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2 E. E. BUKZHALEV AND A. V. OVCHINNIKOV

1. I NTRODUCTION

We propose an algorithm of construction of a sequence

ψn(x; ε) = (y1
n(x; ε), . . . , ym

n (x; ε))

that converges for eachε ∈ (0, ε0] with respect to the norm of the spaceCm[0, X] of continuous
m-dimensional vector-valued functions of the argumentx ∈ [0, X]) to the function

ψ(x; ε) =

(
y(x; ε),

d

dx
y(x; ε), . . . ,

dm−1

dxm−1y(x; ε)

)
,

wherey(x; ε) is a classical solution of the problem (2.1)–(2.2); for the value ofε0 we obtain
an explicit lower estimate. The construction and the proof of convergence of the sequence
ψn(x; ε) are based on the Banach fixed-point theorem for a contracting mapping of a com-
plete metric space (see [4]). Since the contraction coefficientk of the mapping is a value of
orderε (k < ε/ε0), so that the deviationyi

n(x; ε) (with respect to the norm ofC[0, X]) from
di−1

dxi−1y(x; ε) isO(εn+1) (for 0 < ε ≤ ε0), we see that this result has also asymptotic character.

Note that each successive element of the sequenceψn(x; ε) is the result of the action of
a certain operator on the previous element. Elements of such sequences are usually called
iterations and sequences themselves are said to be iterative. In our case, iterations approach
to ψ(x; ε) (in the norm ofCm[0, X]) sufficiently rapidly; the rate of approach is asymptotically
reciprocal toε. Therefore, the algorithm of construction of the sequenceψn(x; ε) is a method of
asymptotic iterations (for detail, see [1, 2]). The sequencesyi

n(x; ε) are also called asymptotic
iterative sequences of the(i− 1)th derivative of the solutiony(x; ε) of the problem considered.

The possibility of application of the method of asymptotic iterations is related to the fulfill-
ment of the condition (2.3) for coefficients of the right-hand side of the equation. However,
the fulfillment of these conditions allows one to apply the method of boundary-layer functions
(see, e.g., [7]). One can immediately verify that the deviationy1

n(x; ε) from thenth partial sum
Yn(x; ε) (which is called the asymptotics or the asymptotic expansion ofnth order) of the series
Y (x; ε) obtained by the method of boundary-layer functions has the formO(εn+1). Thus, the
convergence of the sequencey1

n(x; ε) enables the using of the method of asymptotic iterations
for the justification of asymptotic expansions obtained by the method of boundary-layer func-
tions (i.e., to the proof of the fact that the difference ofYn(x; ε) and the solutiony(x; ε) has the
formO(εn+1) uniformly with respect tox ∈ [0, X]).

Note that the convergence (uniform with respect toε) asε ∈ (0, ε0] of asymptotic sequences
yi

n(x; ε) is a fundamental advantage of the method of asymptotic iterations over the method
of boundary-layer functions, which allows one to construct an asymptotic series, which is, in
general does not converge even for arbitrarily smallε. The reason is that the estimate of the
deviation ofy1

n(x; ε) from Yn(x; ε), which has the formO(εn+1), is not uniform with respect
ton, so that this deviation may be not infinitesimal asn→∞ but even unboundedly increasing.

Another advantage of the sequenceψn(x; ε) is the possibility of construction of all its terms
under modest smoothness conditions for the functionsai and b: for the construction of all
ψn(x; ε) it suffices thatai, b ∈ C1[0, X], while for the construction of all terms of the series
Y (x; ε) the infinite differentiability ofai andb is required.
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CAUCHY PROBLEM FOR A SINGULARLY PERTURBEDDIFFERENTIAL EQUATION 3

2. STATEMENT OF THE PROBLEM AND AUXILIARY ESTIMATES

Consider the Cauchy problem for the linear, inhomogeneous, singularly perturbed differential
equation of orderm:

εmy(m) = εm−1am−1(x)y
(m−1) + · · ·+ a0(x)y + b(x), x ∈ (0, X];(2.1)

y(0; ε) = y0, . . . , y(m−1)(0; ε) =
ym−1

εm−1
,(2.2)

whereε > 0 is the perturbation parameter,X > 0, y0, . . . , ym−1 ∈ R, anda0, . . . , am−1,
b ∈ C1[0, X]. Moreover, we assume that the coefficientsai(x) satisfy the Routh–Hurwitz
condition for allx ∈ [0, X] (see, e.g., [3]):

(2.3)

−a00(x) > 0,

∣∣∣∣a00(x) a01(x)
a10(x) a11(x)

∣∣∣∣ > 0, . . . ,

(−1)m

∣∣∣∣∣∣
a00(x) . . . a0(m−1)(x)

...
...

...
a(m−1)0(x) . . . a(m−1)(m−1)(x)

∣∣∣∣∣∣ > 0,

where

aij(x) :=


a2i−j(x) for 0 ≤ 2i− j < m,

−1 for 2i− j = m,

0, for 2i− j < 0 or 2i− j > m.

Recall that for the fulfillment of the conditions (2.3) it is necessary (and form ∈ {1, 2} is
also sufficiently) that allai(x) be negative.

