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ABSTRACT. In this paper, we mainly suggest a new method that depends on the fractional
derivative proposed by Katugampola for solving nonlinear fractional partial differential equa-
tions. Using this method, we obtained numerous useful and surprising solutions for the space—
time fractional nonlinear Whitham—-Broer—Kaup equations and space—time fractional general-
ized nonlinear Hirota—Satsuma coupled KdV equations. The solutions obtained varied between
hyperbolic, trigonometric, and rational functions, and we hope those interested in the real-life
applications of the previous two equations will find this approach useful.
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2 A. A. MOUSSA ANDL. A. ALHAKIM

1. INTRODUCTION

Mathematics has long been allied with physics, and while physicists have been studying and
modelling various phenomena, mathematicians have been engaged in finding appropriate meth-
ods to obtain solutions to earlier mathematical models. Once we obtain such solutions, they
are used to explain the original phenomenon from which they originated and to find possible
realistic solutions. There are numerous physical phenomena, and we can model some of them
in the form of nonlinear partial differential equations, and thus the methods for solving these
equations have gained significant importance for those interested in this field. In addition, many
effective and direct methods for generating analytical solutions to nonlinear partial differential

equations been developed, such as(t%é) expansion method [1, 2], double auxiliary equa-

tions method|[[3, 4], generalizedtp (—¢ (£)) — expansion method [5] 6¢oth, (£) expansion
method [7], F'— expansion method [8, 9], and others|[10] [11, 12]. Several definitions of what
is now known as the fractional derivative have emerged, such as the Riemann—Liouville frac-
tional derivative, Caputo fractional derivative, and Atangana—Baleanu derivative. Using these
derivatives, physicists have been able to study numerous important phenomena in the form of
nonlinear fractional partial differential equations (NFPDES). By contrast, numerous effective
methods have been found to solve these equations, such as the modified extended tanh-function
method and fractional sub-equation method proposed by Zhang and Zhang [13], which was
developed later by Wangi and Xu [14]. The previous methods depend on the following defi-
nition of a modified Riemann—Liouville fractional derivative, which was proposed by Jumarie
[15,(16,17]:

1.1 P = sy [ (=0 U @) = S 0)

Numerous formulas have been provided by Jumarie, including the following rule (chain rule),
which has mainly been used in two previous methods:

(1.2) (f (w(®) = foul (1).

However, Liu surprisingly published articles (counterexamples of Jumarie’s basic fractional cal-
culus formulae) in which the author outlined the invalidity of the previous chain rule, through
which the corresponding results on differential equations were shown to be untrue [18, 19].
The findings by Liu led us to search for a new definition of a fractional derivative that sat-
isfies the product, quotient, and chain rules for obtaining the exact traveling wave solutions
for nonlinear fractional partial differential equations. Indeed, we found an extremely interest-
ing definition of the fractional derivative proposed by Katugampola [20], which satisfies all
of the previous rules, particularly the chain rule. Using this definition, we suggested a new
method called the new fractionatp (—¢ (£)) — method for obtaining novel and more general
exact traveling wave solutions for nonlinear fractional partial differential equations. In [21],
the authors applied a modified extended tanh-function method for solving the space—time frac-
tional nonlinear Whitham—-Broer-Kaup equations, and space—time fractional generalized non-
linear Hirota—Satsuma coupled KdV equations, and because all of these solutions are incorrect,
we applied our proposed method to solve the previous equations and thereby demonstrated the
effectiveness and strength of the method, providing others with correct solutions, which were
checked using Maple. The remainder of this paper is organized as follows: S€ction 2 provides
some definitions and properties of the fractionals calculus proposed by Katugampola, and de-
scribes the fractionalxp (—¢ (£)) — expansion method. Sectidn 3 describes the application

of this method to solving the space—time fractional nonlinear Whitham—-Broer-Kaup equations,
whereas Section| 4 describes its application to solving the space—time fractional generalized
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nonlinear Hirota—Satsuma coupled KdV equations. Finally, Seffion 5 provides some conclud-
ing remarks regarding this research.

2. DESCRIPTION OF THE FRACTIONAL exp (—¢ (£)) — EXPANSION METHOD FOR
SOLVING NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

In this section, we present the basic definition of the fractional derivative presented by Katugam-
pola [20], and the most important rules related to this definition, from which the proposed ap-
proach has benefited.

