

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 15, Issue 2, Article 6, pp. 1-14, 2018

A METHOD OF THE STUDY OF THE CAUCHY PROBLEM FOR A SINGULARLY PERTURBED LINEAR INHOMOGENEOUS DIFFERENTIAL EQUATION

EVGENY E. BUKZHALEV¹ AND ALEXEY V. OVCHINNIKOV^{1,2}

Received 26 March, 2018; accepted 9 July, 2018; published 1 August, 2018.

¹FACULTY OF PHYSICS, MOSCOW STATE UNIVERSITY, 1 LENINSKIE GORY, MOSCOW, 119991, RUSSIA bukzhalev@mail.ru

²RUSSIAN INSTITUTE FOR SCIENTIFIC AND TECHNICAL INFORMATION OF THE RUSSIAN ACADEMY OF SCIENCES, 20 USIEVICHA ST., MOSCOW, 125190, RUSSIA ovchinnikov@viniti.ru

ABSTRACT. We construct a sequence that converges to a solution of the Cauchy problem for a singularly perturbed linear inhomogeneous differential equation of an arbitrary order. This sequence is also an asymptotic sequence in the following sense: the deviation (in the norm of the space of continuous functions) of its *n*th element from the solution of the problem is proportional to the (n + 1)th power of the parameter of perturbation. This sequence can be used for justification of asymptotics obtained by the method of boundary functions.

Key words and phrases: Singular perturbations, Banach fixed-point theorem, Method of asymptotic iterations, Method of boundary functions, Routh–Hurwitz stability criterion.

2000 Mathematics Subject Classification. Primary 34E15. Secondary 34C11, 30C15.

ISSN (electronic): 1449-5910

^{© 2018} Austral Internet Publishing. All rights reserved.

This work was partially supported by the Russian Foundation for Basic Research (project No. 18-01-00424).

1. INTRODUCTION

We propose an algorithm of construction of a sequence

$$\psi_n(x;\varepsilon) = (y_n^1(x;\varepsilon), \dots, y_n^m(x;\varepsilon))$$

that converges for each $\varepsilon \in (0, \varepsilon_0]$ with respect to the norm of the space $C_m[0, X]$ of continuous *m*-dimensional vector-valued functions of the argument $x \in [0, X]$) to the function

$$\psi(x;\varepsilon) = \left(y(x;\varepsilon), \frac{d}{dx}y(x;\varepsilon), \dots, \frac{d^{m-1}}{dx^{m-1}}y(x;\varepsilon)\right),$$

where $y(x;\varepsilon)$ is a classical solution of the problem (2.1)–(2.2); for the value of ε_0 we obtain an explicit lower estimate. The construction and the proof of convergence of the sequence $\psi_n(x;\varepsilon)$ are based on the Banach fixed-point theorem for a contracting mapping of a complete metric space (see [4]). Since the contraction coefficient k of the mapping is a value of order ε ($k < \varepsilon/\varepsilon_0$), so that the deviation $y_n^i(x;\varepsilon)$ (with respect to the norm of C[0, X]) from $\frac{d^{i-1}}{dx^{i-1}}y(x;\varepsilon)$ is $O(\varepsilon^{n+1})$ (for $0 < \varepsilon \le \varepsilon_0$), we see that this result has also asymptotic character.

Note that each successive element of the sequence $\psi_n(x;\varepsilon)$ is the result of the action of a certain operator on the previous element. Elements of such sequences are usually called iterations and sequences themselves are said to be iterative. In our case, iterations approach to $\psi(x;\varepsilon)$ (in the norm of $C_m[0, X]$) sufficiently rapidly; the rate of approach is asymptotically reciprocal to ε . Therefore, the algorithm of construction of the sequence $\psi_n(x;\varepsilon)$ is a method of asymptotic iterations (for detail, see [1, 2]). The sequences $y_n^i(x;\varepsilon)$ are also called asymptotic iterative sequences of the (i-1)th derivative of the solution $y(x;\varepsilon)$ of the problem considered.

The possibility of application of the method of asymptotic iterations is related to the fulfillment of the condition (2.3) for coefficients of the right-hand side of the equation. However, the fulfillment of these conditions allows one to apply the method of boundary-layer functions (see, e.g., [7]). One can immediately verify that the deviation $y_n^1(x;\varepsilon)$ from the *n*th partial sum $Y_n(x;\varepsilon)$ (which is called the asymptotics or the asymptotic expansion of *n*th order) of the series $Y(x;\varepsilon)$ obtained by the method of boundary-layer functions has the form $O(\varepsilon^{n+1})$. Thus, the convergence of the sequence $y_n^1(x;\varepsilon)$ enables the using of the method of boundary-layer functions (i.e., to the proof of the fact that the difference of $Y_n(x;\varepsilon)$ and the solution $y(x;\varepsilon)$ has the form $O(\varepsilon^{n+1})$ uniformly with respect to $x \in [0, X]$).

Note that the convergence (uniform with respect to ε) as $\varepsilon \in (0, \varepsilon_0]$ of asymptotic sequences $y_n^i(x; \varepsilon)$ is a fundamental advantage of the method of asymptotic iterations over the method of boundary-layer functions, which allows one to construct an asymptotic series, which is, in general does not converge even for arbitrarily small ε . The reason is that the estimate of the deviation of $y_n^1(x; \varepsilon)$ from $Y_n(x; \varepsilon)$, which has the form $O(\varepsilon^{n+1})$, is not uniform with respect to n, so that this deviation may be not infinitesimal as $n \to \infty$ but even unboundedly increasing.

Another advantage of the sequence $\psi_n(x;\varepsilon)$ is the possibility of construction of all its terms under modest smoothness conditions for the functions a_i and b: for the construction of all $\psi_n(x;\varepsilon)$ it suffices that $a_i, b \in C^1[0, X]$, while for the construction of all terms of the series $Y(x;\varepsilon)$ the infinite differentiability of a_i and b is required.

2. STATEMENT OF THE PROBLEM AND AUXILIARY ESTIMATES

Consider the Cauchy problem for the linear, inhomogeneous, singularly perturbed differential equation of order m:

(2.1)
$$\varepsilon^m y^{(m)} = \varepsilon^{m-1} a_{m-1}(x) y^{(m-1)} + \dots + a_0(x) y + b(x), \quad x \in (0, X];$$

(2.2)
$$y(0;\varepsilon) = y^0, \quad \dots, \quad y^{(m-1)}(0;\varepsilon) = \frac{g}{\varepsilon^{m-1}},$$

where $\varepsilon > 0$ is the perturbation parameter, $X > 0, y^0, \ldots, y^{m-1} \in \mathbb{R}$, and a_0, \ldots, a_{m-1} , $b \in C^1[0, X]$. Moreover, we assume that the coefficients $a_i(x)$ satisfy the Routh-Hurwitz condition for all $x \in [0, X]$ (see, e.g., [3]):

(2.3)
$$\begin{aligned} -a_{00}(x) > 0, \quad \begin{vmatrix} a_{00}(x) & a_{01}(x) \\ a_{10}(x) & a_{11}(x) \end{vmatrix} > 0, \quad \dots, \\ (-1)^m \begin{vmatrix} a_{00}(x) & \dots & a_{0(m-1)}(x) \\ \vdots & \ddots & \vdots \\ a_{(m-1)0}(x) & \dots & a_{(m-1)(m-1)}(x) \end{vmatrix} > 0, \end{aligned}$$

where

$$a_{ij}(x) := \begin{cases} a_{2i-j}(x) & \text{for } 0 \le 2i - j < m, \\ -1 & \text{for } 2i - j = m, \\ 0, & \text{for } 2i - j < 0 \text{ or } 2i - j > m. \end{cases}$$

Recall that for the fulfillment of the conditions (2.3) it is necessary (and for $m \in \{1, 2\}$ is also sufficiently) that all $a_i(x)$ be negative.