Let p be that mapping, which to eachx ∈ [0, X] puts in corresponding the polynomial

p(x) := λm − am−1(x)λ
m−1 − · · · − a1(x)λ− a0(x).(2.4)

Since the degree of the polynomialp(x) ism on the whole segment[0, X], there exist functions
λ1, . . . , λm : [0, X] → C such that

p(x) = (λ− λ1(x)) . . . (λ− λm(x))

for eachx ∈ [0, X]; the numbersλ1(x), . . . , λm(x) are called roots of the polynomialp(x).
The ordered set(λ1, . . . , λm) of the functionλi is called the vector-function of roots of the
mappingp. Note that there exist infinitely many vector-functions of roots since for eachx ∈
[0, X] we can list the roots of the polynomialp(x) in various orders. We fix one of the possible
orderings.

By the Routh–Hurwitz criterion (see [3]), the real parts of the roots of the polynomialp(x)
are negative if and only if its coefficientsai(x) satisfy the inequalities (2.3). Thus, for all
(i, x) ∈ {1, . . . ,m} × [0, X], the inequality

(2.5) Reλi(x) < 0

holds.
We prove that each of the functionReλi is bounded on the segment[0, X] from the above by

a certain negative constant.
Let P be the mapping that to eachM = (a0, . . . , am−1) ∈ Cm puts in corresponding the

polynomial

P (M) := λm − am−1λ
m−1 − · · · − a1λ− a0.(2.6)

Denote by{Λ} the set of all mappingsΛ : Cm → Cm, which to eachM ∈ Cm put in correspon-
dence an ordered set(λ1(M), . . . , λm(M)) of roots of the equationP (M) = 0 (we assume that
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4 E. E. BUKZHALEV AND A. V. OVCHINNIKOV

each root is repeated as many times as its multiplicity). In fact, the choice ofΛ ∈ {Λ}means the
choice of numbering of roots of the polynomialP (M) for eachM ∈ Cm. It is easy to verify
that form ≥ 2 the set{Λ} contains no mappings continuous in the whole spaceCm. How-
ever, it is known that for eachm and any pointM0 ∈ Cm, there exists a mappingΛM0 ∈ {Λ}
continuous at this point (see, e.g., [6]).

Letϕ be the mapping, which to eachΛ ∈ {Λ} puts in correspondence the vector-functionλ =
(λ1, . . . , λm) whose componentsλi to eachM ∈ Cm put in correspondence theith coordinates
of Λ(M): Λ(M) = (λ1(M), . . . , λm(M)). Obviously,ϕ is a bijective correspondence between
{Λ} and {λ} := ϕ({Λ}). Moreover, the continuity of the mappingΛ is equivalent to the
continuity of the corresponding vector-functionϕ(Λ), which, in its turn, is equivalent to the
continuity of all its components.

Lemma 2.1. Letλ = (λ1, . . . , λm) ∈ {λ}. Then

Λ : Cm 3M 7→ max{Reλ1(M), . . . ,Reλm(M)}
is a continuous function.

Remark 2.1. For each pointM ∈ Cm, the unordered set of roots of the polynomialP (M) and
the valueΛ(M) are independent of the choice ofλ ∈ {λ}. Thus, to eachλ ∈ {λ} (i.e., to each
way of numbering of roots of the polynomialP (M)) the same functionΛ corresponds.

Proof of Lemma 2.1.Fix an arbitrary pointM0 ∈ Cm and choose a mappingλM0 = (λ1
M0

,
. . . , λm

M0
) ∈ {λ} continuous at this point. Each of the functionsλi

M0
is also continuous at the

pointM0. But the continuity ofλi
M0

implies the continuity ofReλi
M0

, whereas the continuity
of all Reλi

M0
, in its turn, implies the continuity of the maximum of these functions.

Corollary 2.2. There exist positiveχ (independent ofi andx) such that

Reλi(x) < −χ
for all (i, x) ∈ {1, . . . ,m} × [0, X], whereλi(x) is the ith root of the polynomialp(x) (see
(2.4)) for eachx ∈ [0, X].

Remark 2.2. For eachx ∈ [0, X], the unordered set of roots of the polynomialp(x) and the
valueλ(x) := max{Reλ1(x), . . . ,Reλm(x)} are independent of the way of numbering of
these roots.

Proof of Corollary 2.2.Let λ = (λ1, . . . , λm) be a mapping from{λ}. By the remark above,
without loss of generality, we can assume that

λi(x) = λi(a0(x), . . . , am−1(x)) ∀(i, x) ∈ {1, . . . ,m} × [0, X].

Since the functionλ(x), which is equal toΛ(a0(x), . . . , am−1(x)), is continuous (as a composite
function) and negative (see (2.5)) on the whole segment[0, X], by the Weierstrass extreme-value
theorem, there existsx0 ∈ [0, X] such that

(2.7)
χ : = −λ(x0) = −max

[0,X]
Λ

(
a0(x), . . . , am−1(x)

)
= −max

[0,X]
max

{
Reλ1(x), . . . ,Reλm(x)

}
> 0.

The proof is complete.

Remark 2.3. One can prove that there exist continuous functionsλ1, . . . , λm : [0, X] 7→ C
that describe the set of all roots (with account of multiplicities) of the polynomialp(x) for each
x ∈ [0, X]; here the fact that the variablex is one-dimensional is substantial.
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Consider the following auxiliary problem:

a0(x)ȳ(x) + b(x) = 0, x ∈ [0, X];(2.8)

dmΠ

dξm (ξ) = am−1(0)
dm−1Π

dξm−1 (ξ) + · · ·+ a0(0)Π(ξ), ξ ∈
(

0,
X

ε

]
;(2.9)

Π(0) = y0 − ȳ(0),
dΠ

dξ
(0) = y1, . . . ,

dm−1Π

dξm−1 (0) = ym−1.(2.10)