Definition 2.1. Let f : [0,00) — R andt > 0. Thefractional derivativeof f of ordera is
defined as follows:

NIGREN0
2.1) D (f) (#) = lim ,

e—0 g

forallt > 0,a € (0,1]. If fis a—differentiable in som&0, a) ,a > 0, andlim,_,o+ D (f) (¢)
exist, then define the following:

(2.2) D% (£)(0) = lim D (f) (t).
The following theorem is the main result of the previous definition:
Theorem 2.1.Leta € (0, 1] andf, g bea— differentiable at pointt > 0. Then,
i. D (af 4+ bg) (t) = aDy f (t) + bDyqg(t), foralla,b € R.
ii. D¢ (t") = nt"~, foralln € R.
iii. D¢ (c) =0, for all constant functiong (¢) = c.
iv. D (fg) (t) = D f (t) g (t) + Di¥g (t) f (¢).

a D¢ f(t)g(t)—Dy t
v. D (£) (1) = e D)

Vi. D (f o g) (t) = Dg f (g (£)) Di*g (t).

vii. D¢ (1) = 1.

The main steps of the new fractionatp (—¢ (£)) — expansion method are described as
follows:

Step 1. It is assumed that a nonlinear fractional partial differential equation, i.e., in the
independent variablesandt, is given as follows:

(2.3) F(u,ug, ug, Dfu, Do, ...) = 0, 0<a<l,

whereu = u(z,t) is an unknown functionf’ is a polynomial inu = u(z,t), and their various
partial derivatives including fractional derivative3;« and D{u are Katugampola’s fractional
derivative

Step 2.The traveling wave transformation is used:

(2.4) u(z,t) = U(E), €= (ﬁ) * (@) e,

« «

wherek,, k, are arbitrary constants to be determined later, the nonlinear FDE (2.3) is reduced
to an nonlinear fractional ordinary differential equationor= U () in the following form:

(2.5) P (U,DgU, DU, DU, ...) = 0.
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Step 3. By balancing the highest derivatives and nonlinear terms in Eq| (2.5), and using the
following relationship, the value of the positive inteder) is determined:

d1U\°
(2.6) Degree [Up (d_f‘l) } =mp+s(m+q),
Step 4.1t is assumed that the solution to EQ. (2.5) can be expressed as follows:
(2.7) U= > Lilexp(=¢(9)),

wherel; (i = —m, ..., m) are constants to be determined, such that 0 and¢ () satisfy the
following fractional differential equation:

(2.8) Dg¢ (&) = exp (=9 (§)) + pexp (¢ (£)) A

Fortunately, Eq.[(2]8) allows several of the following types of solutions:
Family L Whenu # 0, (A — 4u) > 0,

“X— /N = ditanh <—(§a+m)2avm>

(2.9) é1 (&) =In o ,cER.
Family 2 Whenu # 0, (A2 — 4p) < 0,

—X+ /4 — N tan (% \/4’"\2>

. =1

(2.10) ¢2(6) =In o c€R
Family 3 Whenu = 0, A # 0,

) 1 = o2
(2.11) o3 (&) = a(f“—}—ac) +1In 3 ,c€R.
Family 4 Whenu # 0, A # 0, (\? — 4u) = 0,

2 4o

(212) (b4 (f) =In (—X — m) ,C &€ R.
Family 5 Wheny =0, A =0,
(2.13) 65 (€) = In (5 ZO‘C) cER.

Step 5.Substituting Eqs[ (2]7) anf (2.5) into Ef. (2.8), respectively, and setting all coefficients

of (exp (—¢ (£)))" of the resulting systems to zero, a system of algebraic equatiorts,for
andl; (i = —m, ..., m) is yielded.
Step 6. By solving the algebraic equations obtained in Step 4, substitdting,, /; and the

solutions of Eq.[(Z2]8) into Eq[ (2.7), we immediately obtain the explicit solutions tq Eq. (2.5).
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3. EXACT SOLUTION TO SPACE —TIME FRACTIONAL NONLINEAR
WHITHAM —BROER—KAUP EQUATIONS

In this section, we construct the exact solutions of the space—time fractional nonlinear Whitham—
Broer—Kaup equations by using the fractionap (—¢ (£)) — expansion method. These equa-
tions are well-known [21] and have the following forms:

(3.1) Dfu + uDSu + D% + BD**u = 0,

(3.2) D + DY (uv) — BD**v + yD3*u = 0,

where0 < a < 1,u andv are the functions ofz, t), andv, § are constants. To solve Egs. (3.1)
and [3.2) using the proposed method, we utilize the following travelling wave transformations:

k k
33) e t) = U(©) ol = V(©) €= (2)ans (2]
wherek,, k, are constants. Eqs. (3.1) and {3.2) are carried into the following nonlinear frac-
tional ordinary differential equations:

(3.4) BEIDZU + kiUDEU + kyDEV + ky DEU = 0,

(3.5) VDU — BIZD2V + ki UDEV + ki VDEU + ks DYV = 0.

