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1. I NTRODUCTION

Mathematics has long been allied with physics, and while physicists have been studying and
modelling various phenomena, mathematicians have been engaged in finding appropriate meth-
ods to obtain solutions to earlier mathematical models. Once we obtain such solutions, they
are used to explain the original phenomenon from which they originated and to find possible
realistic solutions. There are numerous physical phenomena, and we can model some of them
in the form of nonlinear partial differential equations, and thus the methods for solving these
equations have gained significant importance for those interested in this field. In addition, many
effective and direct methods for generating analytical solutions to nonlinear partial differential

equations been developed, such as the
(

G
′

G

)
expansion method [1, 2], double auxiliary equa-

tions method [3, 4], generalizedexp (−φ (ξ))− expansion method [5, 6],cotha (ξ) expansion
method [7],F− expansion method [8, 9], and others [10, 11, 12]. Several definitions of what
is now known as the fractional derivative have emerged, such as the Riemann–Liouville frac-
tional derivative, Caputo fractional derivative, and Atangana–Baleanu derivative. Using these
derivatives, physicists have been able to study numerous important phenomena in the form of
nonlinear fractional partial differential equations (NFPDEs). By contrast, numerous effective
methods have been found to solve these equations, such as the modified extended tanh-function
method and fractional sub-equation method proposed by Zhang and Zhang [13], which was
developed later by Wangi and Xu [14]. The previous methods depend on the following defi-
nition of a modified Riemann–Liouville fractional derivative, which was proposed by Jumarie
[15, 16, 17]:

(1.1) f (α) (t) =
1

Γ (1− α)

d

dt

∫ t

0

(t− x)−α (f (x)− f (0)) dx.

Numerous formulas have been provided by Jumarie, including the following rule (chain rule),
which has mainly been used in two previous methods:

(1.2) (f (u (t)))(α) = f
′

uu
(α) (t) .

However, Liu surprisingly published articles (counterexamples of Jumarie’s basic fractional cal-
culus formulae) in which the author outlined the invalidity of the previous chain rule, through
which the corresponding results on differential equations were shown to be untrue [18, 19].
The findings by Liu led us to search for a new definition of a fractional derivative that sat-
isfies the product, quotient, and chain rules for obtaining the exact traveling wave solutions
for nonlinear fractional partial differential equations. Indeed, we found an extremely interest-
ing definition of the fractional derivative proposed by Katugampola [20], which satisfies all
of the previous rules, particularly the chain rule. Using this definition, we suggested a new
method called the new fractionalexp (−φ (ξ))− method for obtaining novel and more general
exact traveling wave solutions for nonlinear fractional partial differential equations. In [21],
the authors applied a modified extended tanh-function method for solving the space–time frac-
tional nonlinear Whitham–Broer-Kaup equations, and space–time fractional generalized non-
linear Hirota–Satsuma coupled KdV equations, and because all of these solutions are incorrect,
we applied our proposed method to solve the previous equations and thereby demonstrated the
effectiveness and strength of the method, providing others with correct solutions, which were
checked using Maple. The remainder of this paper is organized as follows: Section 2 provides
some definitions and properties of the fractionals calculus proposed by Katugampola, and de-
scribes the fractionalexp (−φ (ξ))− expansion method. Section 3 describes the application
of this method to solving the space–time fractional nonlinear Whitham–Broer-Kaup equations,
whereas Section 4 describes its application to solving the space–time fractional generalized
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nonlinear Hirota–Satsuma coupled KdV equations. Finally, Section 5 provides some conclud-
ing remarks regarding this research.

2. DESCRIPTION OF THE FRACTIONAL exp (−φ (ξ))− EXPANSION METHOD FOR

SOLVING NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

In this section, we present the basic definition of the fractional derivative presented by Katugam-
pola [20], and the most important rules related to this definition, from which the proposed ap-
proach has benefited.

Definition 2.1. Let f : [0,∞) → R andt > 0. The fractional derivativeof f of orderα is
defined as follows:

(2.1) Dα (f) (t) = lim
ε→0

f
(
teεt−α

)
− f (t)

ε
,

for all t > 0, α ∈ (0, 1]. If f is α−differentiable in some(0, a) , a > 0, andlimt→0+ Dα (f) (t)
exist, then define the following:

(2.2) Dα (f) (0) = lim
t→0+

Dα (f) (t) .