Equation (2.8) is an algebraic equation of the first degree with respect toȳ(x), whereas (2.9)
is an autonomous homogeneous linear differential equation forΠ(ξ). The solution of the prob-
lem (2.8)–(2.10) has the form

(2.11)

ȳ(x) = − b(x)

a0(x)
,

Π(ξ) = α11e
λ1(0)ξ + · · ·+ α1m1ξ

m1−1eλm1 (0)ξ + · · ·

+ αq1e
λm1+···+mq−1+1(0)ξ + · · ·+ αqmqξ

mq−1eλm1+···+mq−1+mq (0)ξ,

whereλ1(0) = · · · = λm1(0), . . . , λm1+···+mq−1+1(0) = · · · = λm1+···+mq(0) are roots of the
polynomialp(0) (see (2.4)),α11, . . . , αqmq are constants that are uniquely expressed through
y0 − ȳ(0), y1, . . . ,ym−1 andλ1(0), . . . ,λm(0) (herem1 + · · ·+mq = m).

We see from (2.11) and (2.7) that for sufficiently largeC̃ the functionsΠ(i) satisfy the estimate∣∣Π(i)(ξ)
∣∣ ≤ C̃(1 + ξm−1)e−χξ, (i, ξ) ∈ {0, . . . ,m− 1} × [0,+∞).(2.12)

In the problem (2.1)–(2.2), we perform the following change of variables:

(2.13)

x = εξ,

y(x; ε) = ỹ(ξ, x) + εz1(ξ; ε),

di−1y

dxi−1 (x; ε) = ε1−id
i−1Π

dξi−1 (ξ) + ε2−izi(ξ; ε), i = 2,m,

whereỹ(ξ, x) := ȳ(x) + Π(ξ).
For the new functionszi(ξ; ε) we obtain the following initial-value problem:

dz1

dξ
= z2 − ȳ′(εξ), ξ ∈

(
0,
X

ε

]
;(2.14)

dzi

dξ
= zi+1, (i, ξ) ∈ {2, . . . ,m− 1} ×

(
0,
X

ε

]
;(2.15)

dzm

dξ
= am−1(εξ)z

m + · · ·+ a0(εξ)z
1 + f(ξ; ε), ξ ∈

(
0,
X

ε

]
;(2.16)

z1(0; ε) = . . . = zm(0; ε) = 0(2.17)

((2.14) only form ≥ 2, (2.15) only form ≥ 3), where

f(ξ; ε) :=


ε−1

{[
am−1(εξ)− am−1(0)

]
×Π(m−1)(ξ) + · · ·+

[
a0(εξ)− a0(0)

]
Π(ξ)

}
for m ≥ 2;

ε−1
[
a0(εξ)− a0(0)

]
Π(ξ)− ȳ′(εξ) for m = 1.

(2.18)
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6 E. E. BUKZHALEV AND A. V. OVCHINNIKOV

We transform Eq. (2.16) adding the variablex as a new parameter:

(2.19)
dzm

dξ
= am−1(x)z

m + · · ·+ a0(x)z
1 +

[
am−1(εξ)− am−1(x)

]
zm + . . .

+
[
a0(εξ)− a0(x)

]
z1 + f(ξ; ε), (ξ, x) ∈

(
0,
X

ε

]
× [0, X].

The problem (2.14), (2.15), (2.19), (2.17) is equivalent to the following system of integral
equations:

(2.20) zi(ξ; ε) = −
∫ ξ

0

Φ1
ξi−1(ξ − ζ;x)ȳ′(εζ)dζ

+

∫ ξ

0

Φm
ξi−1(ξ − ζ;x)

{[
am−1(εζ)− am−1(x)

]
zm(ζ; ε)

+ · · ·+
[
a0(εζ)− a0(x)

]
z1(ζ; ε) + f(ζ; ε)

}
dζ,

(i, ξ, x) ∈ 1,m×
[
0,
X

ε

]
× [0, X],

whereΦj

ξi−1(ξ − ζ;x) = Ki
j(ξ, ζ;x) are the entries of the Cauchy matrix

K(ξ, ζ;x) :=


Φ1(ξ − ζ;x) Φ2(ξ − ζ;x) . . . Φm(ξ − ζ;x)
Φ1

ξ(ξ − ζ;x) Φ2
ξ(ξ − ζ;x) . . . Φm

ξ (ξ − ζ;x)
...

...
...

...
Φ1

ξm−1(ξ − ζ;x) Φ2
ξm−1(ξ − ζ;x) . . . Φm

ξm−1(ξ − ζ;x)


of the corresponding homogeneous system

dz1

dξ
= z2, . . . ,

dzm−1

dξ
= zm,

dzm

dξ
= am−1(x)z

m + · · ·+ a0(x)z
1.

Note that the functionsΦ1(ξ;x) andΦm(ξ;x) used in (2.20), due to the definition of the
Cauchy matrix, are the solutions of the following initial-value problems:

dmΦ1

dξm = am−1(x)
dm−1Φ1

dξm−1 + · · ·+ a0(x)Φ
1, (ξ, x) ∈ R× [0, X];(2.21)

Φ1(0; x) = 1,
dΦ1

dξ
(0; x) = . . . =

dm−1Φ1

dξm−1 (0; x) = 0, x ∈ [0, X];(2.22)

dmΦm

dξm = am−1(x)
dm−1Φm

dξm−1 + · · ·+ a0(x)Φ
m, (ξ, x) ∈ R× [0, X];(2.23)

Φm(0; x) = . . . =
dm−2Φm

dξm−2 (0; x) = 0,
dm−1Φm

dξm−1 (0; x) = 1, x ∈ [0, X].(2.24)

From (2.21)–(2.24) and the theorems on the continuity and differentiability with respect
to parameters of solutions of initial-value problems we conclude thatΦ1(ξ;x), Φm(ξ;x) ∈
C∞,1(R× [0, X]).

