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2 E. E. BUKZHALEV AND A. V. OVCHINNIKOV

1. INTRODUCTION

We propose an algorithm of construction of a sequence

p(z;8) = (yplaie), ...,y (x;€))

that converges for eaeche (0, o] with respect to the norm of the spa€g, [0, X] of continuous
m-dimensional vector-valued functions of the argumest [0, X]) to the function

d g1
0(wi9) = (sie) aleie) s p(@io)),

wherey(z;¢) is a classical solution of the problein (2.1)—(2.2); for the valueyoive obtain
an explicit lower estimate. The construction and the proof of convergence of the sequence
¥, (x;¢) are based on the Banach fixed-point theorem for a contracting mapping of a com-
plete metric space (se€l[4]). Since the contraction coeffidiesftthe mapping is a value of
ordere (k < g/gp), so that the deviation’ (z; ) (with respect to the norm aof'[0, X]) from

i—1

——y(z;6) is O(e™™!) (for 0 < e < ¢), we see that this result has also asymptotic character.

Note that each successive element of the sequeérce; <) is the result of the action of
a certain operator on the previous element. Elements of such sequences are usually called
iterations and sequences themselves are said to be iterative. In our case, iterations approach
to ¢(z; ) (in the norm ofC,, [0, X]) sufficiently rapidly; the rate of approach is asymptotically
reciprocal taee. Therefore, the algorithm of construction of the sequehge:; <) is a method of
asymptotic iterations (for detail, s€€ [1, 2]). The sequengés; <) are also called asymptotic
iterative sequences of tlie— 1)th derivative of the solutiog(z; <) of the problem considered.

The possibility of application of the method of asymptotic iterations is related to the fulfill-
ment of the condition[(2]3) for coefficients of the right-hand side of the equation. However,
the fulfillment of these conditions allows one to apply the method of boundary-layer functions
(see, e.g.[]7]). One can immediately verify that the deviatiffr; ) from thenth partial sum
Y, (z;¢) (which is called the asymptotics or the asymptotic expansiarntobrder) of the series
Y (z; ) obtained by the method of boundary-layer functions has the fa¢ait™!). Thus, the
convergence of the sequengsz; ) enables the using of the method of asymptotic iterations
for the justification of asymptotic expansions obtained by the method of boundary-layer func-
tions (i.e., to the proof of the fact that the differenc&fz; <) and the solutiony(z; ) has the
form O(e"*!) uniformly with respect ta: € [0, X]).

Note that the convergence (uniform with respect)tasce € (0, £o] of asymptotic sequences
y! (z;¢) is a fundamental advantage of the method of asymptotic iterations over the method
of boundary-layer functions, which allows one to construct an asymptotic series, which is, in
general does not converge even for arbitrarily smalllhe reason is that the estimate of the
deviation ofy} (z; ) from Y, (z; ¢), which has the fornD(¢"*!), is not uniform with respect
ton, so that this deviation may be not infinitesimalas- oo but even unboundedly increasing.

Another advantage of the sequengg; ¢) is the possibility of construction of all its terms
under modest smoothness conditions for the functignand b: for the construction of all
¥, (z;€) it suffices thate;, b € C*[0, X], while for the construction of all terms of the series
Y (z; ) the infinite differentiability ofa; andb is required.

AJMAA Vol. 15, No. 2, Art. 6, pp. 1-14, 2018 AJMAA


http://ajmaa.org

CAUCHY PROBLEM FOR ASINGULARLY PERTURBEDDIFFERENTIAL EQUATION 3

2. STATEMENT OF THE PROBLEM AND AUXILIARY ESTIMATES

Consider the Cauchy problem for the linear, inhomogeneous, singularly perturbed differential
equation of ordem:

(2.1) ey = e gy (2)y " 4+ ag(x)y + b(z),  w € (0, X];
m—1
(2.2) y(0;e) =4° ..., y" D (0;e) = mely
wheree > 0 is the perturbation parametek > 0, v°,...,y™ ! € R, anda, ..., amn_1,

b € C'0,X]. Moreover, we assume that the coefficientér) satisfy the Routh—Hurwitz
condition for allz € [0, X] (see, e.g./]3]):

. CLOQ(Z‘) CLOl(ZI})
(2.3) ago(x) ... agm-1)(T)
Am-1)0(T) - Aam—1)(m-1)(T)
where
(CLQZ‘,]'(I') for 0 < 21— ] <1m,
a;;(z) = ¢ —1 for 2 — j = m,
0, for2i —j<0o0r2i—j>m.