Let p be that mapping, which to each $x \in [0, X]$ puts in corresponding the polynomial

(2.4)
$$p(x) := \lambda^m - a_{m-1}(x)\lambda^{m-1} - \dots - a_1(x)\lambda - a_0(x).$$

Since the degree of the polynomial p(x) is m on the whole segment [0, X], there exist functions $\lambda_1, \ldots, \lambda_m : [0, X] \to \mathbb{C}$ such that

$$p(x) = (\lambda - \lambda_1(x)) \dots (\lambda - \lambda_m(x))$$

for each $x \in [0, X]$; the numbers $\lambda_1(x), \ldots, \lambda_m(x)$ are called roots of the polynomial p(x). The ordered set $(\lambda_1, \ldots, \lambda_m)$ of the function λ_i is called the vector-function of roots of the mapping p. Note that there exist infinitely many vector-functions of roots since for each $x \in [0, X]$ we can list the roots of the polynomial p(x) in various orders. We fix one of the possible orderings.

By the Routh-Hurwitz criterion (see [3]), the real parts of the roots of the polynomial p(x) are negative if and only if its coefficients $a_i(x)$ satisfy the inequalities (2.3). Thus, for all $(i, x) \in \{1, ..., m\} \times [0, X]$, the inequality

holds.

We prove that each of the function $\operatorname{Re} \lambda_i$ is bounded on the segment [0, X] from the above by a certain negative constant.

Let P be the mapping that to each $M = (a_0, \ldots, a_{m-1}) \in \mathbb{C}^m$ puts in corresponding the polynomial

(2.6)
$$P(M) := \lambda^m - a_{m-1}\lambda^{m-1} - \dots - a_1\lambda - a_0.$$

Denote by $\{\Lambda\}$ the set of all mappings $\Lambda : \mathbb{C}^m \to \mathbb{C}^m$, which to each $M \in \mathbb{C}^m$ put in correspondence an ordered set $(\lambda^1(M), \ldots, \lambda^m(M))$ of roots of the equation P(M) = 0 (we assume that

each root is repeated as many times as its multiplicity). In fact, the choice of $\Lambda \in \{\Lambda\}$ means the choice of numbering of roots of the polynomial P(M) for each $M \in \mathbb{C}^m$. It is easy to verify that for $m \ge 2$ the set $\{\Lambda\}$ contains no mappings continuous in the whole space \mathbb{C}^m . However, it is known that for each m and any point $M_0 \in \mathbb{C}^m$, there exists a mapping $\Lambda_{M_0} \in \{\Lambda\}$ continuous at this point (see, e.g., [6]).

Let φ be the mapping, which to each $\Lambda \in \{\Lambda\}$ puts in correspondence the vector-function $\lambda = (\lambda^1, \ldots, \lambda^m)$ whose components λ^i to each $M \in \mathbb{C}^m$ put in correspondence the *i*th coordinates of $\Lambda(M)$: $\Lambda(M) = (\lambda^1(M), \ldots, \lambda^m(M))$. Obviously, φ is a bijective correspondence between $\{\Lambda\}$ and $\{\lambda\} := \varphi(\{\Lambda\})$. Moreover, the continuity of the mapping Λ is equivalent to the continuity of the corresponding vector-function $\varphi(\Lambda)$, which, in its turn, is equivalent to the continuity of all its components.

Lemma 2.1. Let
$$\lambda = (\lambda^1, \dots, \lambda^m) \in \{\lambda\}$$
. Then
 $\overline{\Lambda} : \mathbb{C}^m \ni M \mapsto \max\{\operatorname{Re} \lambda^1(M), \dots, \operatorname{Re} \lambda^m(M)\}$

is a continuous function.

Remark 2.1. For each point $M \in \mathbb{C}^m$, the unordered set of roots of the polynomial P(M) and the value $\overline{\Lambda}(M)$ are independent of the choice of $\lambda \in \{\lambda\}$. Thus, to each $\lambda \in \{\lambda\}$ (i.e., to each way of numbering of roots of the polynomial P(M)) the same function $\overline{\Lambda}$ corresponds.

Proof of Lemma 2.1. Fix an arbitrary point $M_0 \in \mathbb{C}^m$ and choose a mapping $\lambda_{M_0} = (\lambda_{M_0}^1, \dots, \lambda_{M_0}^m) \in \{\lambda\}$ continuous at this point. Each of the functions $\lambda_{M_0}^i$ is also continuous at the point M_0 . But the continuity of $\lambda_{M_0}^i$ implies the continuity of $\operatorname{Re} \lambda_{M_0}^i$, whereas the continuity of all $\operatorname{Re} \lambda_{M_0}^i$, in its turn, implies the continuity of the maximum of these functions.

Corollary 2.2. There exist positive χ (independent of *i* and *x*) such that

$$\operatorname{Re}\lambda_i(x) < -\chi$$

for all $(i, x) \in \{1, ..., m\} \times [0, X]$, where $\lambda_i(x)$ is the *i*th root of the polynomial p(x) (see (2.4)) for each $x \in [0, X]$.

Remark 2.2. For each $x \in [0, X]$, the unordered set of roots of the polynomial p(x) and the value $\overline{\lambda}(x) := \max\{\operatorname{Re} \lambda_1(x), \ldots, \operatorname{Re} \lambda_m(x)\}$ are independent of the way of numbering of these roots.

Proof of Corollary 2.2. Let $\lambda = (\lambda^1, ..., \lambda^m)$ be a mapping from $\{\lambda\}$. By the remark above, without loss of generality, we can assume that

$$\lambda_i(x) = \lambda^i(a_0(x), \dots, a_{m-1}(x)) \quad \forall (i, x) \in \{1, \dots, m\} \times [0, X].$$

Since the function $\overline{\lambda}(x)$, which is equal to $\overline{\Lambda}(a_0(x), \ldots, a_{m-1}(x))$, is continuous (as a composite function) and negative (see (2.5)) on the whole segment [0, X], by the Weierstrass extreme-value theorem, there exists $x_0 \in [0, X]$ such that

(2.7)

$$\chi := -\overline{\lambda}(x_0) = -\max_{[0,X]} \overline{\Lambda} \left(a_0(x), \dots, a_{m-1}(x) \right)$$

$$= -\max_{[0,X]} \max \left\{ \operatorname{Re} \lambda_1(x), \dots, \operatorname{Re} \lambda_m(x) \right\} > 0.$$

The proof is complete.

Remark 2.3. One can prove that there exist continuous functions $\lambda_1, \ldots, \lambda_m : [0, X] \mapsto \mathbb{C}$ that describe the set of all roots (with account of multiplicities) of the polynomial p(x) for each $x \in [0, X]$; here the fact that the variable x is one-dimensional is substantial.

Consider the following auxiliary problem:

(2.8)
$$a_0(x)\bar{y}(x) + b(x) = 0, \quad x \in [0, X];$$

(2.9)
$$\frac{d^m \Pi}{d\xi^m}(\xi) = a_{m-1}(0) \frac{d^{m-1} \Pi}{d\xi^{m-1}}(\xi) + \dots + a_0(0) \Pi(\xi), \quad \xi \in \left(0, \frac{X}{\varepsilon}\right]$$

(2.10)
$$\Pi(0) = y^0 - \bar{y}(0), \quad \frac{d\Pi}{d\xi}(0) = y^1, \quad \dots, \quad \frac{d^{m-1}\Pi}{d\xi^{m-1}}(0) = y^{m-1}.$$

Equation (2.8) is an algebraic equation of the first degree with respect to $\bar{y}(x)$, whereas (2.9) is an autonomous homogeneous linear differential equation for $\Pi(\xi)$. The solution of the problem (2.8)–(2.10) has the form

(2.11)

$$\bar{y}(x) = -\frac{b(x)}{a_0(x)}, \\
\Pi(\xi) = \alpha_{11}e^{\lambda_1(0)\xi} + \dots + \alpha_{1m_1}\xi^{m_1-1}e^{\lambda_{m_1}(0)\xi} + \dots + \alpha_{q1}e^{\lambda_{m_1+\dots+m_{q-1}+m_q}(0)\xi} + \dots + \alpha_{qm_q}\xi^{m_q-1}e^{\lambda_{m_1+\dots+m_{q-1}+m_q}(0)\xi}.$$

where $\lambda_1(0) = \cdots = \lambda_{m_1}(0), \ldots, \lambda_{m_1+\cdots+m_{q-1}+1}(0) = \cdots = \lambda_{m_1+\cdots+m_q}(0)$ are roots of the polynomial p(0) (see (2.4)), $\alpha_{11}, \ldots, \alpha_{qm_q}$ are constants that are uniquely expressed through $y^0 - \bar{y}(0), y^1, \ldots, y^{m-1}$ and $\lambda_1(0), \ldots, \lambda_m(0)$ (here $m_1 + \cdots + m_q = m$).