Balancing the highest-order derivatives and highest nonlinear terms in[Eqgs. (3.4) @nd (3.5),
we have the following formal solutions:

(3.6) U (&) = ao+ arexp (¢ (£)) + azexp (=9 (£))

(3.7) V(&) =Po+ Brexp (9 (8)) + Baexp (=9 (€)) + Fa exp (20 (€)) + Laexp (=20 (€)) ,

wherea;(i = 0,1,2),5;(j = 0,1,2,3,4) are constants to be determined later. Substituting
(3.6) and|(3.]7) along with Eq|. (2.8) into Eq. (3.4) and](3.5), the left-hand side is converted into
polynomials in(exp (—¢ (£))), (i = 0,41, +2,....). By collecting each coefficient of these
resulted polynomials to zero, we obtain a set of simultaneous algebraic equations, which are
not presented herein for the sake of clarity, &@t a1, as, 5o, 51, 52, 53, B4, k1 @andk,. Solving
these algebraic equations with the help of the algebraic software Maple, we obtain the following
three cases:

Case 1

( 2 2 _ 2
o = (Akl(ﬁ +7) ka+/ B +7) Q1 = U, (i = 2k, /52 +7,

kiy/ B2+
(3.8) ky = ki, ko = ko, B0 = 0, 81 = ABs, Ba = B4,

| s = —2uk} (BT + 49 By = =20 (—BYF A7+ B ).

Substituting Eq.[(3]8) into Eqd. (3.6) and (3.7), we have the following:
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(00 = (MY o, T e (66) + 0 (-6 6)

2kt (BY/FH 7+ B +7) (Aexp (6 (8) + exp (26 (€))
Vi§)= >
2k (=BY/F 7+ 524 7) (exp (=6.(€)) + exp (~26/(€)))

(3.9) <

k1y/ B2+

= (Ak%(ﬂ2+'y)k2\/ﬂ2+v) = 0,00 = 2k /B kg = Ky ky = ko,
(3.10)

Bo = 1B, B = 0,02 = ABs, Bs = 0, B4 = 2k} (ﬁ\/ﬁ2 —(B*+) >
Substituting[(3.10) intd (3]6) and (3.7), we have the following:

U = <”“%<52”)"”m> 2 /F 7 exp (—0 (6))

kB2

(3.11) — k2 <ﬁ\/527 (3% + ) p+Aexp (= (€)) +exp (=20 (£))) ,
EOCERCIR
Case 3
ap = M2 (84) e/ 5247 Jan = 2pk /P + 7,00 = 0,k = K,k = Ky,
(3 12) k‘1\/ﬂ2+’7

Bo = =241k (Ov/F 47 + 2 +7) . B = Mo, B2 = 0,85 = jufo, By = 0.
Substituting Eq.[(3.12) into Eqg. (3.6) and (3.7), we have the following:

U = (A’W”WV“”) 2k /BE T exp (6 (6))

k1y/ B2+

(B13) 4 (o) = o2 (6\/627+7+52 H) (1+Xexp (4(€)) + pexp (26(€)))

[ &= ()2 +(3) e

In particular, using[(3]9) and the solution to E[g. {2.8), we can find the following exact solu-
tions of the space—time fractional nonlinear Whitham—Broer—Kaup equations:
Family 1.Wheny # 0, (A2 — 4u) > 0,
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(3.14)
( M2 (B2+7) —ka/ B2+ apki /Bty
< k1y/ B2+ > - (A—FMtanh(W))
Uy (5) = )

—k:1\/7 ()\ + \/Azitanh (—5 tac m))
k3 (6\/m+62+’7> <)\+\//\27tanh(§ oo VAT 4"))

2

V(e = _k%(ﬁ@w%v) ()\Jr /3 — 4y tanh (M)) |

anak? (<By/FH B 4) 823 (—By/ B +62+7)