The following theorem is the main result of the previous definition:
Theorem 2.1.Let α ∈ (0, 1] andf, g beα− differentiable ata point t > 0. Then,
i. Dα

t (af + bg) (t) = aDα
t f (t) + bDα

t g (t) , for all a, b ∈ R.
ii. Dα

t (tn) = ntn−α, for all n ∈ R.
iii. Dα

t (c) = 0, for all constant functionsf (t) = c.
iv. Dα

t (fg) (t) = Dα
t f (t) g (t) + Dα

t g (t) f (t).

v. Dα
t

(
f
g

)
(t) =

Dα
t f(t)g(t)−Dα

t (g)f(t)

g(t)2
.

vi. Dα
t (f ◦ g) (t) = Dα

g f (g (t)) Dα
t g (t).

vii. Dα
t

(
1
α
tα
)

= 1.
The main steps of the new fractionalexp (−φ (ξ))− expansion method are described as

follows:
Step 1. It is assumed that a nonlinear fractional partial differential equation, i.e., in the

independent variablesx andt, is given as follows:

(2.3) F (u, ut, ux, D
α
t u, Dα

xu, ...) = 0, 0 < α ≤ 1,

whereu = u(x, t) is an unknown function,F is a polynomial inu = u(x, t), and their various
partial derivatives including fractional derivatives,Dα

t u andDα
xu are Katugampola’s fractional

derivative.
Step 2.The traveling wave transformation is used:

(2.4) u(x, t) = U(ξ) , ξ =

(
k1

α

)
xα +

(
k2

α

)
tα,

wherek1, k2 are arbitrary constants to be determined later, the nonlinear FDE (2.3) is reduced
to an nonlinear fractional ordinary differential equation forU = U (ξ) in the following form:

(2.5) P
(
U,Dα

ξ U,D2α
ξ U,D3α

ξ U, ...
)

= 0.
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Step 3. By balancing the highest derivatives and nonlinear terms in Eq. (2.5), and using the
following relationship, the value of the positive integer(m) is determined:

(2.6) Degree

[
Up

(
dqU

dξq

)s]
= mp + s (m + q) ,

Step 4.It is assumed that the solution to Eq. (2.5) can be expressed as follows:

(2.7) U (ξ) =
m∑

i=−m

li (exp (−φ (ξ)))i ,

whereli (i = −m, ..., m) are constants to be determined, such thatli 6= 0 andφ (ξ) satisfy the
following fractional differential equation:

(2.8) Dα
ξ φ (ξ) = exp (−φ (ξ)) + µ exp (φ (ξ)) λ.

Fortunately, Eq. (2.8) allows several of the following types of solutions:
Family 1. Whenµ 6= 0, (λ2 − 4µ) > 0,

(2.9) φ1 (ξ) = ln

−λ−
√

λ2 − 4µ tanh

(
(ξα+αc)

√
λ2−4µ

2α

)
2µ

 , c ∈ R.

Family 2. Whenµ 6= 0, (λ2 − 4µ) < 0,

(2.10) φ2 (ξ) = ln

−λ +
√

4µ− λ2 tan

(
(ξα+αc)

√
4µ−λ2

2α

)
2µ

 , c ∈ R.

Family 3. Whenµ = 0, λ 6= 0,

(2.11) φ3 (ξ) =
λ

α
(ξα + αc) + ln

(
1− e−

λ
α

(ξα+αc)

λ

)
, c ∈ R.

Family 4. Whenµ 6= 0, λ 6= 0, (λ2 − 4µ) = 0,

(2.12) φ4 (ξ) = ln

(
−2

λ
− 4α

λ2 (ξα + αc)

)
, c ∈ R.

Family 5. Whenµ = 0, λ = 0,

(2.13) φ5 (ξ) = ln

(
ξα + αc

α

)
, c ∈ R.

Step 5.Substituting Eqs. (2.7) and (2.5) into Eq. (2.8), respectively, and setting all coefficients

of (exp (−φ (ξ)))i of the resulting systems to zero, a system of algebraic equations fork1, k2

andli (i = −m, ..., m) is yielded.
Step 6. By solving the algebraic equations obtained in Step 4, substitutingk1, k2, li and the

solutions of Eq. (2.8) into Eq. (2.7), we immediately obtain the explicit solutions to Eq. (2.5).
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3. EXACT SOLUTION TO SPACE –TIME FRACTIONAL NONLINEAR

WHITHAM –BROER–KAUP EQUATIONS

In this section, we construct the exact solutions of the space–time fractional nonlinear Whitham–
Broer–Kaup equations by using the fractionalexp (−φ (ξ))− expansion method. These equa-
tions are well-known [21] and have the following forms:

(3.1) Dα
t u + uDα

xu + Dα
xv + βD2α

x u = 0,

(3.2) Dα
t v + Dα

x (uv)− βD2α
x v + γD3α

x u = 0,

where0 < α ≤ 1, u andv are the functions of(x, t), andγ, β are constants. To solve Eqs. (3.1)
and (3.2) using the proposed method, we utilize the following travelling wave transformations:

(3.3) u(x, t) = U(ξ) , v(x, t) = V (ξ) , ξ =

(
k1

α

)
xα +

(
k2

α

)
tα,

wherek1, k2 are constants. Eqs. (3.1) and (3.2) are carried into the following nonlinear frac-
tional ordinary differential equations:

(3.4) βk2
1D

2α
ξ U + k1UDα

ξ U + k1D
α
ξ V + k2D

α
ξ U = 0,

(3.5) γk3
1D

3α
ξ U − βk2

1D
2α
ξ V + k1UDα

ξ V + k1V Dα
ξ U + k2D

α
t V = 0.

Balancing the highest-order derivatives and highest nonlinear terms in Eqs. (3.4) and (3.5),
we have the following formal solutions:

(3.6) U (ξ) = α0 + α1 exp (φ (ξ)) + α2 exp (−φ (ξ)) ,

(3.7) V (ξ) = β0 + β1 exp (φ (ξ)) + β2 exp (−φ (ξ)) + β3 exp (2φ (ξ)) + β4 exp (−2φ (ξ)) ,

whereαi(i = 0, 1, 2), βj(j = 0, 1, 2, 3, 4) are constants to be determined later. Substituting
(3.6) and (3.7) along with Eq. (2.8) into Eqs. (3.4) and (3.5), the left-hand side is converted into
polynomials in(exp (−φ (ξ)))i, (i = 0,±1,±2, ....). By collecting each coefficient of these
resulted polynomials to zero, we obtain a set of simultaneous algebraic equations, which are
not presented herein for the sake of clarity, forα0, α1, α2, β0, β1, β2, β3, β4, k1 andk2. Solving
these algebraic equations with the help of the algebraic software Maple, we obtain the following
three cases:

Case 1

(3.8)



α0 =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
, α1 = µα2, α2 = 2k1

√
β2 + γ,

k1 = k1, k2 = k2, β0 = 0, β1 = λβ3, β2 = λβ4,

β3 = −2µk2
1

(
β
√

β2 + γ + β2 + γ
)

, β4 = −2k2
1

(
−β
√

β2 + γ + β2 + γ
)

.

Substituting Eq. (3.8) into Eqs. (3.6) and (3.7), we have the following:
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(3.9)



U (ξ) =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
+ 2k1

√
β2 + γ (µ exp (φ (ξ)) + exp (−φ (ξ))) ,

V (ξ) =


−2µk2

1

(
β
√

β2 + γ + β2 + γ
)

(λ exp (φ (ξ)) + exp (2φ (ξ)))

−2k2
1

(
−β
√

β2 + γ + β2 + γ
)

(λ exp (−φ (ξ)) + exp (−2φ (ξ)))

 ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Case 2

(3.10)


α0 =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
, α1 = 0, α2 = 2k1

√
β2 + γ, k1 = k1, k2 = k2,

β0 = µβ4, β1 = 0, β2 = λβ4, β3 = 0, β4 = 2k2
1

(
β
√

β2 + γ − (β2 + γ)
)

.

Substituting (3.10) into (3.6) and (3.7), we have the following:

(3.11)



U (ξ) =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
+ 2k1

√
β2 + γ exp (−φ (ξ)) ,

V (ξ) = 2k2
1

(
β
√

β2 + γ − (β2 + γ)
)

(µ + λ exp (−φ (ξ)) + exp (−2φ (ξ))) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Case 3

(3.12)


α0 =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
, α1 = 2µk1

√
β2 + γ, α2 = 0, k1 = k1, k2 = k2,

β0 = −2µk2
1

(
β
√

β2 + γ + β2 + γ
)

, β1 = λβ0, β2 = 0, β3 = µβ0, β4 = 0.