We see from (2.11) and (2.7) that for sufficiently large \tilde{C} the functions $\Pi^{(i)}$ satisfy the estimate

(2.12)
$$\left|\Pi^{(i)}(\xi)\right| \leq \tilde{C}(1+\xi^{m-1})e^{-\chi\xi}, \quad (i,\xi) \in \{0,\dots,m-1\} \times [0,+\infty).$$

In the problem (2.1)–(2.2), we perform the following change of variables:

(2.13)
$$\begin{aligned} x &= \varepsilon \xi, \\ y(x;\varepsilon) &= \tilde{y}(\xi,x) + \varepsilon z^{1}(\xi;\varepsilon), \\ \frac{d^{i-1}y}{dx^{i-1}}(x;\varepsilon) &= \varepsilon^{1-i} \frac{d^{i-1}\Pi}{d\xi^{i-1}}(\xi) + \varepsilon^{2-i} z^{i}(\xi;\varepsilon), \quad i = \overline{2,m}, \end{aligned}$$

where $\tilde{y}(\xi, x) := \bar{y}(x) + \Pi(\xi)$.

For the new functions $z^i(\xi; \varepsilon)$ we obtain the following initial-value problem:

(2.14)
$$\frac{dz^1}{d\xi} = z^2 - \bar{y}'(\varepsilon\xi), \quad \xi \in \left(0, \frac{X}{\varepsilon}\right];$$

(2.15)
$$\frac{dz^i}{d\xi} = z^{i+1}, \quad (i,\xi) \in \{2,\ldots,m-1\} \times \left(0,\frac{X}{\varepsilon}\right];$$

(2.16)
$$\frac{dz^m}{d\xi} = a_{m-1}(\varepsilon\xi)z^m + \dots + a_0(\varepsilon\xi)z^1 + f(\xi;\varepsilon), \quad \xi \in \left(0, \frac{X}{\varepsilon}\right];$$

(2.17)
$$z^{1}(0;\varepsilon) = \ldots = z^{m}(0;\varepsilon) = 0$$

((2.14) only for $m \ge 2$, (2.15) only for $m \ge 3$), where

(2.18)
$$f(\xi;\varepsilon) := \begin{cases} \varepsilon^{-1} \Big\{ \Big[a_{m-1}(\varepsilon\xi) - a_{m-1}(0) \Big] \\ \times \Pi^{(m-1)}(\xi) + \dots + \Big[a_0(\varepsilon\xi) - a_0(0) \Big] \Pi(\xi) \Big\} & \text{for } m \ge 2; \\ \varepsilon^{-1} \Big[a_0(\varepsilon\xi) - a_0(0) \Big] \Pi(\xi) - \bar{y}'(\varepsilon\xi) & \text{for } m = 1. \end{cases}$$

;

We transform Eq. (2.16) adding the variable x as a new parameter:

(2.19)
$$\frac{dz^m}{d\xi} = a_{m-1}(x)z^m + \dots + a_0(x)z^1 + [a_{m-1}(\varepsilon\xi) - a_{m-1}(x)]z^m + \dots + [a_0(\varepsilon\xi) - a_0(x)]z^1 + f(\xi;\varepsilon), \quad (\xi,x) \in \left(0, \frac{X}{\varepsilon}\right] \times [0,X].$$

The problem (2.14), (2.15), (2.19), (2.17) is equivalent to the following system of integral equations:

$$(2.20) \quad z^{i}(\xi;\varepsilon) = -\int_{0}^{\xi} \Phi_{\xi^{i-1}}^{1}(\xi-\zeta;x)\bar{y}'(\varepsilon\zeta)d\zeta + \int_{0}^{\xi} \Phi_{\xi^{i-1}}^{m}(\xi-\zeta;x)\Big\{ \big[a_{m-1}(\varepsilon\zeta) - a_{m-1}(x)\big]z^{m}(\zeta;\varepsilon) + \dots + \big[a_{0}(\varepsilon\zeta) - a_{0}(x)\big]z^{1}(\zeta;\varepsilon) + f(\zeta;\varepsilon)\Big\}d\zeta, (i,\xi,x) \in \overline{1,m} \times \left[0,\frac{X}{\varepsilon}\right] \times [0,X],$$

where $\Phi^j_{\xi^{i-1}}(\xi-\zeta;x)=K^i_j(\xi,\zeta;x)$ are the entries of the Cauchy matrix

$$K(\xi,\zeta;x) := \begin{bmatrix} \Phi^{1}(\xi-\zeta;x) & \Phi^{2}(\xi-\zeta;x) & \dots & \Phi^{m}(\xi-\zeta;x) \\ \Phi^{1}_{\xi}(\xi-\zeta;x) & \Phi^{2}_{\xi}(\xi-\zeta;x) & \dots & \Phi^{m}_{\xi}(\xi-\zeta;x) \\ \vdots & \vdots & \ddots & \vdots \\ \Phi^{1}_{\xi^{m-1}}(\xi-\zeta;x) & \Phi^{2}_{\xi^{m-1}}(\xi-\zeta;x) & \dots & \Phi^{m}_{\xi^{m-1}}(\xi-\zeta;x) \end{bmatrix}$$

of the corresponding homogeneous system

$$\frac{dz^1}{d\xi} = z^2, \quad \dots, \quad \frac{dz^{m-1}}{d\xi} = z^m, \quad \frac{dz^m}{d\xi} = a_{m-1}(x)z^m + \dots + a_0(x)z^1.$$

Note that the functions $\Phi^1(\xi; x)$ and $\Phi^m(\xi; x)$ used in (2.20), due to the definition of the Cauchy matrix, are the solutions of the following initial-value problems:

(2.21)
$$\frac{d^m \Phi^1}{d\xi^m} = a_{m-1}(x) \frac{d^{m-1} \Phi^1}{d\xi^{m-1}} + \dots + a_0(x) \Phi^1, \quad (\xi, x) \in \mathbb{R} \times [0, X];$$

(2.22)
$$\Phi^{1}(0;x) = 1, \quad \frac{d\Phi^{1}}{d\xi}(0;x) = \dots = \frac{d^{m-1}\Phi^{1}}{d\xi^{m-1}}(0;x) = 0, \quad x \in [0,X];$$

(2.23)
$$\frac{d^m \Phi^m}{d\xi^m} = a_{m-1}(x) \frac{d^{m-1} \Phi^m}{d\xi^{m-1}} + \dots + a_0(x) \Phi^m, \quad (\xi, x) \in \mathbb{R} \times [0, X];$$

(2.24)
$$\Phi^m(0;x) = \dots = \frac{d^{m-2}\Phi^m}{d\xi^{m-2}}(0;x) = 0, \quad \frac{d^{m-1}\Phi^m}{d\xi^{m-1}}(0;x) = 1, \quad x \in [0,X].$$

From (2.21)–(2.24) and the theorems on the continuity and differentiability with respect to parameters of solutions of initial-value problems we conclude that $\Phi^1(\xi; x)$, $\Phi^m(\xi; x) \in C^{\infty,1}(\mathbb{R} \times [0, X])$.

