 4] → R, defined by f(x) = x(x − 1)(x − 2)(x − 3),
oscillates 3 times and the function g : (0, 1) → R, defined by g(x) = x sin(1/x), oscillates
infinitely often. In the following example, the function f is smooth and oscillates only one
time; nevertheless, the function Pm in this case is not increasing for any choice of m.

Example 2.1. Let f : [0, 2] → R be defined by f(x) := 1 − (1 − x)2. In theory, this function
can be written as the difference of two increasing functions, e.g., pJ(x) = 2x and nJ(x) = x2.
In order to compute pm and nm numerically, we notice that this function is increasing on the
interval [0, 1]; therefore, the value of Pm(x) will increase on this interval for any choice of m.
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Nevertheless, on the interval (1, (m + 1)/m); Pm will take values less than Pm(1) = 1. To
explain this, let x be any point in (1, (m + 1)/m), and P := {ix/(m + 1)}m+1

i=0 be the uniform
partition of [0, x], then f(x) < f(1) and mx/(m + 1) ∈ (m/(m + 1), 1) and we have

Pm(x) =
m+1∑
i=1

(f(xi)− f(xi−1))
+

=f(mx/(m + 1))− f(0) + (f(x)− f(mx/(m + 1)))+

<f(mx/(m + 1))− f(0) + (f(1)− f(mx/(m + 1)))

=f(1)− f(0) = 1 = Pm(1).
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(b) m = 100

Figure 1: The function Pm(x) in Example 2.1

Therefore, the function Pm is not increasing on (1, (m + 1)/m). In fact, Pm(x) equals the
value 1 = Pm(1) if there is i, 1 ≤ i ≤ m + 1, such that ix/(m + 1) = 1, i.e., the point 1 is
one of mesh points. Solving for x, we get x = (m + 1)/i; therefore, Pm(x) equals one if x =
(m+1)/(m+1) = 1, x = (m+1)/m, x = (m+1)/(m−1), . . . or x = m+1. In Figure 1, we
plot the function pm on the interval [1, 2] for m = 10 and 100. We can see from the plots that for
m = 10, we have Pm(x) = 1 on the interval [1, 2] for the values x = 1, 10/9, 10/8, 10/7, 10/6,
and 10/5 ; however, for all other values; Pm is strictly less than one. For m = 100, the function
Pm oscillates more because it equals one at 1, 100/99, 100/98, . . . , 100/50 and it is strictly less
than one for all other values on [1, 2]. Although the functions in Figure 1 increase in oscillations,
the amplitude decreases as m increases.

Proposition 2.1 and Example 2.1 show that m cannot be chosen in such a way that Pm and Nm

are always increasing. In fact,the functions Pm and Nm will oscillate in a small ε-neighborhood
of f(c). As m increases, the number ε becomes smaller and smaller. This idea led us to in-
troduce a new definition that we call ε-increasing and we will use it in the Decomposition
Algorithm.

Definition 2.2 (ε-Increasing). We say that the function f : [a, b] → R is ε-increasing, where ε
is a nonnegative number, if f(x) ≤ f(y) + ε for all x < y and x, y ∈ [a, b].

If a function f is increasing, then f(x) ≤ f(y) for all x ≤ y. This implies that f(x) ≤
f(y) + ε for all ε ≥ 0; therefore, the function f is ε-increasing.
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If a function f is ε1-increasing, then f is ε-increasing for all ε ≥ ε1. For example, the function
f : [−10−2,∞) → R, defined by f(x) = x2 is 10−4-increasing because f(x) ≤ f(y) + 10−4

for all x ≤ y. In fact, f is ε-increasing for all ε ≥ 10−4. However, this function is not increasing
because f(−10−2) > f(0).

Similarly, we can define the concept of what we call ε-decreasing for decreasing function of
some perturbation.

3. DECOMPOSITION ALGORITHM

In this section, we introduce the Decomposition Algorithm to compute the functions pm and
nm that approximate pJ and nJ , respectively. These functions are computed with respect to
the uniform partition π := {a + i(x − a)/(m + 1)}m+1

i=0 of the interval [a, x] where m is the
number of points between a and x. Consequently, the functions pm and nm will not be always
increasing. We showed in Example 2.1 that pm and nm cannot be increasing on [a, b] even for
smooth functions and for any value of m. However, we prove in Theorem 3.1 that the resulting
functions, pm and nm, are ε-increasing under some assumptions. In this algorithm we define pm

and nm to be

pm(x) : = f(a) +
m+1∑
i=1

(f(xi)− f(xi−1))
+,

nm(x) : =
m+1∑
i=1

(f(xi)− f(xi−1))
−.

(3.1)

Algorithm 3.1. INPUT: a, f and x.
OUTPUT: p and n evaluated at x.
choose m (number of points between a and x).
d := (x− a)/(m + 1).
for i = 0 : m + 1

xi := a + id.
p = f(a).
n = 0.
for i = 1 : m + 1

if s = f(xi)− f(xi−1) ≥ 0
p = p + s.

else
n = n + s.

Note that we can choose m + 1 = 2k to decrease the number of computations when we
increase m (i.e., if we choose m + 1 = 2k+1 then we already have computed the the values
f(xi) for i is even). The main question about this algorithm is how to compute m such that p
and n are increasing. Unfortunately, m cannot always be computed even for smooth functions.