+ 5
[ A2 o —
)\+\/)\2—4utanh<(g+acz)#> ()\+‘ /A2f4utanh<% \M‘))

6= (8)am+ (8) e

Family 2 Whenu # 0, (\* — 4u) < 0,

(3.15)
( M () o /P ki /Py
kiy/B+y —A-ﬂ/ﬁtan(% W)
Uz () =
+kiv/ 32+ (—A + v/4p — A? tan ( SELUMES ”))
2 2 2 ) (&~ +ac 4u )\2
—Aky (5\/ﬁ +v+8 —i—’y) (—)\ dp — A tan( ))
k2ﬁ/ﬁ2++62+ o — 2
V() =] — i — ) (—A+ A — M2 tan <—(5 ooy )) ’
AMpki (—ﬁ 52+’Y+62+'y) 8u2k? (—ﬁ 624—'\(—}—62—{—7)
f)\+\/4uf)\2tan<% M) (—A+mtan<@”+ W)y
6= () + ()

Family 3 Whenu =0, A # 0,
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(3.16)
| Us (&) = (Ak%(ﬁzz}ﬁﬂyﬁ_ﬂ) + 2k \/WGXP <1Il ( - J(guca)) o 2 (&> + ca)) )
—2)\k? ( BB+~ 4+ 2+ 7) exp (ln ( A@%ca)) —2 (g + ca))
Vs () = ,

—2k? ( By B2+ v+ 5%+ ’y) exp (ln < A@Mm))Q — % (& + ca))

Family 4 Whengu # 0, A # 0, (A2 — 4u) = 0,

(3.17)

Us(§) = ()\k%(ﬁzﬂ)’62 62+7) 2pki/ 3% + ( ,\2(§°“+ac)> N ( s )

k1v/ B2+ /\+)\2(§O‘+a6))

2Auk2<6\/62 +52+7>< W)

2
Vi) = | 2k (3VFE ) (3 + ttan)
+2Ak%(—ﬁm+ﬁ2+v) (- ﬁ%w%ﬂ

(3 seirs) (2+m)

(= (8o ()

Family 5. Wheny =0, A =0,
Us (&) = =2 + 2k1/2 + (ga%) :

(3.18) Vs (€) = —2k3 (—ﬁ\/BQ +v+ 2 +7> (ﬁ)Z
6= () + (8) 10

Similarly, using cases 2 and 3 we can obtain more exact solutions of the space—time fractional

nonlinear Whitham—-Broer—Kaup equations, which we do not list in their entirety herein for
simplicity.

4. EXACT SOLUTION FOR THE SPACE —TIME FRACTIONAL GENERALIZED NONLINEAR
HIROTA —SATSUMA COUPLED KDV EQUATIONS

Space—time fractional generalized Hirota—Satsuma coupled KdV equations are well-known
[21], and have the following forms:

AJMAA Vol. 17(2020), No. 2, Art. 12, 15 pp. AIMAA
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1
(4.1) Djg— 5 D9 +3gD%g — 3D (hw) =0,
(4.2) D¢h + D¥*h — 3gD%h = 0,
(4.3) D&w + D>*w — 3gD%w = 0,

where0 < a < 1, g, h andw are the functions ofz, t).
By considering the traveling wave transformation, we have the following:

(44)  gle,t) = G(E), h(e,t) = H(E), wlz,t) = W(E), £ = (k—) o (’“—) )

(% (07

Egs. [4.1),[(4.2), andl (4.3) can be reduced to the following nonlinear fractional ordinary differ-
ential equations:

1
(4.5) kaDEG — SkID{G + 3k GDG — 3 WDZ H — 3k HDZW =0,
(4.6) ko D¢H + K} D¥*H — 3kiGDZH = 0,
(4.7) ko DEW + kiDEW — 3k, GDEW = 0,

By balancing the highest-order derivative and nonlinear terms in the previous equations, we
have the following formal solutions:

(4.8) G (&) = ap+arexp (¢ (§)) + azexp (=9 (§)) + azexp (20 (£)) + agexp (=20 (€)),
(4.9) H(§) =B+ Brexp(¢(§)) + Baexp (=9 (§)) + Bzexp (26 (§)) + Baexp (=29 (),