Since the solution (z^1, \ldots, z^m) of the system (2.20) is clearly independent of x, we can replace x in (2.20) by an arbitrary function ξ and ε with values in [0, X]. Then, setting $x = \varepsilon \xi$,

we arrive at the following equations for $z^i(\xi; \varepsilon)$:

$$(2.25) \quad z^{i}(\xi;\varepsilon) = -\int_{0}^{\xi} \Phi_{\xi^{i-1}}^{1}(\xi-\zeta;\varepsilon\xi)\bar{y}'(\varepsilon\zeta)d\zeta + \int_{0}^{\xi} \Phi_{\xi^{i-1}}^{m}(\xi-\zeta;\varepsilon\xi) \\ \times \left\{ \left[a_{m-1}(\varepsilon\zeta) - a_{m-1}(\varepsilon\xi) \right] z^{m}(\zeta;\varepsilon) + \dots + \left[a_{0}(\varepsilon\zeta) - a_{0}(\varepsilon\xi) \right] z^{1}(\zeta;\varepsilon) + f(\zeta;\varepsilon) \right\} d\zeta \\ =: \widehat{A}_{i}(\varepsilon)[z^{1},\dots,z^{m}](\xi;\varepsilon), \quad (i,\xi) \in \overline{1,m} \times \left[0, \frac{X}{\varepsilon} \right],$$

(the first integral only for $m \ge 2$) or briefly

(2.26)
$$(z^{1}(\xi;\varepsilon),\ldots,z^{m}(\xi;\varepsilon)) = (\widehat{A}_{1}(\varepsilon)[z^{1},\ldots,z^{m}](\xi;\varepsilon),\ldots,\widehat{A}_{m}(\varepsilon)[z^{1},\ldots,z^{m}](\xi;\varepsilon)) = :\widehat{A}(\varepsilon)[z^{1},\ldots,z^{m}](\xi;\varepsilon), \quad \xi \in \left[0,\frac{X}{\varepsilon}\right],$$

where for each fixed $\varepsilon \in (0, +\infty)$ by the domain of the operator $\widehat{A}(\varepsilon)$ we mean the space $C_m[0, X/\varepsilon]$ of *m*-dimensional vector-functions continuous on the segment $[0, X/\varepsilon]$:

$$\widehat{A}(\varepsilon): C_m\left[0, \frac{X}{\varepsilon}\right] \to C_m\left[0, \frac{X}{\varepsilon}\right].$$

In the sequel we need one auxiliary property of the solution w of the Cauchy problem for a linear differential equation with constant coefficients considered as parameters for w:

(2.27)
$$\frac{d^m w}{d\xi^m} = a_{m-1} \frac{d^{m-1} w}{d\xi^{m-1}} + \dots + a_0 w, \quad \xi \in (0, +\infty);$$

(2.28)
$$w(0; M_m, N_m) = w^0, \dots, \frac{d^{m-1}w}{d\xi^{m-1}}(0; M_m, N_m) = w^{m-1},$$

where $M_m = (a_0, \ldots, a_{m-1}) \in \mathbb{C}^m$ and $N_m = (w^0, \ldots, w^{m-1}) \in \mathbb{C}^m$. Introduce the following notation:

(2.29)
$$\overline{\Lambda}_m(M_m) := \max\{\operatorname{Re}\lambda^1(M_m), \dots, \operatorname{Re}\lambda^m(M_m)\}$$

where $\lambda^1(M_m), \ldots, \lambda^m(M_m)$ are the roots of the characteristic polynomial of Eq. (2.27) (see also (2.6)),

$$\Pi_m(C) := \{ (x_1, \dots, x_m) \in \mathbb{C}^m : |x_1| \le C, \dots, |x_m| \le C \}.$$

Lemma 2.3. Let $C_a \ge 0$ and $C_w \ge 0$. Then there exists $\tilde{C}_m \ge 0$ such that

(2.30)
$$\left|\frac{d^{i}w}{d\xi^{i}}(\xi; M_{m}, N_{m})\right| \leq \tilde{C}_{m}(1+\xi^{m-1})e^{\overline{\Lambda}_{m}(M_{m})\xi}$$

for all $(i, \xi, M_m, N_m) \in \{0, \ldots, m-1\} \times [0, +\infty) \times \prod_m (C_a) \times \prod_m (C_w)$, where $w(\xi; M_m, N_m)$ is a solution of the problem (2.27)–(2.28).

Proof. Apply induction by m. Denote by S_m the assertion of the lemma. Since the validity of S_1 is obvious, it remains to verify that for any integer $m \ge 1$ the assertion S_m implies S_{m+1} .

Consider the Cauchy problem for the equation of (m + 1)th order:

(2.31)
$$\frac{d^{m+1}w}{d\xi^{m+1}} = a_m \frac{d^m w}{d\xi^m} + \dots + a_0 w, \quad \xi \in (0, +\infty);$$

(2.32)
$$w(0; M_{m+1}, N_{m+1}) = w^0, \dots, \frac{d^m w}{d\xi^m}(0; M_{m+1}, N_{m+1}) = w^m$$

and fix arbitrary nonnegative C_a and C_w . The assertion S_{m+1} is as follows: there exists sufficiently large \tilde{C}_{m+1} such that

$$\left|\frac{d^{n}w}{d\xi^{i}}(\xi; M_{m+1}, N_{m+1})\right| \leq \tilde{C}_{m+1}(1+\xi^{m})e^{\overline{\Lambda}_{m+1}(M_{m+1})\xi}$$

for all

$$(i,\xi, M_{m+1}, N_{m+1}) \in \overline{0,m} \times [0,+\infty) \times \Pi_{m+1}(C_a) \times \Pi_{m+1}(C_w),$$

where $w(\xi; M_{m+1}, N_{m+1})$ is a solution of the problem (2.31)–(2.32).

To verify the validity of S_{m+1} (under the validity of S_m), we perform the change of the dependent variable in the problem (2.31)–(2.32):

(2.33)
$$w(\xi; M_{m+1}, N_{m+1}) = e^{\lambda^*(M_{m+1})\xi} u(\xi; M_{m+1}, N_{m+1}),$$

where λ^* is the function, which to each $M_{m+1} = (a_0, \ldots, a_m) \in \mathbb{C}^{m+1}$ puts in correspondence an arbitrary root $\lambda_i(M_{m+1})$ of the characteristic polynomial of Eq. (2.31) whose real part $\operatorname{Re} \lambda_i(M_{m+1})$ coincides with $\overline{\Lambda}_{m+1}(M_{m+1})$:

(2.34)
$$\operatorname{Re} \lambda^*(M_{m+1}) = \overline{\Lambda}_{m+1}(M_{m+1}).$$

For the new function $u(\xi; M_{m+1}, N_{m+1})$ we obtain the following initial-value problem:

(2.35)
$$\frac{d^{m+1}u}{d\xi^{m+1}} = b_m(M_{m+1})\frac{d^m u}{d\xi^m} + \dots + b_1(M_{m+1})\frac{du}{d\xi}, \quad \xi \in (0, +\infty);$$

$$u(0; M_{m+1}, N_{m+1}) = u^0(M_{m+1}, N_{m+1}), \ldots,$$

(2.36)
$$\frac{d^m u}{d\xi^m}(0; M_{m+1}, N_{m+1}) = u^m(M_{m+1}, N_{m+1}),$$

where

$$b_i(M_{m+1}) = b_i(\lambda^*(M_{m+1}), M_{m+1}),$$

$$u^i(M_{m+1}, N_{m+1}) = \tilde{u}^i(\lambda^*(M_{m+1}), N_{m+1}),$$

 \tilde{b}_i and \tilde{u}^i are known functions of λ^* , $M_{m+1} = (a_0, \ldots, a_m)$, and $N_{m+1} = (w^0, \ldots, w^m)$ (they are polynomial functions with respect to λ^* and linear functions with respect to a_0, \ldots, a_m and w^0, \ldots, w^m). The characteristic polynomial of Eq. (2.35) for any $M_{m+1} \in \mathbb{C}^{m+1}$ has the zero root (see (2.37)); hence the coefficient $b_0(M_{m+1})$ of the function u is identical zero.