We have discussed in Proposition 1.1 that each Lipschitz function on [a, b] is a function of
bounded variation in this interval. In our next discussion, we choose the space of Lipschitz
functions because in this space, the value |f(xi) − f(xi−1)| can be controlled by |xi − xi−1|.
We come now to the main theorem in this paper which shows that pm and nm in Algorithm 3.1
have, in fact, a special property that can be exploited numerically.

Theorem 3.1. If f : [a, b] → R is a Lipschitz function with a Lipschitz constant C, then for all
ε > 0 there exists an m := mε ∈ N such that pm and nm in Algorithm 3.1 are ε-increasing.
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In order to prove this theorem, we need to prove the following propositions. We will al-
ways use the partitions {xi}m+1

i=0 and {yi}m+1
i=0 to be the uniform partitions of [a, x] and [a, y],

respectively.

Lemma 3.1. (1) If f is increasing on [a, b] then pm is increasing and we have pm(x) = f(x)
and nm(x) = 0 for all x ∈ [a, b].

(2) If f is decreasing on [a, b] then nm is increasing and we have pm(x) = f(a) and
nm(x) = f(a)− f(x) for all x ∈ [a, b].

Proof. This follows immediately from the way pm and nm are constructed in Algorithm 3.1

In the following discussion, we will consider the function pm and prove that this function is
ε-increasing. A similar argument can be made to prove that the function nm is also ε-increasing.

Proposition 3.1. For fixed x ∈ [a, b], the sequences (pm(x)), and (nm(x)) converge to pJ(x)
and nJ(x), respectively. In other words, the sequences (pm), and (nm) converge pointwise to
pJ and nJ , respectively.

Proof. The proof of this proposition is straight forward. It suffices to note that

lim
m→∞

m+1∑
i=1

(f(xi)− f(xi−1))
+ = sup

P |[a,b]

m+1∑
i=1

(f(xi)− f(xi−1))
+,

and

lim
m→∞

m+1∑
i=1

(f(xi)− f(xi−1))
− = sup

P |[a,b]

m+1∑
i=1

(f(xi)− f(xi−1))
−.

Proposition 3.2. If x < y, then for any ε > 0, there exists an m ∈ N such that

(3.2) |pm(x)− pm(y)| < 4C(m + 2)(y − x),

(3.3) |nm(x)− nm(y)| < 4C(m + 2)(y − x).

Proof. We prove (3.2) and notice that a similar argument holds for (3.3).∣∣pm(x)− pm(y)
∣∣ =

m+1∑
i=1

[
(f(xi)− f(xi−1))

+ − (f(yi)− f(yi−1))
+
]

≤
m+1∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ +

∣∣f(yi)− f(yi−1)
∣∣

≤ C
m+1∑
i=1

[
(xi − xi−1) + (yi − yi−1)

]
≤ C

m+1∑
i=1

[
|yi − xi−1|+ |yi−1 − xi|

]
≤ 4C

m+1∑
i=1

(
yi − xi

)
≤ 4C(m + 2)(y − x).
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Proposition 3.3. For any ε > 0, and x ∈ [a, b], there exists an m ∈ N and an open neighbor-
hood I = (x− δ, x + δ) of x, where δ > 0 such that

(3.4) |pm(y)− pJ(y)| ≤ ε ∀y ∈ I,

(3.5) |nm(y)− nJ(y)| ≤ ε ∀y ∈ I.

Proof. Since the sequence of functions (pm) converges pointwise to pJ , we choose an m such
that

(3.6) |pm(x)− pJ(x)| < ε/3.

Choose δ such that δ < ε/12C(m + 2), then we have from Proposition 3.2 that

(3.7) |pm(x)− pm(y)| < ε/3.

Furthermore, we have

(3.8) |pJ(x)− pJ(y)| < Cδ < ε/3.

Now we have

|pm(y)− pJ(y)| ≤|pm(y)− pm(x)|+ |pm(x)− pJ(x)|
+ |pJ(x)− pJ(y)|

<ε.

The inequality (3.5) can be proved similarly.

Theorem 3.2. The sequences (pm), and (nm) converge uniformly to pJ and nJ , respectively.

Proof. Since the interval [a, b] is compact, it follows immediately from Proposition 3.3 that
(pm), and (nm) converge uniformly to pJ and nJ , respectively

After proving the previous propositions, and Theorem 3.2, we now have the tools to prove
Theorem 3.1.

Proof of Theorem 3.1. Both functions pJ and nJ are increasing as we mentioned. For any
ε > 0 choose an m such that |pm(x)− pJ(x)| ≤ ε/2 for any x ∈ [a, b]. Thus, for any x < y,

pm(x) ≤ pJ(x) + ε/2 ≤ pJ(y) + ε/2 ≤ pm(y) + ε.

This proves that the function pm is ε-increasing. �
If we choose ε to be the machine epsilon εmach of some computer, then the functions pm and

nm will be increasing in this computer because if x < y then pm(x) ≤ pm(y) + εmach = pm(y)
and nm(x) ≤ nm(y) + εmach = nm(y).
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