(4.10) W (&) = v +1exp (¢ (§)) +v2exp (=9 (£)) +13exp (29 (£)) +yaexp (=29 (§)) ,

wherea;, 3;,7:(i = 0,1,2,3,4) are constants to be determined later. Substitufing (4.8), (4.9),
and [4.10) along with Eq.[ (2.8) into Eqs| (4.5), (4.6), and](4.7), all of the terms with the
same power ofexp (—¢ (£)))", (i = 0,£1,£2,....) are collected. Setting all coefficients of
(exp (= (€)))", (:=0,£1,£2,....) to zero, we can obtain a set of algebraic equations for
a;, Bi,vi(i = 0,1,2,3,4), k; andk,. Solving these algebraic equations using Maple, we have
the following cases:

Case 1

(4.11)

3 2
ap = w,al = 2\uk? o = 20k3, a3 = 2u%kE g = 2k3,

3k
fy = PO 20 () oo 1) 5 g etk 00 )

P3=0,01=0,7%="7,1n=7"7%= %773 = 0,7 =0,k = k1, k2 = ko,
Substituting[(4.1]1) into Eqs|. (4.8), (4.9), and (4.10), we have the following:
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koK (A2+8p)

o= ( 2N (jrexp (6 (€)) + exp (— (€))) + 282 (12 exp (26 (€)) + exp (~26(€)) ) |

(klu(wk% (A2420p) —youk3 (A24841) —4ka(vou—71 1)) )
37%

k(42 k3 (A28 )

Eo (nexp (¢ (§)) +exp (=9 (£)))

WA(&) =70 +exp(¢(§) + Texp (=4 (€)),

6= () e ()

Case 2

( ko k3 (A248p)
_ _ 2 _ 4,272 _
g = 3 yop = 4 ki, as = 0,03 = 4p°ki, aq = 0,

(4.13) Bo = Bo, b1 = %,@ = 0,083 = 03,01 = 0,k1 = ki, ka = ko,

Yo =

2k 2 B3k (2481 ) +4B3k2 — 680k 1% ) VI 0. e 0
353 y N1 B3 ! V2 » V3 B3 V4 .

\

Substituting[(4.13) into Eqs|. (4.8), (4.9), and (4.10), the following is derived:

(4.14)
(G (6) = O™ 432 exp (6 (6)) + 462K2 exp (26 (6)
H (&) =fo+ A—fj‘g exp (¢ (£)) + Bz exp (26 (£))

W (€) = 2k 12 B3k (A2 +81) +4B3ka—600 kT 2 N K

4ptkd
3/33 33 €xp (¢ (5)) + % €xp <2¢ (5)) ’
[ €= () e+ ()
Case 3
(4.15)
3 2
ap = %}iwﬂ),al = 2 \uki, g = 0, a3 = 2p*k}, ay = 0,
k1p(Oyi— 4ko+k3 (A2 —4 k1p? (4ko+k3 (A2 —4,
By = 1A w/o)(gﬁfr ( #)),51 _ ka( 22%( u))762 0.8 = 0.0, =0,

Y0 =77 =772 = 0,73 = 0,71 = 0,k = Ky, kg = Fo
Substituting[(4.15) into Eqs]. (4.8), (4.9), and (4.10), results in the following:
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((Ge) = 2O | o) k2 exp (6(6)) + 27K exp (26 (£))

H (5) _ klN(A'Yl_#'YO)gi]ZQ‘Fk?()\2—41,5)) + k1“2<4k22ﬁ()‘2—4ﬂ))
(4.16) :

W (&) =v%+mexp(o(E)),

[ €= ()= + ()

exp (¢ (§)),

Case 4

ko +k3 (A2+2p )

3k, , 0 = 0,0[2 = 2)\]{5%,&/3 = 0,054 = 2]{5%,

g =

(417) /80 = ﬁ(bﬁl = 07/62 = 627/63 = 0764 = 07k1 = kl; k2 = k27

k1(AB2—PB0) (4ka+kF (A2 —4 dk1ko+ki(A2—4
'70 1(AB2— 0(3;2 ( “))’71_0’72 %773—077420-

Substltutlng@?) into Eqs|. (4.8), (4.9), and (4.10), gives us the following:

G (&) = ) |93k exp (= (€)) + 262 exp (~26 (£))

H (&) = Bo+ farexp (—¢ (€)),
(4.18)
ki (AB2—B0) (4ka+k3 (N2 —4p)) | dkko+ki (X2—4p)