Due to (2.33), for each $M_{m+1} \in \mathbb{C}^{m+1}$, the roots of the characteristic polynomial of Eq. (2.35) are as follows:

(2.37)
$$\mu_i(M_{m+1}) := \lambda_i(M_{m+1}) - \lambda^*(M_{m+1}), \quad i \in \{1, \dots, m+1\}.$$

This and the definition of $\lambda^*(M_{m+1})$ imply

for all $(i, M_{m+1}) \in \{1, \dots, m+1\} \times \mathbb{C}^{m+1}$.

Since we assume that the points $M_{m+1} = (a_0, \ldots, a_m)$ belong to the finite parallelepiped $P_{m+1}(C_a)$, all roots $\lambda_i(M_{m+1})$ of the characteristic polynomial of Eq. (2.31) satisfy the condition

$$(2.39) \qquad \qquad \left|\lambda_i(M_{m+1})\right| \le 1 + C_d$$

(see, e.g., [5]). Then there exist nonnegative constants C_b and C_u such that

(2.40)
$$|b_i(M_{m+1})| \le C_b, |u^i(M_{m+1}, N_{m+1})| \le C_u$$

for all $(i, M_{m+1}, N_{m+1}) \in \overline{0, m} \times \prod_{m+1} (C_a) \times \prod_{m+1} (C_w)$.

We reduce the order of Eq. (2.35) by the following change of the dependent variable:

(2.41)
$$\frac{du}{d\xi}(\xi; M_{m+1}, N_{m+1}) = v(\xi; M_{m+1}, N_{m+1}).$$

The function $v(\xi; M_{m+1}, N_{m+1})$ satisfies the following initial-value problem:

(2.42)

$$\frac{d^{m}v}{d\xi^{m}} = b_{m}(M_{m+1})\frac{d^{m-1}v}{d\xi^{m-1}} + \dots + b_{1}(M_{m+1})v, \quad \xi \in (0, +\infty);$$

$$v(0; M_{m+1}, N_{m+1}) = u^{1}(M_{m+1}, N_{m+1}), \quad \dots,$$

$$\frac{d^{m-1}v}{d\xi^{m-1}}(0; M_{m+1}, N_{m+1}) = u^{m}(M_{m+1}, N_{m+1}).$$

Let $\nu_1(M_{m+1}), \ldots, \nu_m(M_{m+1})$ be roots of the characteristic polynomial of Eq. (2.42). Since each of the roots $\nu_i(M_{m+1})$ is at the same time a root of the characteristic polynomial of Eq. (2.35), they, similarly to $\mu_i(M_{m+1})$ (see (2.38)), satisfy the following inequality for all $M_{m+1} \in \mathbb{C}^{m+1}$:

Note also that

$$M_m = (b_1(M_{m+1}), \dots, b_m(M_{m+1})) \in \Pi_m(C_b),$$

$$N_m = (u^1(M_{m+1}, N_{m+1}), \dots, u^m(M_{m+1}, N_{m+1})) \in \Pi_m(C_u)$$

for all $M_{m+1} \in \Pi_{m+1}(C_a)$ and $N_{m+1} \in \Pi_{m+1}(C_w)$ (see (2.40)). The last estimates allow one to apply the inductive hypothesis to the function v: there exists $\tilde{C}_m \ge 0$ such that

(2.44)
$$\left| \frac{d^{i}v}{d\xi^{i}}(\xi; M_{m+1}, N_{m+1}) \right| \leq \tilde{C}_{m}(1 + \xi^{m-1})$$

for all $(i, \xi, M_{m+1}, N_{m+1}) \in \{0, \dots, m-1\} \times [0, +\infty) \times \prod_{m+1} (C_a) \times \prod_{m+1} (C_w)$ (see (2.30), (2.29), and (2.43)).

From (2.41) and (2.44) we obtain for the first *m* derivatives of the function *u* the relation

(2.45)
$$\left|\frac{d^{i}u}{d\xi^{i}}(\xi; M_{m+1}, N_{m+1})\right| = \left|\frac{d^{i-1}v}{d\xi^{i-1}}(\xi; M_{m+1}, N_{m+1})\right| \le \tilde{C}_{m}(1+\xi^{m-1});$$

here up to the end of the proof we assume that $(\xi, M_{m+1}, N_{m+1}) \in [0, +\infty) \times \prod_{m+1} (C_a) \times \prod_{m+1} (C_w)$.

To estimate the function u, we integrate (2.41) and then apply (2.36), (2.40), and (2.44) and the monotonicity property and the estimate of the absolute value of the definite integral:

$$(2.46) \quad \left| u(\xi; M_{m+1}, N_{m+1}) \right| \\ = \left| u(0; M_{m+1}, N_{m+1}) + \int_0^{\xi} v(\zeta; M_{m+1}, N_{m+1}) d\zeta \right| \le \left| u^0(M_{m+1}, N_{m+1}) \right| \\ + \int_0^{\xi} \left| v(\zeta; M_{m+1}, N_{m+1}) \right| d\zeta \le C_u + \int_0^{\xi} \tilde{C}_m(1 + \xi^{m-1}) d\zeta \le \tilde{C}_u(1 + \xi^m)$$

for sufficiently large \tilde{C}_u .

Now we turn to w. From (2.33), (2.46), (2.45), (2.39), and (2.34) and the Leibniz formula for the *i*th derivative of the product of two functions, for each $i \in \overline{0, m}$ and sufficiently large \tilde{C}_{m+1} we have

$$\begin{aligned} \left| \frac{d^{i}w}{d\xi^{i}}(\xi; M_{m+1}, N_{m+1}) \right| \\ &\leq \sum_{j=0}^{i} \frac{i!}{j!(i-j)!} \left| u^{(j)}(\xi; M_{m+1}, N_{m+1}) \right| \left| \lambda^{*}(M_{m+1}) \right|^{i-j} \left| e^{\lambda^{*}(M_{m+1})\xi} \right| \\ &\leq \left[\tilde{C}_{u}(1+\xi^{m})(1+C_{a})^{i} + \sum_{j=1}^{i} \frac{i!}{j!(i-j)!} \tilde{C}_{m}(1+\xi^{m-1})(1+C_{a})^{i-j} \right] e^{\operatorname{Re}\lambda^{*}(M_{m+1})\xi} \\ &\leq \tilde{C}_{m+1}(1+\xi^{m}) e^{\overline{\Lambda}_{m+1}(M_{m+1})\xi}. \end{aligned}$$

The proof is complete.

Corollary 2.4. There exist $\chi > 0$ and $C_{\Phi} > 0$ such that

(2.47)
$$|\Phi_{\xi^i}^1(\xi;x)|, \ |\Phi_{\xi^i}^m(\xi;x)| \le C_{\Phi}(1+\xi^{m-1})e^{-\chi\xi}$$

for all $(i, \xi, x) \in \{0, \dots, m-1\} \times [0, +\infty) \times [0, X]$, where $\Phi^1(\xi; x)$ and $\Phi^m(\xi; x)$ are the solutions of the problems (2.21)–(2.22) and (2.23)–(2.24), respectively.

Proof. To prove the estimate (2.47) it suffices to set

$$\chi := -\max_{[0,X]} \max\left\{\operatorname{Re}\lambda_1(x), \dots, \operatorname{Re}\lambda_m(x)\right\}$$

(see (2.7)) and apply the Weierstrass extreme-value theorem on the boundedness of a continuous function for a_i and Lemma 2.3.