Substituting Eq. (3.12) into Eqs. (3.6) and (3.7), we have the following:

(3.13)



U (ξ) =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
+ 2µk1

√
β2 + γ exp (φ (ξ)) ,

V (ξ) = −2µk2
1

(
β
√

β2 + γ + β2 + γ
)

(1 + λ exp (φ (ξ)) + µ exp (2φ (ξ))) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

In particular, using (3.9) and the solution to Eq. (2.8), we can find the following exact solu-
tions of the space–time fractional nonlinear Whitham–Broer–Kaup equations:

Family 1.Whenµ 6= 0, (λ2 − 4µ) > 0,
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(3.14)

U1 (ξ) =


(

λk2
1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
−

(
4µk1

√
β2+γ

λ+
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�
)

−k1

√
β2 + γ

(
λ +

√
λ2 − 4µ tanh

(
(ξα+αc)

√
λ2−4µ

2α

))
 ,

V1 (ξ) =



λk2
1

(
β
√

β2 + γ + β2 + γ
)(

λ +
√

λ2 − 4µ tanh

(
(ξα+αc)

√
λ2−4µ

2α

))

−
k2
1

�
β
√

β2+γ+β2+γ
�

2µ

(
λ +

√
λ2 − 4µ tanh

(
(ξα+αc)

√
λ2−4µ

2α

))2

+
4λµk2

1

�
−β
√

β2+γ+β2+γ
�

λ+
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

� − 8µ2k2
1

�
−β
√

β2+γ+β2+γ
�

�
λ+
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

��2


,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Family 2. Whenµ 6= 0, (λ2 − 4µ) < 0,

(3.15)

U2 (ξ) =



(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
+

4µk1

√
β2+γ

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�

+k1

√
β2 + γ

(
−λ +

√
4µ− λ2 tan

(
(ξα+αc)

√
4µ−λ2

2α

))
 ,

V2 (ξ) =



−λk2
1

(
β
√

β2 + γ + β2 + γ
)(
−λ +

√
4µ− λ2 tan

(
(ξα+αc)

√
4µ−λ2

2α

))

−
k2
1

�
β
√

β2+γ+β2+γ
�

2µ

(
−λ +

√
4µ− λ2 tan

(
(ξα+αc)

√
4µ−λ2

2α

))2

−
4λµk2

1

�
−β
√

β2+γ+β2+γ
�

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

� − 8µ2k2
1

�
−β
√

β2+γ+β2+γ
�

�
−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

��2


,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Family 3. Whenµ = 0, λ 6= 0,
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(3.16)

U3 (ξ) =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
+ 2k1

√
β2 + γ exp

(
ln
(

λ

1−e−
λ
α (ξα+cα)

)
− λ

α
(ξα + cα)

)
,

V3 (ξ) =


−2λk2

1

(
−β
√

β2 + γ + β2 + γ
)

exp
(
ln
(

λ

1−e−
λ
α (ξα+cα)

)
− λ

α
(ξα + cα)

)
−2k2

1

(
−β
√

β2 + γ + β2 + γ
)

exp

(
ln
(

λ

1−e−
λ
α (ξα+cα)

)2

− 2λ
α

(ξα + cα)

)
 ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Family 4. Whenµ 6= 0, λ 6= 0, (λ2 − 4µ) = 0,

(3.17)

U4 (ξ) =

(
λk2

1(β2+γ)−k2

√
β2+γ

k1

√
β2+γ

)
− 2µk1

√
β2 + γ

(
2
λ

+ 4α
λ2(ξα+αc)

)
− 2k1

√
β2+γ�

2
λ
+ 4α

λ2(ξα+αc)

� ,

V4 (ξ) =



2λµk2
1

(
β
√

β2 + γ + β2 + γ
)(

2
λ

+ 4α
λ2(ξα+αc)

)
−2µk2

1

(
β
√

β2 + γ + β2 + γ
)(

2
λ

+ 4α
λ2(ξα+αc)

)2

+
2λk2

1

�
−β
√

β2+γ+β2+γ
�

�
2
λ
+ 4α

λ2(ξα+αc)

� −
2k2

1

�
−β
√

β2+γ+β2+γ
�

�
2
λ
+ 4α

λ2(ξα+αc)

�2


,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Family 5. Whenµ = 0, λ = 0,

(3.18)



U5 (ξ) = −k2

k1
+ 2k1

√
β2 + γ

(
α

ξα+αc

)
,

V5 (ξ) = −2k2
1

(
−β
√

β2 + γ + β2 + γ
)(

α
ξα+αc

)2

,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Similarly, using cases 2 and 3 we can obtain more exact solutions of the space–time fractional
nonlinear Whitham–Broer–Kaup equations, which we do not list in their entirety herein for
simplicity.