Since the solution(z1, . . . , zm) of the system (2.20) is clearly independent ofx, we can
replacex in (2.20) by an arbitrary functionξ andε with values in[0, X]. Then, settingx = εξ,
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we arrive at the following equations forzi(ξ; ε):

(2.25) zi(ξ; ε) = −
∫ ξ

0

Φ1
ξi−1(ξ − ζ; εξ)ȳ′(εζ)dζ +

∫ ξ

0

Φm
ξi−1(ξ − ζ; εξ)

×
{[
am−1(εζ)− am−1(εξ)

]
zm(ζ; ε) + · · ·+

[
a0(εζ)− a0(εξ)

]
z1(ζ; ε) + f(ζ; ε)

}
dζ

=: Âi(ε)[z
1, . . . , zm](ξ; ε), (i, ξ) ∈ 1,m×

[
0,
X

ε

]
,

(the first integral only form ≥ 2) or briefly

(2.26)
(
z1(ξ; ε), . . . , zm(ξ; ε)

)
=

(
Â1(ε)[z

1, . . . , zm](ξ; ε), . . . , Âm(ε)[z1, . . . , zm](ξ; ε)
)

=

=: Â(ε)[z1, . . . , zm](ξ; ε), ξ ∈
[
0,
X

ε

]
,

where for each fixedε ∈ (0,+∞) by the domain of the operator̂A(ε) we mean the space
Cm[0, X/ε] of m-dimensional vector-functions continuous on the segment[0, X/ε]:

Â(ε) : Cm

[
0,
X

ε

]
→ Cm

[
0,
X

ε

]
.

In the sequel we need one auxiliary property of the solutionw of the Cauchy problem for a
linear differential equation with constant coefficients considered as parameters forw:

dmw

dξm = am−1
dm−1w

dξm−1 + · · ·+ a0w, ξ ∈ (0,+∞);(2.27)

w(0;Mm, Nm) = w0, . . . ,
dm−1w

dξm−1 (0;Mm, Nm) = wm−1,(2.28)

whereMm = (a0, . . . , am−1) ∈ Cm andNm = (w0, . . . , wm−1) ∈ Cm.
Introduce the following notation:

(2.29) Λm(Mm) := max{Reλ1(Mm), . . . ,Reλm(Mm)},
whereλ1(Mm), . . . , λm(Mm) are the roots of the characteristic polynomial of Eq. (2.27) (see
also (2.6)),

Πm(C) :=
{
(x1, . . . , xm) ∈ Cm : |x1| ≤ C, . . . , |xm| ≤ C

}
.

Lemma 2.3. LetCa ≥ 0 andCw ≥ 0. Then there exists̃Cm ≥ 0 such that∣∣∣∣diw

dξi (ξ;Mm, Nm)

∣∣∣∣ ≤ C̃m(1 + ξm−1)eΛm(Mm)ξ(2.30)

for all (i, ξ,Mm, Nm) ∈ {0, . . . ,m−1}× [0,+∞)×Πm(Ca)×Πm(Cw), wherew(ξ;Mm, Nm)
is a solution of the problem(2.27)–(2.28).

Proof. Apply induction bym. Denote bySm the assertion of the lemma. Since the validity of
S1 is obvious, it remains to verify that for any integerm ≥ 1 the assertionSm impliesSm+1.

Consider the Cauchy problem for the equation of(m+ 1)th order:

dm+1w

dξm+1 = am
dmw

dξm + · · ·+ a0w, ξ ∈ (0,+∞);(2.31)

w(0;Mm+1, Nm+1) = w0, . . . ,
dmw

dξm (0;Mm+1, Nm+1) = wm(2.32)
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8 E. E. BUKZHALEV AND A. V. OVCHINNIKOV

and fix arbitrary nonnegativeCa andCw. The assertionSm+1 is as follows: there exists suffi-
ciently largeC̃m+1 such that∣∣∣∣diw

dξi (ξ;Mm+1, Nm+1)

∣∣∣∣ ≤ C̃m+1(1 + ξm)eΛm+1(Mm+1)ξ

for all
(i, ξ,Mm+1, Nm+1) ∈ 0,m× [0,+∞)× Πm+1(Ca)× Πm+1(Cw),

wherew(ξ;Mm+1, Nm+1) is a solution of the problem (2.31)–(2.32).
To verify the validity ofSm+1 (under the validity ofSm), we perform the change of the

dependent variable in the problem (2.31)–(2.32):

w(ξ;Mm+1, Nm+1) = eλ∗(Mm+1)ξu(ξ;Mm+1, Nm+1),(2.33)

whereλ∗ is the function, which to eachMm+1 = (a0, . . . , am) ∈ Cm+1 puts in correspon-
dence an arbitrary rootλi(Mm+1) of the characteristic polynomial of Eq. (2.31) whose real part
Reλi(Mm+1) coincides withΛm+1(Mm+1):

Reλ∗(Mm+1) = Λm+1(Mm+1).(2.34)

For the new functionu(ξ;Mm+1, Nm+1) we obtain the following initial-value problem:

dm+1u

dξm+1 = bm(Mm+1)
dmu

dξm + · · ·+ b1(Mm+1)
du

dξ
, ξ ∈ (0,+∞);(2.35)

u(0;Mm+1, Nm+1) = u0(Mm+1, Nm+1), . . . ,

dmu

dξm (0;Mm+1, Nm+1) = um(Mm+1, Nm+1),
(2.36)

where

bi(Mm+1) = b̃i(λ
∗(Mm+1),Mm+1),

ui(Mm+1, Nm+1) = ũi(λ∗(Mm+1), Nm+1),

b̃i andũi are known functions ofλ∗, Mm+1 = (a0, . . . , am), andNm+1 = (w0, . . . , wm) (they
are polynomial functions with respect toλ∗ and linear functions with respect toa0, . . . , am

andw0, . . . , wm). The characteristic polynomial of Eq. (2.35) for anyMm+1 ∈ Cm+1 has the
zero root (see (2.37)); hence the coefficientb0(Mm+1) of the functionu is identical zero.