3. CONSTRUCTION AND PROOF OF CONVERGENCE OF ITERATIVE SEQUENCE

Let

$$O(\vartheta, C_0; \varepsilon) := \left\{ (z^1, \dots, z^m) \in C_m \left[0, \frac{X}{\varepsilon} \right] : \forall \xi \in \left[0, \frac{X}{\varepsilon} \right] \\ (z^1(\xi), \dots, z^m(\xi)) \in [-C_0, +C_0]^m \right\}$$

be a closed C_0 -neighborhood of the vector-function $(z^1, \ldots, z^m) \equiv (0, \ldots, 0) =: \vartheta$ in the space $C_m[0, X/\varepsilon]$.

Proposition 3.1. There exist $\varepsilon_0 > 0$ and $C_0 \ge 0$ such that

 $\widehat{A}(C_0;\varepsilon): O(\vartheta, C_0;\varepsilon) \to O(\vartheta, C_0;\varepsilon)$

for any $\varepsilon \in (0, \varepsilon_0]$, where $\widehat{A}(C_0; \varepsilon) = (\widehat{A}_1(C_0; \varepsilon), \dots, \widehat{A}_m(C_0; \varepsilon))$ is the restriction of the operator $\widehat{A}(\varepsilon)$ to $O(\vartheta, C_0; \varepsilon)$.

Proof. We fix arbitrary $\varepsilon > 0$ and $C_0 \ge 0$, apply the operators $\widehat{A}_i(C_0; \varepsilon)$ to an arbitrary vectorfunction $(z^1(\xi), \ldots, z^m(\xi)) \in O(\vartheta, C_0; \varepsilon)$ and, taking into account (2.25) and (2.47), estimate the result obtained:

$$(3.1) \quad \left| \widehat{A}_{i}(C_{0};\varepsilon)[z^{1},\ldots,z^{m}](\xi) \right| \\ \leq C_{\Phi}e^{-\chi\xi} \Big\{ C_{0} \int_{0}^{\xi} e^{\chi\zeta} \big[1 + (\xi-\zeta)^{m-1} \big] \big[|a_{m-1}(\varepsilon\zeta) - a_{m-1}(\varepsilon\xi)| + \ldots \\ + |a_{0}(\varepsilon\zeta) - a_{0}(\varepsilon\xi)| \big] d\zeta + \int_{0}^{\xi} e^{\chi\zeta} \big[1 + (\xi-\zeta)^{m-1} \big] \big[|f(\zeta;\varepsilon)| + |\bar{y}'(\varepsilon\zeta)| \big] d\zeta \Big\}, \quad i = \overline{1,m}$$

(the term $|\bar{y}'(\varepsilon\zeta)|$ only for $m \ge 2$).

For the first integral in (3.1) we have

$$(3.2) \quad \int_{0}^{\xi} e^{\chi\zeta} \Big[1 + (\xi - \zeta)^{m-1} \Big] \Big[|a_{m-1}(\varepsilon\zeta) - a_{m-1}(\varepsilon\xi)| + \dots + |a_{0}(\varepsilon\zeta) - a_{0}(\varepsilon\xi)| \Big] d\zeta \\ = \varepsilon \int_{0}^{\xi} e^{\chi\zeta} \Big[(\xi - \zeta) + (\xi - \zeta)^{m} \Big] \Big\{ \Big| a'_{m-1}(\varepsilon[(1 - \theta_{m-1})\zeta + \theta_{m-1}\xi]) \Big| + \dots \\ + \Big| a'_{0}(\varepsilon[(1 - \theta_{0})\zeta + \theta_{0}\xi]) \Big| \Big\} d\zeta \\$$

$$\leq \varepsilon \left\{ \|a'_{m-1}(x)\| + \dots + \|a'_0(x)\| \right\} \int_0^1 e^{\chi \zeta} \left[(\xi - \zeta) + (\xi - \zeta)^m \right] d\zeta \\ = \varepsilon \alpha \left\{ \frac{1}{\chi^2} \left[e^{\chi \xi} - 1 - \chi \xi \right] + \frac{m!}{\chi^{m+1}} \left[e^{\chi \xi} - 1 - \chi \xi - \dots - \frac{1}{m!} (\chi \xi)^m \right] \right\} \leq \varepsilon \beta e^{\chi \xi},$$

where $\theta_i = \theta_i(\varepsilon\zeta, \varepsilon\xi) \in (0, 1), \|\cdot\|$ is the norm of the space C[0, X], and

$$\alpha := \|a'_{m-1}(x)\| + \dots + \|a'_0(x)\|, \quad \beta := \alpha \frac{\chi^{m-1} + m!}{\chi^{m+1}}.$$

For the second integral in (3.1) we have (see (2.18) and (2.12))

$$(3.3) \quad \int_{0}^{\xi} e^{\chi\zeta} \left[1 + (\xi - \zeta)^{m-1} \right] \left[|f(\zeta;\varepsilon)| + |\bar{y}'(\varepsilon\zeta)| \right] d\zeta \leq \int_{0}^{\xi} e^{\chi\zeta} \left[1 + (\xi - \zeta)^{m-1} \right] \\ \times \left\{ \tilde{C} \left[|a'_{m-1}(\varepsilon\theta_{m-1}\zeta)| + \dots + |a'_{0}(\varepsilon\theta_{0}\zeta)| \right] (\zeta + \zeta^{m}) e^{-\chi\zeta} + |\bar{y}'(\varepsilon\zeta)| \right\} d\zeta \\ \leq \left\{ \tilde{C}\alpha \max_{\zeta>0} \left[(\zeta + \zeta^{m}) e^{-\chi\zeta} \right] + \|\bar{y}'(x)\| \right\} \int_{0}^{\xi} e^{\chi\zeta} \left[1 + (\xi - \zeta)^{m-1} \right] d\zeta \\ = \left\{ \tilde{C}\alpha \max_{\zeta>0} \left[(\zeta + \zeta^{m}) e^{-\chi\zeta} \right] + \|\bar{y}'(x)\| \right\} \left\{ \frac{1}{\chi} \left[e^{\chi\xi} - 1 \right] \right. \\ \left. + \frac{(m-1)!}{\chi^{m}} \left[e^{\chi\xi} - 1 - \chi\xi - \dots - \frac{1}{(m-1)!} (\chi\xi)^{m-1} \right] \right\} \leq \gamma e^{\chi\xi},$$

where $\theta_i = \theta_i(\varepsilon\zeta) \in (0,1)$,

$$\gamma := \left\{ \tilde{C}\alpha \max_{\zeta > 0} \left[(\zeta + \zeta^m) e^{-\chi\zeta} \right] + \left\| \bar{y}'(x) \right\| \right\} \frac{\chi^{m-1} + (m-1)!}{\chi^m}.$$

From (3.1), (3.2), and (3.3) we see that if C_0 and ε satisfy the inequalities

$$(3.4) 0 \le C_0 \varepsilon C_\Phi \beta + C_\Phi \gamma \le C_0,$$

hence $\widehat{A}(C_0;\varepsilon)[z^1,\ldots,z^m](\xi) \in O(\vartheta,C_0;\varepsilon)$. We set

(3.5)
$$\varepsilon_0 := \gamma_0 (C_\Phi \beta)^{-1},$$

where γ_0 is an arbitrary number from the interval (0, 1) (if $\beta = 0$, i.e., $a_i(x) = \text{const}$ on [0, X], then $\varepsilon_0 := +\infty$) and $C_0 := C_{\Phi}\gamma/(1-\gamma_0)$. Then the inequalities (3.4) hold for any $\varepsilon \in (0, \varepsilon_0]$.

Assume that for any fixed positive ε and any $\varphi_1(\xi) = (z_1^1(\xi), \ldots, z_1^m(\xi))$ and $\varphi_2(\xi) = (z_2^1(\xi), \ldots, z_2^m(\xi))$ from $C_m[0, X/\varepsilon]$, the distance ρ_{ε} between φ_1 and φ_2 is defined:

(3.6)
$$\rho_{\varepsilon}(\varphi_1, \varphi_2) := \|\varphi_2 - \varphi_1\|_{C_m[0, X/\varepsilon]} := \max_{\xi \in X(\varepsilon)} \max_{1 \le i \le m} |z_2^i(\xi) - z_1^i(\xi)|,$$

where $X(\varepsilon) := [0, X/\varepsilon]$. Note that $C_m[0, X/\varepsilon]$ and $O(\vartheta, C_0; \varepsilon)$ with ρ_{ε} defined above are complete metric spaces.