4. EXACT SOLUTION FOR THE SPACE –TIME FRACTIONAL GENERALIZED NONLINEAR

H IROTA –SATSUMA COUPLED K DV EQUATIONS

Space–time fractional generalized Hirota–Satsuma coupled KdV equations are well-known
[21], and have the following forms:
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(4.1) Dα
t g − 1

2
D3α

x g + 3gDα
xg − 3Dα

x (hw) = 0,

(4.2) Dα
t h + D3α

x h− 3gDα
xh = 0,

(4.3) Dα
t w + D3α

x w − 3gDα
xw = 0,

where0 < α ≤ 1, g, h andw are the functions of(x, t).
By considering the traveling wave transformation, we have the following:

(4.4) g(x, t) = G(ξ), h(x, t) = H(ξ), w(x, t) = W (ξ), ξ =

(
k1

α

)
xα +

(
k2

α

)
tα,

Eqs. (4.1), (4.2), and (4.3) can be reduced to the following nonlinear fractional ordinary differ-
ential equations:

(4.5) k2D
α
ξ G− 1

2
k3

1D
3α
ξ G + 3k1GDα

ξ G− 3k1WDα
ξ H − 3k1HDα

ξ W = 0,

(4.6) k2D
α
ξ H + k3

1D
3α
ξ H − 3k1GDα

ξ H = 0,

(4.7) k2D
α
ξ W + k3

1D
3α
ξ W − 3k1GDα

ξ W = 0,

By balancing the highest-order derivative and nonlinear terms in the previous equations, we
have the following formal solutions:

(4.8) G (ξ) = α0 + α1 exp (φ (ξ)) + α2 exp (−φ (ξ)) + α3 exp (2φ (ξ)) + α4 exp (−2φ (ξ)) ,

(4.9) H (ξ) = β0 + β1 exp (φ (ξ)) + β2 exp (−φ (ξ)) + β3 exp (2φ (ξ)) + β4 exp (−2φ (ξ)) ,

(4.10) W (ξ) = γ0 + γ1 exp (φ (ξ)) + γ2 exp (−φ (ξ)) + γ3 exp (2φ (ξ)) + γ4 exp (−2φ (ξ)) ,

whereαi, βi, γi(i = 0, 1, 2, 3, 4) are constants to be determined later. Substituting (4.8), (4.9),
and (4.10) along with Eq. (2.8) into Eqs. (4.5), (4.6), and (4.7), all of the terms with the
same power of(exp (−φ (ξ)))i , (i = 0,±1,±2, ....) are collected. Setting all coefficients of
(exp (−φ (ξ)))i , (i = 0,±1,±2, ....) to zero, we can obtain a set of algebraic equations for
αi, βi, γi(i = 0, 1, 2, 3, 4), k1 andk2. Solving these algebraic equations using Maple, we have
the following cases:

Case 1

(4.11)
α0 =

k2+k3
1(λ2+8µ)
3k1

, α1 = 2λµk2
1, α2 = 2λk2

1, α3 = 2µ2k2
1, α4 = 2k2

1,

β0 =
k1µ(γ1λk3

1(λ2+20µ)−γ0µk3
1(λ2+8µ)−4k2(γ0µ−γ1λ))

3γ2
1

, β1 = µβ2, β2 =
k1µ(4k2+k3

1(λ2+8µ))
3γ1

β3 = 0, β4 = 0, γ0 = γ0, γ1 = γ1, γ2 = γ1

µ
, γ3 = 0, γ4 = 0, k1 = k1, k2 = k2,

Substituting (4.11) into Eqs. (4.8), (4.9), and (4.10), we have the following:
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(4.12)

G (ξ) =

(
k2+k3

1(λ2+8µ)
3k1

+

2λk2
1 (µ exp (φ (ξ)) + exp (−φ (ξ))) + 2k2

1 (µ2 exp (2φ (ξ)) + exp (−2φ (ξ)))

)
,

H (ξ) =


(

k1µ(γ1λk3
1(λ2+20µ)−γ0µk3

1(λ2+8µ)−4k2(γ0µ−γ1λ))
3γ2

1

)

+
k1µ(4k2+k3

1(λ2+8µ))
3γ1

(µ exp (φ (ξ)) + exp (−φ (ξ)))

 ,

W (ξ) = γ0 + γ1 exp (φ (ξ)) + γ1

µ
exp (−φ (ξ)) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Case 2

(4.13)



α0 =
k2+k3

1(λ2+8µ)
3k1

, α1 = 4λµk2
1, α2 = 0, α3 = 4µ2k2

1, α4 = 0,

β0 = β0, β1 = λβ3

µ
, β2 = 0, β3 = β3, β4 = 0, k1 = k1, k2 = k2,

γ0 =
2k1µ2(β3k3

1(λ2+8µ)+4β3k2−6β0k3
1µ2)

3β3
3

, γ1 =
4λµ3k4

1

β3
, γ2 = 0, γ3 =

4µ4k4
1

β3
, γ4 = 0.