Due to (2.33), for eachMm+1 ∈ Cm+1, the roots of the characteristic polynomial of Eq. (2.35)
are as follows:

µi(Mm+1) := λi(Mm+1)− λ∗(Mm+1), i ∈ {1, . . . ,m+ 1}.(2.37)

This and the definition ofλ∗(Mm+1) imply

Reµi(Mm+1) ≤ 0(2.38)

for all (i,Mm+1) ∈ {1, . . . ,m+ 1} × Cm+1.
Since we assume that the pointsMm+1 = (a0, . . . , am) belong to the finite parallelepiped

Pm+1(Ca), all rootsλi(Mm+1) of the characteristic polynomial of Eq. (2.31) satisfy the condi-
tion ∣∣λi(Mm+1)

∣∣ ≤ 1 + Ca(2.39)

(see, e.g., [5]). Then there exist nonnegative constantsCb andCu such that∣∣bi(Mm+1)
∣∣ ≤ Cb,

∣∣ui(Mm+1, Nm+1)
∣∣ ≤ Cu(2.40)

for all (i,Mm+1, Nm+1) ∈ 0,m× Πm+1(Ca)× Πm+1(Cw).
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We reduce the order of Eq. (2.35) by the following change of the dependent variable:

du

dξ
(ξ;Mm+1, Nm+1) = v(ξ;Mm+1, Nm+1).(2.41)

The functionv(ξ;Mm+1, Nm+1) satisfies the following initial-value problem:

(2.42)

dmv

dξm = bm(Mm+1)
dm−1v

dξm−1 + · · ·+ b1(Mm+1)v, ξ ∈ (0,+∞);

v(0;Mm+1, Nm+1) = u1(Mm+1, Nm+1), . . . ,

dm−1v

dξm−1 (0;Mm+1, Nm+1) = um(Mm+1, Nm+1).

Let ν1(Mm+1), . . . ,νm(Mm+1) be roots of the characteristic polynomial of Eq. (2.42). Since
each of the rootsνi(Mm+1) is at the same time a root of the characteristic polynomial of
Eq. (2.35), they, similarly toµi(Mm+1) (see (2.38)), satisfy the following inequality for all
Mm+1 ∈ Cm+1:

Re νi(Mm+1) ≤ 0.(2.43)

Note also that

Mm = (b1(Mm+1), . . . , bm(Mm+1)) ∈ Πm(Cb),

Nm = (u1(Mm+1, Nm+1), . . . , u
m(Mm+1, Nm+1)) ∈ Πm(Cu)

for all Mm+1 ∈ Πm+1(Ca) andNm+1 ∈ Πm+1(Cw) (see (2.40)). The last estimates allow one
to apply the inductive hypothesis to the functionv: there exists̃Cm ≥ 0 such that

(2.44)

∣∣∣∣div

dξi (ξ;Mm+1, Nm+1)

∣∣∣∣ ≤ C̃m(1 + ξm−1)

for all (i, ξ,Mm+1, Nm+1) ∈ {0, . . . ,m− 1} × [0,+∞)×Πm+1(Ca)×Πm+1(Cw) (see (2.30),
(2.29), and (2.43)).

From (2.41) and (2.44) we obtain for the firstm derivatives of the functionu the relation∣∣∣∣diu

dξi (ξ;Mm+1, Nm+1)

∣∣∣∣ =

∣∣∣∣di−1v

dξi−1 (ξ;Mm+1, Nm+1)

∣∣∣∣ ≤ C̃m(1 + ξm−1);(2.45)

here up to the end of the proof we assume that(ξ,Mm+1, Nm+1) ∈ [0,+∞) × Πm+1(Ca) ×
Πm+1(Cw).

To estimate the functionu, we integrate (2.41) and then apply (2.36), (2.40), and (2.44) and
the monotonicity property and the estimate of the absolute value of the definite integral:

(2.46)
∣∣∣u(ξ;Mm+1, Nm+1)

∣∣∣
=

∣∣∣u(0;Mm+1, Nm+1) +

∫ ξ

0

v(ζ;Mm+1, Nm+1)dζ
∣∣∣ ≤ ∣∣∣u0(Mm+1, Nm+1)

∣∣∣
+

∫ ξ

0

∣∣∣v(ζ;Mm+1, Nm+1)
∣∣∣dζ ≤ Cu +

∫ ξ

0

C̃m(1 + ξm−1)dζ ≤ C̃u(1 + ξm)

for sufficiently largeC̃u.
Now we turn tow. From (2.33), (2.46), (2.45), (2.39), and (2.34) and the Leibniz formula for

theith derivative of the product of two functions, for eachi ∈ 0,m and sufficiently largẽCm+1
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we have∣∣∣∣diw

dξi (ξ;Mm+1, Nm+1)

∣∣∣∣
≤

i∑
j=0

i!

j!(i− j)!