\
Recall that for the fulfillment of the conditions (2.3) it is necessary (andrfog {1,2} is
also sufficiently) that alk;(«) be negative.
Let p be that mapping, which to eaehe [0, X] puts in corresponding the polynomial

(2.4) p(2) == A" — @y ()N — - —ay(2)\ — ao(x).

Since the degree of the polynomijal:) is m on the whole segmefft, X], there exist functions
ALy Am 2 [0, X] — C such that

p(x) = (A = Ax(2)) - (A = Am(2))
for eachz € [0, X]; the numbers\,(z), ..., \,.(z) are called roots of the polynomial(z).
The ordered set)\, ..., \,,) of the function); is called the vector-function of roots of the
mappingp. Note that there exist infinitely many vector-functions of roots since for eaeh
[0, X] we can list the roots of the polynomig(z) in various orders. We fix one of the possible
orderings.

By the Routh—Hurwitz criterion (se&l[3]), the real parts of the roots of the polyngrtial
are negative if and only if its coefficients(x) satisfy the inequalitie (2.3). Thus, for all
(1,x2) € {1,...,m} x [0, X], the inequality
(2.5) Re\;(z) <0
holds.

We prove that each of the functide \; is bounded on the segmdnt X | from the above by
a certain negative constant.

Let P be the mapping that to eadd = (aq,...,a,—1) € C™ puts in corresponding the
polynomial

(2.6) P(M) = \™ — @ " — o — a4y X — a.

Denote by{ A} the set of all mappings : C™ — C™, which to each\/ € C™ putin correspon-
dence an ordered set' (M), ..., \"(M)) of roots of the equatio® (M) = 0 (we assume that
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eachroot is repeated as many times as its multiplicity). In fact, the choitecof A} means the
choice of numbering of roots of the polynomi&( A7) for eachM € C™. Itis easy to verify
that form > 2 the set{ A} contains no mappings continuous in the whole spéace How-
ever, it is known that for eacln and any point\/, € C™, there exists a mappingl,, € {A}
continuous at this point (see, e.ql, [6]).

Let » be the mapping, which to eadhe {A} putsin correspondence the vector-functios
(AL,...,A\™) whose component¥ to each) € C™ put in correspondence thith coordinates
of A(M): A(M) = (A'(M),...,\™(M)). Obviously,p is a bijective correspondence between
{A} and {\} := p({A}). Moreover, the continuity of the mapping is equivalent to the
continuity of the corresponding vector-functigrfA), which, in its turn, is equivalent to the
continuity of all its components.

Lemma2.1.LetA = (\},...,\™) € {\}. Then
A:C™ 3> M — max{Re\'(M),...,Re\"(M)}
is a continuous function.
Remark 2.1. For each poini\/ € C™, the unordered set of roots of the polynomi4l)\/) and

the valueA (M) are independent of the choice bfe {\}. Thus, to each € {A} (i.e., to each
way of numbering of roots of the polynomi&l( 1)) the same functior corresponds.

Proof of Lemma 2]1Fix an arbitrary pointV, € C™ and choose a mappink,, = ()\}WO,
..., Ali,) € {A\} continuous at this point. Each of the functiokig, is also continuous at the
point M,. But the continuity of)\iwo implies the continuity oRe )’ ,» Whereas the continuity
of all Re A}, inits turn, implies the continuity of the maximum of these functians.

Corollary 2.2. There exist positivg (independent of andx) such that

Re\i(z) < —x
for all (i,x) € {1,...,m} x [0, X], where);(z) is theith root of the polynomiap(x) (see
(2-3)) for eachz € [0, X].

Remark 2.2. For eachr € [0, X], the unordered set of roots of the polynomiét) and the
value \(z) := max{Re \;(z),...,Re A, (z)} are independent of the way of numbering of
these roots.