Proposition 3.2. The operator $\widehat{A}(\varepsilon)$ is a contractive operator for any $\varepsilon \in (0, \varepsilon_0]$.

Proof. Let ρ_{ε} be the metric (3.6) of the space $C_m[0, X/\varepsilon]$. Take two arbitrary functions $\varphi_1(\xi) = (z_1^1(\xi), \ldots, z_1^m(\xi))$ and $\varphi_2(\xi) = (z_2^1(\xi), \ldots, z_2^m(\xi))$ from this space and, taking into account (2.25) and (2.47), estimate the distance between $\widehat{A}(\varepsilon)[\varphi_1]$ and $\widehat{A}(\varepsilon)[\varphi_2]$:

$$(3.7) \quad \rho_{\varepsilon} \left(\widehat{A}(\varepsilon)[\varphi_{1}], \widehat{A}(\varepsilon)[\varphi_{2}] \right) = \max_{\xi \in X(\varepsilon)} \max_{1 \le i \le m} \left| \widehat{A}_{i}(\varepsilon)[\varphi_{2}](\xi) - \widehat{A}_{i}(\varepsilon)[\varphi_{1}](\xi) \right|$$
$$= \max_{\xi \in X(\varepsilon)} \max_{1 \le i \le m} \left| \int_{0}^{\xi} \Phi_{\xi^{i-1}}^{m}(\xi - \zeta; \varepsilon\xi) \left\{ \left[a_{m-1}(\varepsilon\zeta) - a_{m-1}(\varepsilon\xi) \right] \left[z_{2}^{m}(\zeta) - z_{1}^{m}(\zeta) \right] + \dots \right.$$
$$\left. + \left[a_{0}(\varepsilon\zeta) - a_{0}(\varepsilon\xi) \right] \left[z_{2}^{1}(\zeta) - z_{1}^{1}(\zeta) \right] \right\} d\zeta \right|$$
$$\leq \rho_{\varepsilon}(\varphi_{1}, \varphi_{2}) C_{\Phi} \max_{\xi \in X(\varepsilon)} \int_{0}^{\xi} e^{\chi(\zeta - \xi)} \left[1 + (\xi - \zeta)^{m-1} \right]$$
$$\times \left[\left| a_{m-1}(\varepsilon\zeta) - a_{m-1}(\varepsilon\xi) \right| + \dots + \left| a_{0}(\varepsilon\zeta) - a_{0}(\varepsilon\xi) \right| \right] d\zeta.$$

From (3.7), (3.2), and (3.5) we conclude that for any $\varepsilon \in (0, \varepsilon_0]$ the contraction coefficient $k(\varepsilon)$ of the operator $\widehat{A}(\varepsilon)$ satisfies the estimate

(3.8)
$$k(\varepsilon) \le \varepsilon C_{\Phi}\beta = \gamma_0 \frac{\varepsilon}{\varepsilon_0} \le \gamma_0 < 1.$$

The proof is complete.

Since the contraction coefficient $k(C_0; \varepsilon)$ of the operator $\widehat{A}(C_0; \varepsilon)$ certainly does not exceed $k(\varepsilon)$, the estimate (3.8) is also valid for it:

(3.9)
$$k(C_0;\varepsilon) \le \gamma_0 \frac{\varepsilon}{\varepsilon_0} \le \gamma_0 < 1.$$

Thus, we can apply the Banach fixed-point theorem to the operator $\widehat{A}(C_0; \varepsilon)$ and conclude that for any $\varepsilon \in (0, \varepsilon_0]$ the solution $(z^1(\xi; \varepsilon), \ldots, z^m(\xi; \varepsilon)) =: \varphi(\xi; \varepsilon)$ of the problem (2.14)– (2.17) (which is equivalent to Eq. (2.26)) belongs to $O(\vartheta, C_0; \varepsilon)$. We emphasize that the existence and the global uniqueness (i.e., uniqueness on the set $[0, X/\varepsilon] \times \mathbb{R}^m$) of the solution $\varphi(\xi; \varepsilon)$ (for all $\varepsilon \in \mathbb{R}$) are immediately implied by the linearity of the problem (2.14)–(2.17) (the linearity of Eq. (2.26)).

The contractive property of the operator $\widehat{A}(C_0;\varepsilon)$ also allows one to construct the iterative sequence $\varphi_n(\xi;\varepsilon) = (z_n^1(\xi;\varepsilon), \ldots, z_n^m(\xi;\varepsilon))$ converging with respect to the norm of the space $C_m[0, X/\varepsilon]$ to the exact solution $\varphi(\xi;\varepsilon)$ of the problem (2.14)–(2.17) uniformly with respect to $\varepsilon \in (0, \varepsilon_0]$:

$$\left\|\varphi - \varphi_n\right\|_{C_m[0, X/\varepsilon]} := \max_{\xi \in X(\varepsilon)} \max_{1 \le i \le m} \left|z^i(\xi; \varepsilon) - z^i_n(\xi; \varepsilon)\right| \to 0, \quad n \to \infty$$

13

We set $\varphi_0(\xi;\varepsilon) \equiv (0,\ldots,0) =: \vartheta$. Since $\varphi(\xi;\varepsilon) \in O(\vartheta,C_0;\varepsilon)$, we have

(3.10)
$$\left\|\varphi(\xi;\varepsilon) - \varphi_0(\xi;\varepsilon)\right\|_{C_m[0,X/\varepsilon]} = \left\|\varphi(\xi;\varepsilon)\right\|_{C_m[0,X/\varepsilon]} \le C_0$$

for all $\varepsilon \in (0, \varepsilon_0]$.

Further, for any natural n we set

(3.11)
$$\varphi_n(\xi;\varepsilon) := \widehat{A}(C_0;\varepsilon)[\varphi_{n-1}](\xi;\varepsilon).$$

Then, taking into account (3.9) and (3.10), we have for each $n \in \{0\} \cup \mathbb{N} =: \mathbb{N}_0$ and each $\varepsilon \in (0, \varepsilon_0]$

(3.12)
$$\|\varphi(\xi;\varepsilon) - \varphi_n(\xi;\varepsilon)\|_{C_m[0,X/\varepsilon]} \leq k(C_0;\varepsilon)^n \|\varphi(\xi;\varepsilon) - \varphi_0(\xi;\varepsilon)\|_{C_m[0,X/\varepsilon]} \leq C_0 \left(\gamma_0 \frac{\varepsilon}{\varepsilon_0}\right)^n.$$

We turn to the problem (2.1)–(2.2). Due to (2.13), we obtain the iterative sequences $y_n^1(x;\varepsilon)$, ..., $y_n^m(x;\varepsilon)$, respectively, for the solution $y(x;\varepsilon)$ of the original problem and its derivatives $\frac{d}{dx}y(x;\varepsilon)$, ..., $\frac{d^{m-1}}{dx^{m-1}}y(x;\varepsilon)$:

(3.13)
$$y_n^1(x;\varepsilon) := \tilde{y}\left(\frac{x}{\varepsilon}, x\right) + \varepsilon z_n^1\left(\frac{x}{\varepsilon};\varepsilon\right), \quad n \in \mathbb{N}_0;$$

(3.14)
$$y_n^i(x;\varepsilon) := \varepsilon^{1-i} \Pi^{(i-1)}\left(\frac{x}{\varepsilon}\right) + \varepsilon^{2-i} z_n^i\left(\frac{x}{\varepsilon};\varepsilon\right), \quad (i,n) \in \overline{2,m} \times \mathbb{N}_0.$$