∣∣u(j)(ξ;Mm+1, Nm+1)
∣∣∣∣λ∗(Mm+1)

∣∣i−j∣∣eλ∗(Mm+1)ξ
∣∣

≤
[
C̃u(1 + ξm)(1 + Ca)

i +
i∑

j=1

i!

j!(i− j)!
C̃m(1 + ξm−1)(1 + Ca)

i−j
]
eRe λ∗(Mm+1)ξ

≤ C̃m+1(1 + ξm)eΛm+1(Mm+1)ξ.

The proof is complete.

Corollary 2.4. There existχ > 0 andCΦ > 0 such that

|Φ1
ξi(ξ;x)|, |Φm

ξi(ξ;x)| ≤ CΦ(1 + ξm−1)e−χξ(2.47)

for all (i, ξ, x) ∈ {0, . . . ,m − 1} × [0,+∞) × [0, X], whereΦ1(ξ;x) and Φm(ξ;x) are the
solutions of the problems(2.21)–(2.22)and (2.23)–(2.24), respectively.

Proof. To prove the estimate (2.47) it suffices to set

χ := −max
[0,X]

max
{

Reλ1(x), . . . ,Reλm(x)
}

(see (2.7)) and apply the Weierstrass extreme-value theorem on the boundedness of a continuous
function forai and Lemma 2.3.

3. CONSTRUCTION AND PROOF OF CONVERGENCE

OF I TERATIVE SEQUENCE

Let

O(ϑ,C0; ε) :=

{
(z1, . . . , zm) ∈ Cm

[
0,
X

ε

]
: ∀ξ ∈

[
0,
X

ε

]
(z1(ξ), . . . , zm(ξ)) ∈ [−C0,+C0]

m

}
be a closedC0-neighborhood of the vector-function(z1, . . . , zm) ≡ (0, . . . , 0) =: ϑ in the
spaceCm[0, X/ε].

Proposition 3.1. There existε0 > 0 andC0 ≥ 0 such that

Â(C0; ε) : O(ϑ,C0; ε) → O(ϑ,C0; ε)

for any ε ∈ (0, ε0], whereÂ(C0; ε) =
(
Â1(C0; ε), . . . , Âm(C0; ε)

)
is the restriction of the

operatorÂ(ε) toO(ϑ,C0; ε).

Proof. We fix arbitraryε > 0 andC0 ≥ 0, apply the operatorŝAi(C0; ε) to an arbitrary vector-
function(z1(ξ), . . . , zm(ξ)) ∈ O(ϑ,C0; ε) and, taking into account (2.25) and (2.47), estimate
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the result obtained:

(3.1)
∣∣∣Âi(C0; ε)[z

1, . . . , zm](ξ)
∣∣∣

≤ CΦe
−χξ

{
C0

∫ ξ

0

eχζ
[
1 + (ξ − ζ)m−1][|am−1(εζ)− am−1(εξ)|+ . . .

+ |a0(εζ)− a0(εξ)|
]
dζ +

∫ ξ

0

eχζ
[
1 + (ξ − ζ)m−1][|f(ζ; ε)|+ |ȳ′(εζ)|

]
dζ

}
, i = 1,m

(the term|ȳ′(εζ)| only form ≥ 2).
For the first integral in (3.1) we have

(3.2)
∫ ξ

0

eχζ
[
1 + (ξ − ζ)m−1][|am−1(εζ)− am−1(εξ)|+ · · ·+ |a0(εζ)− a0(εξ)|

]
dζ

= ε

∫ ξ

0

eχζ
[
(ξ − ζ) + (ξ − ζ)m]{∣∣a′m−1(ε[(1− θm−1)ζ + θm−1ξ])

∣∣ + . . .

+
∣∣a′0(ε[(1− θ0)ζ + θ0ξ])

∣∣}dζ
≤ ε

{
‖a′m−1(x)‖+ · · ·+ ‖a′0(x)‖

} ∫ ξ

0

eχζ
[
(ξ − ζ) + (ξ − ζ)m]

dζ

= εα
{

1
χ2

[
eχξ − 1− χξ

]
+ m!

χm+1

[
eχξ − 1− χξ − · · · − 1

m!
(χξ)m]}

≤ εβeχξ,

whereθi = θi(εζ, εξ) ∈ (0, 1), ‖ · ‖ is the norm of the spaceC[0, X], and

α := ‖a′m−1(x)‖+ · · ·+ ‖a′0(x)‖, β := α
χm−1 +m!

χm+1
.

For the second integral in (3.1) we have (see (2.18) and (2.12))

(3.3)
∫ ξ

0

eχζ
[
1 + (ξ − ζ)m−1][|f(ζ; ε)|+ |ȳ′(εζ)|

]
dζ ≤

∫ ξ

0

eχζ
[
1 + (ξ − ζ)m−1]

×
{
C̃

[
|a′m−1(εθm−1ζ)|+ · · ·+ |a′0(εθ0ζ)|

]
(ζ + ζm)e−χζ + |ȳ′(εζ)|

}
dζ

≤
{
C̃αmax

ζ>0

[
(ζ + ζm)e−χζ

]
+ ‖ȳ′(x)‖

}∫ ξ

0

eχζ
[
1 + (ξ − ζ)m−1]dζ

=
{
C̃αmax

ζ>0

[
(ζ + ζm)e−χζ

]
+ ‖ȳ′(x)‖

}{
1
χ

[
eχξ − 1

]
+ (m−1)!