Proof of Corollary{2.2.Let A = (\',...,\™) be a mapping fron{\}. By the remark above,
without loss of generality, we can assume that

(@) = N(ag(z), ..., am_1(x)) Y(,z) € {1,...,m} x [0, X].
Since the function\(z), which is equal to\ (ag(z), . . ., a,,_1(x)), is continuous (as a composite
function) and negative (s€fe (2.5)) on the whole segrifeti], by the Weierstrass extreme-value
theorem, there exists, € [0, X| such that

X:=—A(mo) = — I[R%{K(ao(x), o (7))

= —maxmax { Re A\ (z),...,ReAn(2)} > 0.

[0,X]

2.7)

The proof is completeg

Remark 2.3. One can prove that there exist continuous functiéns.., A, : [0, X] — C
that describe the set of all roots (with account of multiplicities) of the polynoptial for each
x € [0, X]; here the fact that the variableis one-dimensional is substantial.
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Consider the following auxiliary problem:

28 wof)j () +b(r) =0, = [0, X]
d™Il d™ I X
@9 G O-an O @+, s (0.7];
_ dll 1 d™ I o
(2.10) 11(0) = 4° — 5(0), d_§<0) =y, ..., W(O) =y

Equation [(2.B) is an algebraic equation of the first degree with respect:jpwhereas[(2]9)
is an autonomous homogeneous linear differential equatioH (oy. The solution of the prob-

lem (2.8)-{2.1ID) has the form

_ b(x)
r)=— ,
y(x) 20(7)
(2.11) T1(€) = ane™ @ 4o 4 ay,, €M 1edm O 4
+ aq16Am1+m+mq_1+1(0)f ot agm gmq—le)\m1+-~+mq_1+mq(0)57
whereA;(0) = -+ = Xy (0), ooy Apygeoimy 1 +1(0) = -+ = Ay 4qm, (0) are roots of the
polynomialp(0) (see [(2.8)) 1, ..., aqm, are constants that are uniquely expressed through

y" —9(0),y', ...,y T and ) (0), ..., A\ (0) (herem, ot my = m).
We see from[(2.11) anf (2.7) that for sufficiently lacgéhe functiond1® satisfy the estimate

(2.12) ‘H(i)(£)| < C«(l + gm—l)efxﬁ (1,€) €{0,...,m — 1} x [0, 4+00).
In the problem[(2]1){(2]2), we perform the following change of variables:
xr =€k,
S 1/g.
(2.13) - y(#:¢) y(&;)j;z (&),
?i_zi(w; g)=¢g" T (&) + 72N (&), i=2,m,

wherey (&, z) := g(z) + I1(E).
For the new functions’(; ) we obtain the following initial-value problem:

dzt X
(2.14) d—’z =22 -7(ef), €€ (0, ?] :
(2.15) CZ = (1,6 €e{2,...,m—1} x <0, é] :
dz™ m 1 X
(2.16) d_é’ =y 1(8)2™ + -+ ap(ef)z + f(&e), €€ (0, ?} :
(2.17) 2(0;6) =...=2"(0;¢) =0

((2.13) only form > 2, (2.13) only form > 3), where

6_1{ [am-1(£€) — am-1(0)]
(2.18)  [f(&e) = XIT=D(€) + - + [ag(e€) — aO(O)}H(g)} for m > 2;
e ao(€) — ao(0)]I1(E) — ' (£€) form = 1.
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We transform Eq[(2.16) adding the variabklas a new parameter:

(2.19) Cﬁ—: = Qo1 (2)2™ + -+ ag(®) 2" + [am-1(e€) — am_1(z)] 2™ + . ..