For $n \ge 1$, the values $y_n^i(x; \varepsilon)$ can be immediately expressed through $y_{n-1}^i(x; \varepsilon)$:

$$y_n^1(x;\varepsilon) = \tilde{y}\left(\frac{x}{\varepsilon}, x\right) + \varepsilon \widehat{A}_1(C_0;\varepsilon)[z_{n-1}^1, \dots, z_{n-1}^m]\left(\frac{x}{\varepsilon};\varepsilon\right)$$

=: $\widehat{B}_1(\varepsilon)[y_{n-1}^1, \dots, y_{n-1}^m](x;\varepsilon),$
 $y_n^i(x;\varepsilon) = \varepsilon^{1-i}\Pi^{(i-1)}\left(\frac{x}{\varepsilon}\right) + \varepsilon^{2-i}\widehat{A}_i(C_0;\varepsilon)[z_{n-1}^1, \dots, z_{n-1}^m]\left(\frac{x}{\varepsilon};\varepsilon\right)$
=: $\widehat{B}_i(\varepsilon)[y_{n-1}^1, \dots, y_{n-1}^m](x;\varepsilon), \quad i \in \overline{2, m},$

where

$$z_{n-1}^{1}(\xi;\varepsilon) = \varepsilon^{-1} \Big[y_{n-1}^{1}(\varepsilon\xi;\varepsilon) - \tilde{y}(\xi,\varepsilon\xi) \Big],$$
$$z_{n-1}^{i}(\xi;\varepsilon) = \varepsilon^{i-2} y_{n-1}^{i}(\varepsilon\xi;\varepsilon) - \varepsilon^{-1} \Pi^{(i-1)}(\xi), \quad i \in \overline{2,m}$$

(see (3.13), (3.14), and (3.11)) or briefly

$$\psi_n(x;\varepsilon):=\widehat{B}(\varepsilon)[\psi_{n-1}](x;\varepsilon),$$

where $\psi_n(x;\varepsilon) := (y_n^1(x;\varepsilon), \ldots, y_n^m(x;\varepsilon))$ and $\widehat{B}(\varepsilon) := (\widehat{B}_1(\varepsilon), \ldots, \widehat{B}_m(\varepsilon))$. Note that the operator $\widehat{B}(\varepsilon)$ is contractive for $\varepsilon \in (0, \varepsilon_0]$ (i.e., for the same ε as $\widehat{A}(C_0;\varepsilon)$) and the operator $\widehat{B}(\varepsilon)$ satisfies the condition

$$\widehat{B}(\varepsilon): O(\widetilde{\psi}, C_0; \varepsilon) \to O(\widetilde{\psi}, C_0; \varepsilon)$$

for $\varepsilon \in (0, \varepsilon_0]$, where

$$O(\tilde{\psi}, C_0; \varepsilon) := \left\{ (y^1, \dots, y^m) \in C_m[0, X] : \forall x \in [0, X] \\ y^1(x) \in \left[\tilde{y}\left(\frac{x}{\varepsilon}, x\right) - \varepsilon C_0, \tilde{y}\left(\frac{x}{\varepsilon}, x\right) + \varepsilon C_0 \right], \\ y^2(x) \in \left[\varepsilon^{-1} \Pi'\left(\frac{x}{\varepsilon}\right) - C_0, \varepsilon^{-1} \Pi'\left(\frac{x}{\varepsilon}\right) + C_0 \right], \dots, \\ y^m(x) \in \left[\varepsilon^{1-m} \Pi^{(m-1)}\left(\frac{x}{\varepsilon}\right) - \varepsilon^{2-m} C_0, \varepsilon^{1-m} \Pi^{(m-1)}\left(\frac{x}{\varepsilon}\right) + \varepsilon^{2-m} C_0 \right] \right\}$$

is a closed $(\varepsilon C_0, C_0, \ldots, \varepsilon^{2-m}C_0)$ -neighborhood of the vector-function

$$\tilde{\psi}\left(\frac{x}{\varepsilon};\varepsilon\right) := \left(\tilde{y}\left(\frac{x}{\varepsilon},x\right),\varepsilon^{-1}\Pi'\left(\frac{x}{\varepsilon}\right),\ldots,\varepsilon^{1-m}\Pi^{(m-1)}\left(\frac{x}{\varepsilon}\right)\right)$$

in the space $C_m[0, X]$.

We estimate the accuracy of the approximation of $\frac{d^{i-1}}{dx^{i-1}}y(x;\varepsilon)$ by $y_n^i(x;\varepsilon)$. For each $n \in \mathbb{N}_0$ and $\varepsilon \in (0, \varepsilon_0]$ we have (see (3.13), (3.14), (2.13), and (3.12)):

$$\begin{aligned} \left\| y(x;\varepsilon) - y_n^{1}(x;\varepsilon) \right\| &= \left\| y(x;\varepsilon) - \tilde{y} \left(\frac{x}{\varepsilon}, x\right) - \varepsilon z_n^{1} \left(\frac{x}{\varepsilon};\varepsilon\right) \right\| \\ &= \varepsilon \left\| z^{1} \left(\frac{x}{\varepsilon};\varepsilon\right) - z_n^{1} \left(\frac{x}{\varepsilon};\varepsilon\right) \right\| \le \varepsilon \left\| \varphi \left(\frac{x}{\varepsilon};\varepsilon\right) - \varphi_n \left(\frac{x}{\varepsilon};\varepsilon\right) \right\|_{C_m[0,X]} \le C_0 \varepsilon \left(\gamma_0 \frac{\varepsilon}{\varepsilon_0}\right)^n, \\ &\left\| \frac{d^{i-1}}{dx^{i-1}} y(x;\varepsilon) - y_n^{i}(x;\varepsilon) \right\| = \left\| \frac{d^{i-1}}{dx^{i-1}} y(x;\varepsilon) - \varepsilon^{1-i} \Pi^{(i-1)} \left(\frac{x}{\varepsilon}\right) - \varepsilon^{2-i} z_n^{i} \left(\frac{x}{\varepsilon};\varepsilon\right) \right\| \\ &= \varepsilon^{2-i} \left\| z^{i} \left(\frac{x}{\varepsilon};\varepsilon\right) - z_n^{i} \left(\frac{x}{\varepsilon};\varepsilon\right) \right\| \le \varepsilon^{2-i} \left\| \varphi \left(\frac{x}{\varepsilon};\varepsilon\right) - \varphi_n \left(\frac{x}{\varepsilon};\varepsilon\right) \right\|_{C_m[0,X]} \\ &\leq C_0 \varepsilon^{2-i} \left(\gamma_0 \frac{\varepsilon}{\varepsilon_0}\right)^n, \quad i \in \overline{2, m}. \end{aligned}$$

REFERENCES

- [1] Yu. P. BOGLAEV, An iterative method for the approximate solution of singularly perturbed problems, *Soviet Math. Dokl.*, **17** (1976), pp. 543–547.
- [2] Yu. P. BOGLAEV, A. V. ZHDANOV, and V. G. STEL'MAKH, Uniform approximations for solutions of certain singularly perturbed nonlinear equations, *Differ. Equ.*, **14** (1978), pp. 273–281.
- [3] F. R. GANTMACHER, *The Theory of Matrices, Vol.* 2, AMS Chelsea Publishing, Providence, Rhode Island, 2000.
- [4] M. A. KHAMSI and W. A. KIRK, An Introduction to Metric Spaces and Fixed Point Theory, Wiley, New York etc., 2001.
- [5] A. I. MARKUSHEVICH, *Theory of Functions of a Complex Variable*, AMS Chelsea Publishing, Providence, Rhode Island, 2005.
- [6] A. M. OSTROWSKI, Solution of Equations and Systems of Equations, Academic Press, New York– London, 1966.
- [7] A. B. VASIL'EVA, V. F. BUTUZOV, and L. V. KALACHEV, The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, 1995.