χm

[
eχξ − 1− χξ − · · · − 1

(m−1)!
(χξ)m−1]} ≤ γeχξ,

whereθi = θi(εζ) ∈ (0, 1),

γ :=
{
C̃αmax

ζ>0

[
(ζ + ζm)e−χζ

]
+ ‖ȳ′(x)‖

}
χm−1+(m−1)!

χm .

From (3.1), (3.2), and (3.3) we see that ifC0 andε satisfy the inequalities

0 ≤ C0εCΦβ + CΦγ ≤ C0,(3.4)

henceÂ(C0; ε)[z
1, . . . , zm](ξ) ∈ O(ϑ,C0; ε).

We set

ε0 := γ0(CΦβ)−1,(3.5)
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whereγ0 is an arbitrary number from the interval(0, 1) (if β = 0, i.e.,ai(x) = const on [0, X],
thenε0 := +∞) andC0 := CΦγ/(1−γ0). Then the inequalities (3.4) hold for anyε ∈ (0, ε0].

Assume that for any fixed positiveε and anyϕ1(ξ) = (z1
1(ξ), . . . , z

m
1 (ξ)) andϕ2(ξ) =

(z1
2(ξ), . . . , z

m
2 (ξ)) fromCm[0, X/ε], the distanceρε betweenϕ1 andϕ2 is defined:

ρε(ϕ1, ϕ2) := ‖ϕ2 − ϕ1‖Cm[0,X/ε] := max
ξ∈X(ε)

max
1≤i≤m

|zi
2(ξ)− zi

1(ξ)|,(3.6)

whereX(ε) := [0, X/ε]. Note thatCm[0, X/ε] andO(ϑ,C0; ε) with ρε defined above are
complete metric spaces.

Proposition 3.2. The operatorÂ(ε) is a contractive operator for anyε ∈ (0, ε0].

Proof. Let ρε be the metric (3.6) of the spaceCm[0, X/ε]. Take two arbitrary functionsϕ1(ξ) =
(z1

1(ξ), . . . , z
m
1 (ξ)) andϕ2(ξ) = (z1

2(ξ), . . . , z
m
2 (ξ)) from this space and, taking into account

(2.25) and (2.47), estimate the distance betweenÂ(ε)[ϕ1] andÂ(ε)[ϕ2]:

(3.7) ρε

(
Â(ε)[ϕ1], Â(ε)[ϕ2]

)
= max

ξ∈X(ε)
max

1≤i≤m

∣∣∣Âi(ε)[ϕ2](ξ)− Âi(ε)[ϕ1](ξ)
∣∣∣

= max
ξ∈X(ε)

max
1≤i≤m

∣∣∣ ∫ ξ

0

Φm
ξi−1(ξ − ζ; εξ)

{[
am−1(εζ)− am−1(εξ)

][
zm
2 (ζ)− zm

1 (ζ)
]
+ . . .

+
[
a0(εζ)− a0(εξ)

][
z1
2(ζ)− z1

1(ζ)
]}
dζ

∣∣∣
≤ ρε(ϕ1, ϕ2)CΦ max

ξ∈X(ε)

∫ ξ

0

eχ(ζ−ξ)
[
1 + (ξ − ζ)m−1]

×
[∣∣am−1(εζ)− am−1(εξ)

∣∣ + · · ·+
∣∣a0(εζ)− a0(εξ)

∣∣]dζ.
From (3.7), (3.2), and (3.5) we conclude that for anyε ∈ (0, ε0] the contraction coefficient

k(ε) of the operator̂A(ε) satisfies the estimate

k(ε) ≤ εCΦβ = γ0

ε

ε0

≤ γ0 < 1.(3.8)

The proof is complete.

Since the contraction coefficientk(C0; ε) of the operator̂A(C0; ε) certainly does not exceed
k(ε), the estimate (3.8) is also valid for it:

k(C0; ε) ≤ γ0

ε

ε0

≤ γ0 < 1.(3.9)

Thus, we can apply the Banach fixed-point theorem to the operatorÂ(C0; ε) and conclude
that for anyε ∈ (0, ε0] the solution(z1(ξ; ε), . . . , zm(ξ; ε)) =: ϕ(ξ; ε) of the problem (2.14)–
(2.17) (which is equivalent to Eq. (2.26)) belongs toO(ϑ,C0; ε). We emphasize that the ex-
istence and the global uniqueness (i.e., uniqueness on the set[0, X/ε] × Rm) of the solution
ϕ(ξ; ε) (for all ε ∈ R) are immediately implied by the linearity of the problem (2.14)–(2.17)
(the linearity of Eq. (2.26)).

The contractive property of the operator̂A(C0; ε) also allows one to construct the itera-
tive sequenceϕn(ξ; ε) = (z1

n(ξ; ε), . . . , zm
n (ξ; ε)) converging with respect to the norm of the

spaceCm[0, X/ε] to the exact solutionϕ(ξ; ε) of the problem (2.14)–(2.17) uniformly with
respect toε ∈ (0, ε0]:∥∥ϕ− ϕn

∥∥
Cm[0,X/ε]

:= max
ξ∈X(ε)

max
1≤i≤m

∣∣zi(ξ; ε)− zi
n(ξ; ε)

∣∣ → 0, n→∞.
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We setϕ0(ξ; ε) ≡ (0, . . . , 0) =: ϑ. Sinceϕ(ξ; ε) ∈ O(ϑ,C0; ε), we have∥∥ϕ(ξ; ε)− ϕ0(ξ; ε)
∥∥

Cm[0,X/ε]
=

∥∥ϕ(ξ; ε)
∥∥

Cm[0,X/ε]
≤ C0(3.10)

for all ε ∈ (0, ε0].
Further, for any naturaln we set

ϕn(ξ; ε) := Â(C0; ε)[ϕn−1](ξ; ε).(3.11)

Then, taking into account (3.9) and (3.10), we have for eachn ∈ {0} ∪ N =: N0 and each
ε ∈ (0, ε0]

(3.12)
∥∥ϕ(ξ; ε)− ϕn(ξ; ε)

∥∥
Cm[0,X/ε]

≤ k(C0; ε)
n
∥∥ϕ(ξ; ε)− ϕ0(ξ; ε)

∥∥
Cm[0,X/ε]

≤ C0

(
γ0

ε

ε0

)n

.