) - )]+ £(&59), (6o e (0.5 ] x0.x]

The problem|[(2.7]4)] (2.15) (2.119), (2]17) is equivalent to the following system of integral
equations:

, 13
(2.20) i(6:c) = — / B (€ — G )i ()dC

13
o [ e o fannc0 —an @]
4o+ [GO(EC) — ao(l’)} Zl(g; ) + f(¢; E)}dC7

(i,&,2) € 1,m x lo, g x [0, X],

where<1>2'H (&—¢(ur) = K;i(g, ;) are the entries of the Cauchy matrix
¢1E§—C;x§ <I>§E§—C;9:; <I>m§§—é“;:v§
P (§— G Qe —Gz) ... PIE-Gu

KEGa)=| © - L

Cona(§=Go) Qha(§—Ga) ... T (E—Cio)
of the corresponding homogeneous system

d 1 d m—1 dzm
d_z :Z27 R Zdé- :Zma dif :am—1($)2m+"'+a0($)zl.

Note that the function®!(¢;z) and @™ (&; x) used in [[2.2D), due to the definition of the
Cauchy matrix, are the solutions of the following initial-value problems:

qu)l dmflq)l
(2.21) i = am_1<I>W + - Fag(z)®,  (&,2) € R x [0, X];
dCI)l dmflq)l
(2.22) oH(0;z) =1, d—g(O;x) =...= W(o;x) =0, ze€[0,X];
dmem dm—lq)m
(223 e =@+ @@, () €Rx 0. X];
. dm—?q)m dm—lq)m

From [2.21)4(2.24) and the theorems on the continuity and differentiability with respect
to parameters of solutions of initial-value problems we conclude #i&¢; ), ™ (&) €
C1(R x [0, X]).

Since the solutior(z', ..., 2™) of the system[(2.20) is clearly independentagfwe can
replacer in (2.20) by an arbitrary functiog ande with values in[0, X|. Then, setting: = ¢,
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we arrive at the following equations fot(¢; ):

13 13
@25) #(62) == | a6~ e (O + [ BlE - et
{1 (6€) = ()] (Ci) + -+ [an(eC) — an(e€)] ! (Gi¢) + F(G:) bc
= @-(5)[21, L 2M(Ee), (1,6 e1,m x {0, é] ,

(the first integral only forn > 2) or briefly
(2.26) (2'(&e),...,2M(&e))
= (Ai(©)[zY .. 2™ e), ooy A2 2 (&e)) =
= Az, 2"(&e), €€ [0, g

where for each fixed € (0,+o00) by the domain of the operatoi(s) we mean the space
C]0, X /] of m-dimensional vector-functions continuous on the segrfied /<|:

Ae): Cp, {0, é] — Cy, {o, é] .

In the sequel we need one auxiliary property of the soluticof the Cauchy problem for a
linear differential equation with constant coefficients considered as parameters for

dm dm—l
(2.27) F:: = am—ldg—m_tf + -+ aow, &€ (0,+00);
dm—l
(2.28) w(0; My, Ny) = w0, ..., dg—m?((); M, N,y = w™

whereM,,, = (ag,...,a,_1) € C™ andN,, = (v, ..., w™ ') € C™.
Introduce the following notation:

(2.29) A (M,,) := max{Re X' (M,,), ..., Re \"(M,,)},
where\' (M,,), ..., \™(M,,) are the roots of the characteristic polynomial of Eq. (2.27) (see

also [2.6)),

IL,(C) == {(z1,...,20) €C™ : |21| < C, ..., |zn| < C}.
Lemma 2.3. LetC, > 0 andC,, > 0. Then there exist@m > 0 such that
(230) %(5’ Mmme) < Cvm(l + 5m—1)€Km(Mm)£

forall (i,&, My, N;y) € {0,...,m—1} x [0, +00) xI1,,,(C,) x I1,,,(Cy,), wherew(&; M,,, Ny,)
is a solution of the probler®.27)-(2.28)
Proof. Apply induction bym. Denote bysS,, the assertion of the lemma. Since the validity of