W () = 5 + 35, exp (=9 (£)),

Case should 5

( 3(\2
Qp = W,al = 0,0&2 = 4)\]{3%,@3 = 0,0!4 = 4]{3%,
(4.19) Bo= 00,01 =0,8=,03 =0, =2 k1 = ki, ko = ks,
20k1 (B2k$ (A2+8u ) +482ka — 680 \k$ 4,\2 Ak
| 0= 1(2ar( ;22 - ),7120,72 5 13 =071 = 42 )

Substituting[(4.19) into Eqs| (4.8), (4.9), and (4.10), we have the following:

(4.20)

G (€) = EHONS) 4 312 exp (= (€)) + 42 exp (—26(€))
H(€) = fo+ Brexp (— () + 2 exp (<26 (€))
<
W () = 2RO bl 00K) | 0K oy (g () + 2 exp (<260 (¢)).
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Using [4.12) and the solutions to E¢. (2.8), we can find the following exact solutions to the
space—time fractional generalized nonlinear Hirota—Satsuma coupled KdV equations:

Family L Whenu # 0, (A\? — 4u) > 0,

( kot k3 (A24-81)
3k

2p

+2MK?

2u

+
Gl (6) = ( )\2 4,utanh (5 +040)\/A2 4M
utanh( & +ac AQ 4#
2p

2u
+
—A—1/A2—4p tanh (&= +ac) VA2 —dp

A—y/A2— 4utanh< & *“C)Vﬂ 4“ )

Lok

(4.21)
oo (1 A3 (A2 4+204) —youk (A2 +8p) —4ka (you—m1A) ) i
377
S tac)V/A2—
klu2(4k2+k%()\2+8u)) —A—4/ )\2_4Mtanh<W)
mE=" = Z ,

klu(4k2 +k3 (AQ +8u))

2p
3 (_)\_ //\2—4utanh(% \//\24M>>

« 2 _
“A— //\2—4utanh<% M‘)

Yo +71 21

)
+21 2 —
= _A— />\2_4Mtanh<W)
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Family 2 Wheny # 0, (A2 — 4u) < 0,

( ko +k3 (A2 +84)
3k1

(Hmm((aua@gﬁ)

24

F2NK?

2u

+
“My/4u—22 tan( (E%+ac)y/4u—r2 )
2

Go (5) =

2

+2k2

+

a ac —\2
/IR tan(%)
20

2
A/ dp— )\Qtan<(§a+ac)v4“ 22 ))

37%

(4.22) (km(mk§(A2+20u)—wouk%(A2+8u)—4k2(vou—m)) )

Ay ac)Vap—r2
klﬂz(4k2+kis()\2+8,uz)) *A“r\/ 4/,17)\2 tan(%)
H, (f) = T 31 2L ,

+/€1M(4k2+k3(>\2+8u)) 2%
3 _M\/mtan((samgﬁ)

@ 2
gt /—4H,A2tan(% MA)

2p

Yo+ M

4+n 24
H O\ /B a2 e )
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Family 3 Whenyu # 0, A # 0, (A2 — 4u) = 0,

(4.23) 1
( ko4k3 (A2+8u o o -
0 4 o (ﬂ(—i—m) + (-2 - ey )
G3 (5) = )

2 -2
2 4o 2 4o
+2k% (/”LQ <_X B )\2(§°‘+ac)> + <_X - /\2(£“+ac)> )

(km(mk% (X24201) —vouh? (A2+8p1) ~4ks (rou—1 ) ) )
37%

H; (€) = +k1,u2(4k2+k113()\2+8u))< 9 oo )

371 X X2(f%+ac)
+k1u(4kz+k§(>\2+8u)) 5 o -1
371 A A2(é%+ac)

-1
W5 (&) =7+mn <—§—%>+%<—%—%> ;

6= (&)an+ (8) e

Similarly, using formulas (4.14), (4.1.6), (4]18), apd (4.20), we can obtain a greater set of so-
lutions to the space—time fractional generalized nonlinear Hirota—Satsuma coupled KdV equa-
tions.

5. CONCLUSION

In this study, the fractionadxp (—¢ (£)) — expansion method was successfully applied to
solve the space—time fractional nonlinear Whitham—Broer—Kaup equations and space—time frac-
tional generalized nonlinear Hirota—Satsuma coupled KdV equations. We obtained several use-
ful solutions for both equations, which can be used in practical applications. Previous appli-
cations have shown that the proposed method is effective and has the ability to demonstrate
various forms of solutions. In addition, we are confident of its ability to find solutions to nu-
merous nonlinear fractional partial differential equations in mathematical physics.
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