We turn to the problem (2.1)–(2.2). Due to (2.13), we obtain the iterative sequencesy1
n(x; ε),

. . . , ym
n (x; ε), respectively, for the solutiony(x; ε) of the original problem and its derivatives

d
dx
y(x; ε), . . . , dm−1

dxm−1y(x; ε):

y1
n(x; ε) := ỹ

(x
ε
, x

)
+ εz1

n

(x
ε
; ε

)
, n ∈ N0;(3.13)

yi
n(x; ε) := ε1−iΠ(i−1)

(x
ε

)
+ ε2−izi

n

(x
ε
; ε

)
, (i, n) ∈ 2,m× N0.(3.14)

Forn ≥ 1, the valuesyi
n(x; ε) can be immediately expressed throughyi

n−1(x; ε):

y1
n(x; ε) = ỹ

(x
ε
, x

)
+ εÂ1(C0; ε)[z

1
n−1, . . . , z

m
n−1]

(x
ε
; ε

)
=: B̂1(ε)[y

1
n−1, . . . , y

m
n−1](x; ε),

yi
n(x; ε) = ε1−iΠ(i−1)

(x
ε

)
+ ε2−iÂi(C0; ε)[z

1
n−1, . . . , z

m
n−1]

(x
ε
; ε

)
=: B̂i(ε)[y

1
n−1, . . . , y

m
n−1](x; ε), i ∈ 2,m,

where

z1
n−1(ξ; ε) = ε−1

[
y1

n−1(εξ; ε)− ỹ(ξ, εξ)
]
,

zi
n−1(ξ; ε) = εi−2yi

n−1(εξ; ε)− ε−1Π(i−1)(ξ), i ∈ 2,m

(see (3.13), (3.14), and (3.11)) or briefly

ψn(x; ε) := B̂(ε)[ψn−1](x; ε),

whereψn(x; ε) := (y1
n(x; ε), . . . , ym

n (x; ε)) and B̂(ε) := (B̂1(ε), . . . B̂m(ε)). Note that the
operatorB̂(ε) is contractive forε ∈ (0, ε0] (i.e., for the sameε asÂ(C0; ε)) and the operator
B̂(ε) satisfies the condition

B̂(ε) : O(ψ̃, C0; ε) → O(ψ̃, C0; ε)
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for ε ∈ (0, ε0], where

O(ψ̃, C0; ε) :=

{
(y1, . . . , ym) ∈ Cm[0, X] : ∀x ∈ [0, X]

y1(x) ∈
[
ỹ

(x
ε
, x

)
− εC0, ỹ

(x
ε
, x

)
+ εC0

]
,

y2(x) ∈
[
ε−1Π′

(x
ε

)
− C0, ε

−1Π′
(x
ε

)
+ C0

]
, . . . ,

ym(x) ∈
[
ε1−mΠ(m−1)

(x
ε

)
− ε2−mC0, ε

1−mΠ(m−1)
(x
ε

)
+ ε2−mC0

] }
is a closed(εC0, C0, . . . , ε

2−mC0)-neighborhood of the vector-function

ψ̃
(x
ε
; ε

)
:=

(
ỹ

(x
ε
, x

)
, ε−1Π′

(x
ε

)
, . . . , ε1−mΠ(m−1)

(x
ε

))
in the spaceCm[0, X].

We estimate the accuracy of the approximation ofdi−1

dxi−1y(x; ε) by yi
n(x; ε). For eachn ∈ N0

andε ∈ (0, ε0] we have (see (3.13), (3.14), (2.13), and (3.12)):∥∥y(x; ε)− y1
n(x; ε)

∥∥ =
∥∥∥y(x; ε)− ỹ

(x
ε
, x

)
− εz1

n

(x
ε
; ε

)∥∥∥
= ε

∥∥∥z1
(x
ε
; ε

)
− z1

n

(x
ε
; ε

)∥∥∥ ≤ ε
∥∥∥ϕ(x

ε
; ε

)
− ϕn

(x
ε
; ε

)∥∥∥
Cm[0,X]

≤ C0ε

(
γ0

ε

ε0

)n

,∥∥∥∥ di−1

dxi−1
y(x; ε)− yi

n(x; ε)

∥∥∥∥ =

∥∥∥∥ di−1

dxi−1
y(x; ε)− ε1−iΠ(i−1)

(x
ε

)
− ε2−izi

n

(x
ε
; ε

)∥∥∥∥
= ε2−i

∥∥∥zi
(x
ε
; ε

)
− zi

n

(x
ε
; ε

)∥∥∥ ≤ ε2−i
∥∥∥ϕ(x

ε
; ε

)
− ϕn

(x
ε
; ε

)∥∥∥
Cm[0,X]

≤ C0ε
2−i

(
γ0

ε

ε0

)n

, i ∈ 2,m.
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