S; is obvious, it remains to verify that for any integer> 1 the assertioty,, implies S, .
Consider the Cauchy problem for the equatiorfraf+ 1)th order:

d™Hw d™w

(231) W = amdgﬁ + -+ apw, f € (0, +OO);
d™w
(232) ’LU(O, Merla Nm+1> = wO’ SRR W(O, Mm+17 Nm+1) =w"
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and fix arbitrgry nonnegativ€, andC,,. The assertiord,, is as follows: there exists suffi-
ciently largeC,,, 1 such that

d? - —

d_g(f; Mus1, Nopg1)| < Crga (1 + €7ttt (m1)6
for all

(i7§7 Mm-l—h Nm+1) € 07m X [07 +OO> X Hm-l—l(Ca) X Hm—i-l(Ow);
wherew(&; M, 11, Nimy1) 1S @ solution of the probleny (2.31)—(2]32).
To verify the validity of S,,,; (under the validity ofS,,), we perform the change of the

dependent variable in the problem (3.3[)-(2.32):

(2.33) W(& Myi1, Npgr) = ¥ M8 (€5 Myaq, Ny,

where \* is the function, which to each/,,,; = (aq,...,a,) € C™" puts in correspon-
dence an arbitrary root;(1,,.) of the characteristic polynomial of Eq. (2]31) whose real part
Re \;(M,,+1) coincides withA,,, 1 (M,,11):

(234) Re )\* (Mm+]_) == Am+1(Mm+1).
For the new function(&; M,, .1, N,,+1) we obtain the following initial-value problem:
d"Hu d™u du
(235) W = bm(Merl)dgﬁ +-o+ bl(Mm+1)d_§> 5 € (07 +OO);
U’(O;Mm—&-l)Nm—&—l) :uO(Mm+1aNm+1)7 ceey
(2.36) d™u
dgﬁ(o; Myi1, Nppy1) = ™ (M1, Niny),
where
bi(Muns1) = bi(X* (Mit1), Minsa),
ui(Mm+17 Nm+1) = ﬁz()\* (Mm+1)7 Nerl)a
b; and @’ are known functions oh*, M,, .1 = (ao, . .., am), AN, 11 = (w°,..., w™) (they
are polynomial functions with respect £ and linear functions with respect t, ..., a,,

andw®, ..., w™). The characteristic polynomial of Ed. (2]35) for ah,,; € C™"! has the
zero root (se€ (2.37)); hence the coefficigyit\/,,,,) of the functionu is identical zero.

Due to [2:3B), for each/,,, ., € C™"!, the roots of the characteristic polynomial of Eq. (2.35)
are as follows:

(2.37) p;(Mpi1) = Ni(Mppi1) = N (Myya), 1€ {1,...,m+1}.
This and the definition ok*(M,,,1) imply
(2.38) Re p;(My,41) <0

forall (i, M, 41) € {1,...,m+ 1} x C™*L,

Since we assume that the point§,..; = (ao,...,a,) belong to the finite parallelepiped
P,1(C,), all roots\;(M,,+1) of the characteristic polynomial of Eq. (2|31) satisfy the condi-
tion

(2.39) |Xi(Mpi1)| <1+ Cy
(see, e.qg./]5]). Then there exist nonnegative constégngndC', such that
(2.40) |0i(Myi1)| < Gy, |[t' (M1, Nongr)| < Cu

for all (Z, ]\4771_;'_17 Nm+1) € 0, m X Hm+1 (Ca) X Hm+1(0w)-
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We reduce the order of Eq. (2]35) by the following change of the dependent variable:

du
(2.41) d_f(g; M1, Nm+1) = v(é; Myt Ning1).
The functionv(&; M,,+1, N,,+1) satisfies the following initial-value problem:
d™v dm 1ty
P bm(Merl)F + A+ 0 (Mpy1)v, € € (0, +00);
(242) U(O; Mm-i—la Nm+1) = ul(Mm-Ha Nm+1)7 R
dmfl,v .
F(Oa Mm+17 Nm+1> =u (Merl; Nm+1)'

Letvy(Myi1), - .., vm(M,41) be roots of the characteristic polynomial of Hq. (2.42). Since
each of the roots/;(M,,,,) is at the same time a root of the characteristic polynomial of

Eqg. (2.35), they, similarly tq:;(M,,+1) (see [(2.3B)), satisfy the following inequality for all
Mm+1 € Cmtl:

(243) Re I/Z'(Mm+1> S 0.
Note also that
My, = (b1(Mys1), -+ b (Mni1)) € TL, (Cy),
Nm = (ul(Mm-l—h Nm-i-l)v s 7um(Mm+17 Nm+1)) € Hm(Cu)

for all My,41 € I1,,41(Co) @and Ny 1 € 11,41 (Cy) (see[(2.4D)). The last estimates allow one
to apply the inductive hypothesis to the functiarthere exists”,, > 0 such that

div -
(2.44) d_gi(& Mpi1, Npg1)| < Cr(1+ ™7
forall (i,&, M1, Njpy1) € {0, ...,m — 1} x [0, +00) X I1,,,11(Cy) x 11,41 (Cy) (see[(2.30),
(2.29), and[(Z.43)).
From [2.41) and (2.44) we obtain for the firatderivatives of the functiom the relation
du d—tv . _
(245) _Z(fa Mm-i—la Nm+1) = ?(5) Mm-i—la Nm+1) < Cm(l + gm 1);
d§ d§
here up to the end of the proof we assume t§af/,,, .1, Ny,11) € [0,+00) x I,,,41(Cy) X
1 1(C)-

To estimate the function, we integrate[(2.41) and then apply (2.36), (2.40), and [2.44) and
the monotonicity property and the estimate of the absolute value of the definite integral:

(2.46) ‘U@S My1, Nyps1)

3
= ‘U(O;Mm-i-laNm-H) +/ U(C;Mm+1aNm+l)dC‘ S ‘UO(Mm+1>Nm+1)
0

& £ ~
T / [0(G: Mo, N |dC < o+ / Con(L+ €™ NYdC < G + €M)
0 0

for sufficiently largeC,,.

Now we turn tow. From [2.38),[(2.46)[ (2.45), (2.89), aid (2.34) and the Leibniz formula for
theith derivative of the product of two functions, for each 0, m and sufficiently large”,,
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we have
d’b

df (5 Mm+1> Nerl)

X (M) O]

< Z ,’U (& Mm+17Nm+1>‘

<|Gt+ema+c) +Z (L €)1 G 7 RN (e

(i —J)!
< é H(1+EMe A1 (M1)€

The proof is completeg

Corollary 2.4. There existy > 0 andCs > 0 such that

(2.47) |Pei (& 2)], (& 2)] < Cop(1 + €M e

for all (i,&,z) € {0,...,m — 1} x [0,+00) x [0, X], where®!(&; z) and @™ (¢; z) are the
solutions of the problem@&.21}-(2.22)and (2.23)}2.24) respectively.

Proof. To prove the estimaté (2.47) it suffices to set

X: :—I[gla)xg]cmax{Re)\l( ),...,ReAp(z)}

(see[(2.]7)) and apply the Weierstrass extreme-value theorem on the boundedness of a continuous
function fora; and Lemma 2]3g

3. CONSTRUCTION AND PROOF OF CONVERGENCE
OF | TERATIVE SEQUENCE

Let
O, Cy;e) == {(zl,...,zm) cC, {Oé} Ve € {Oé}
(21(€),...,2™(€)) € [~C, +00]m}

be a closed”-neighborhood of the vector-functiont!, ..., 2™) = (0,...,0) =: ¢ in the
spaceC,, [0, X/¢].

Proposition 3.1. There exist, > 0 andC, > 0 such that
A(Coie) : O(9, Co; €) — O, Co; €)

for anye € (0,e0), where A(Cyje) = (ﬁl((Jo;s),...,Em(Co;g)) is the restriction of the
operatorA(e) to O(¥, Cy; £).

Proof. We fix arbitrarye > 0 andC > 0, apply the operatorﬁi(CO; ¢) to an arbitrary vector-
function (21(), ..., 2™(£)) € O(9,Cy; ) and, taking into accounf (Z.25) arid (2.47), estimate
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the result obtained:

(3.1) ﬁi(Co;g)[zl,...,zm](g)‘

3
< Cae¥{Co [ <14 €= 0" lamale0) - ama(e)] +

0

3
Hlaoe) — an(e]ag + [ <[+ (€= " MG +1gOdc} i =Tom

0

(the term|y’(e¢)| only for m > 2).
For the first integral in[(3]1) we have

(3.2) / L+ (€~ O™ [Jan-1(2C) — amor (6] + - + lan(eC) — ao(<E)]] ¢
= [ 0%~ )+ €= ") {sCll1 ~ B )+ )] +
+ |ab(<l(L = o) + B0g])| fdc
< e{la, 1<x>|\+-~-+Hae<x>|\}/jex<[<s—<>+<f—<>m]d<

= caf L[ 1 - x€] + g [ — 1 - x€ — o — H(E)"]} < 2,
whered; = 6;(c¢,e€) € (0,1), || - || is the norm of the spad€[0, X|, and
X"+ m!

a:= a1 (@) +- -+ llag()ll, B:= O

For the second integral if (3.1) we have (3ee (2.18) [and](2.12))

3 3
@3 [ el e- 0 1@+ TENC S [ i+ €= 0]
% {Cllaus (Omr )l + -+ | (£000)I] (¢ + ™)™ + I (<€) ¢
3
< {Camax (¢ +¢™) X<}+||g'<x>||} | e e = ac

= {Camax (¢ + ¢ + 17/ (@) }{ [ - 1]

o [ex — 1 — g — e — (mil),(xé*)m_l}} < e,

whered; = 6;(<¢) € (0, 1),
= {Camae [(C+ €M) 4 1/ @)] 2t
From [3:1),[3R), and (3.3) we see thatif ande satisfy the inequalities

(3.4) 0 < CoeCs8 + Cpy < Co,
henceA(Cy; )]z, ..., 2™](€) € O, Cy; ).

We set
(3.5) g0 = 70(CaB) ",
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wherey, is an arbitrary number from the interv@dl, 1) (if 5 = 0, i.e.,a;(z) = const on [0, X],
theng := +o00) andCy := Cyv/(1—7,). Then the inequalitie$ (3.4) hold for anye (0, o). 1

Assume that for any fixed positive and anyy, (¢) = (21(€),...,2(€)) and p,(¢) =
(23(8),...,25(&)) from C,,[0, X /¢], the distance, betweenp, andy, is defined:

(3.6) pe(p1:02) = llo2 — il oo/ = Jnax max |25(8) = 21(6)],

where X (¢) := [0, X/¢]. Note thatC,,[0, X/c] and O(v, Co; ¢) with p. defined above are
complete metric spaces.
Proposition 3.2. The operatoﬁ(s) is a contractive operator for any € (0, o).

Proof. Let p, be the metric[(3]6) of the spacg, [0, X/<]. Take two arbitrary functiong, (§) =
(21(8),...,27(&)) andpy (&) = (23(8),...,20(€)) from this space and, taking into account
(2.28) and[(2.4]7), estimate the distance betwéér) [p,] and A(e)[p,]:

@) p.(AE)Nei] AE)le]) = max max |A(e)[)(€) = Ai(e)[i](€)

£eX (e) 1<i<m
3
= e max | [ 0706 = G0 [ano1(60) = na (9] [0 = 70 + -
+ [a0(=6) = ao(=)] [23(6) = #(0)] fdc|

3
< p(p1,09)C max/ XN 4 (-t
< pe(p1,02) 2 Xy ; [ (€—¢) }

X |[am-1(2€) = am1(6)] + -+ + |ao(2C) — ao(e€)] | dc.

From (3.7), [(3.R), and (3.5) we conclude that for ang (0, o] the contraction coefficient
k(e) of the operatorA(¢) satisfies the estimate

(3.8) k(e) < eCoff = %63 <y < 1.
0
The proof is completeg

Since the contraction coefficiehtCy: ¢) of the operatord(Cy; ¢) certainly does not exceed
k(e), the estimatd (3]8) is also valid for it:

(3.9) K(Coie) S yo— <70 < L
0

Thus, we can apply the Banach fixed-point theorem to the opeﬁ(@g; ¢) and conclude
that for anys € (0, g0] the solution(z'(¢;¢), ..., 2™(&;€)) =: ¢(&; ¢) of the problem[(2.14)—
(2.17) (which is equivalent to Eq. (2]26)) belongs@¢v, Cy; ). We emphasize that the ex-
istence and the global uniqueness (i.e., uniqueness on tl@ 3et] x R™) of the solution
w(&;e) (for all e € R) are immediately implied by the linearity of the problegm (2.14)—(2.17)
(the linearity of Eq.[(2.26)).

The contractive property of the operaﬁ(Co;e) also allows one to construct the itera-
tive sequence,, (&;¢) = (21(&;¢),...,2™(&;¢)) converging with respect to the norm of the
spaceC,,[0, X/¢] to the exact solutionp(¢; <) of the problem[(2.14)H(2.17) uniformly with
respect ta € (0, g|:

= @ulle,ona = g max [16:) = 2i(&2)| = 0, n— oo
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We setp,(&;¢) = (0,...,0) =: 9. Sincep(&;e) € OV, Cy; ), we have
(3.10) (&) = wo(se ”cm[o X/e] = ||e(&;e HCmOX/ ] = < Co

forall e € (0,¢).
Further, for any natural we set

(3.11) Pu(6:) == A(Co;)[pni) (&)

Then, taking into accounf (3.9) and (3.10), we have for each {0} UN =: N, and each
e € (0,¢e0)

(312) [|lo(&:e) = 2ul& )l ox /e
< k(Cose)"[|¢(&€) = wo(&5€)l,oxseg < Co (%56—0) '

We turn to the probleni (2. 1)=(2.2). Due [o (3.13), we obtain the iterative sequgiiees),
oy (s e), respectively, for the solutiop(z; ) of the original problem and its derivatives

Ly(aie), ..., Lry(zse):
(3.13) yl(z;e) =7 (f :E) + ezt <§;€> , n € Np;
(3.14) Yyl (z;e) ==Y (5) + 22t (§;€> , (i,n) € 2,m x Nq.

Forn > 1, the values/ (z; ) can be immediately expressed through, (z; €):

N " x
yi(x;g) = y( ) +€A1(OO’ )[ Rp—1s+ -+ >Zn71] (g;{;‘)
= Bi(e)[yn_1, - - -y (x;8),
yh (7€) stH(H)< )+62 TA(Coie)zh_y, 2] (—;s)
=: Bi(e)[y}l_l, oy (xe), i€ 2,m,

where
() = =7 |pha(eie) — (6 <6))
(o) =y (e6e) e TIEI(E), ieZm
(seel(3.1B)[(3.14), and (3]11)) or briefly
Un(x:€) = BE) 1] (w:9),

wherev, (z;e) = (yi(z:e),...,y"(x:¢)) and B(e) = (By(e),... Bn(c)). Note that the
operatorB(e) is contractive fore € (0,¢] (i.e., for the same asA(Cm ¢)) and the operator
B(e) satisfies the condition

B(e) : O(¥, Cy; €) — O(1h, Co; )
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for e € (0, o], where
O, Cy;e) := {(yl, Y™ € Cl0, X] : V€ [0, X]
o) [o(r) -t (2.0) 261
pe [ (D) - coe (2) 46l
o) € [ (£) < ony, oo (£) 4 o] |

9
is a closedcCy, Cy, . . ., 27™Cy)-neighborhood of the vector-function

~ /T /T e (T —mer(m—1) (T
0 (Zie) = (0 (Son) o () et (7))
in the space’,,[0, X]. _
We estimate the accuracy of the approximatio%é%y(x; e) by y (z;¢). For eachn € N

ande € (0, 0] we have (seéd (3.13], (3]14)), (2]113), and (B.12)):
[y(z;2) — yn(z;0)|| = Hy(flf;é‘) — (§w> — ez, (§;5> H
2 (Ze) - (G =<l (Bie) o (B 3 e (05)

i—1 , di—1 v (i T (T
. o . . o l—ape-1) (2 2—i 0 (2
H dl‘iil y(xﬂ E) yn($7 6) dl‘iil y(.r, 6) € H ( ) € Zn (8 Y 6) ’

e
. /T . /T .
#(Ze) - (o) ==
3 g

x x
e (Ge) e (Gl
£ 9 Cm[0,X]

n
. € L
< Cye*™ (70—) , 1 E2,m.
€0

— 8271'
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