Substituting (4.13) into Eqs. (4.8), (4.9), and (4.10), the following is derived:

(4.14)

G (ξ) =
k2+k3

1(λ2+8µ)
3k1

+ 4λµk2
1 exp (φ (ξ)) + 4µ2k2

1 exp (2φ (ξ)) ,

H (ξ) = β0 + λβ3

µ
exp (φ (ξ)) + β3 exp (2φ (ξ)) ,

W (ξ) =
2k1µ2(β3k3

1(λ2+8µ)+4β3k2−6β0k3
1µ2)

3β3
3

+
4λµ3k4

1

β3
exp (φ (ξ)) +

4µ4k4
1

β3
exp (2φ (ξ)) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Case 3

(4.15)
α0 =

k2+k3
1(λ2+2µ)
3k1

, α1 = 2λµk2
1, α2 = 0, α3 = 2µ2k2

1, α4 = 0,

β0 =
k1µ(λγ1−µγ0)(4k2+k3

1(λ2−4µ))
3γ2

1
, β1 =

k1µ2(4k2+k3
1(λ2−4µ))

3γ1
, β2 = 0, β3 = 0, β4 = 0,

γ0 = γ0, γ1 = γ1, γ2 = 0, γ3 = 0, γ4 = 0, k1 = k1, k2 = k2.

Substituting (4.15) into Eqs. (4.8), (4.9), and (4.10), results in the following:
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(4.16)



G (ξ) =
k2+k3

1(λ2+2µ)
3k1

+ 2λµk2
1 exp (φ (ξ)) + 2µ2k2

1 exp (2φ (ξ)) ,

H (ξ) =
k1µ(λγ1−µγ0)(4k2+k3

1(λ2−4µ))
3γ2

1
+

k1µ2(4k2+k3
1(λ2−4µ))

3γ1
exp (φ (ξ)) ,

W (ξ) = γ0 + γ1 exp (φ (ξ)) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Case 4

(4.17)



α0 =
k2+k3

1(λ2+2µ)
3k1

, α1 = 0, α2 = 2λk2
1, α3 = 0, α4 = 2k2

1,

β0 = β0, β1 = 0, β2 = β2, β3 = 0, β4 = 0, k1 = k1, k2 = k2,

γ0 =
k1(λβ2−β0)(4k2+k3

1(λ2−4µ))
3β2

2
, γ1 = 0, γ2 =

4k1k2+k4
1(λ2−4µ)

3β2
, γ3 = 0, γ4 = 0.

Substituting (4.17) into Eqs. (4.8), (4.9), and (4.10), gives us the following:

(4.18)



G (ξ) =
k2+k3

1(λ2+2µ)
3k1

+ 2λk2
1 exp (−φ (ξ)) + 2k2

1 exp (−2φ (ξ)) ,

H (ξ) = β0 + β2 exp (−φ (ξ)) ,

W (ξ) =
k1(λβ2−β0)(4k2+k3

1(λ2−4µ))
3β2

2
+

4k1k2+k4
1(λ2−4µ)

3β2
exp (−φ (ξ)) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Case should 5

(4.19)



α0 =
k2+k3

1(λ2+8µ)
3k1

, α1 = 0, α2 = 4λk2
1, α3 = 0, α4 = 4k2

1,

β0 = β0, β1 = 0, β2 = β2, β3 = 0, β4 = β2

λ
, k1 = k1, k2 = k2,

γ0 =
2λk1(β2k3

1(λ2+8µ)+4β2k2−6β0λk3
1)

3β2
2

, γ1 = 0, γ2 =
4λ2k4

1

β2
, γ3 = 0, γ4 =

4λk4
1

β2
.

Substituting (4.19) into Eqs. (4.8), (4.9), and (4.10), we have the following:

(4.20)

G (ξ) =
k2+k3

1(λ2+8µ)
3k1

+ 4λk2
1 exp (−φ (ξ)) + 4k2

1 exp (−2φ (ξ)) ,

H (ξ) = β0 + β2 exp (−φ (ξ)) + β2

λ
exp (−2φ (ξ)) ,

W (ξ) =
2λk1(β2k3

1(λ2+8µ)+4β2k2−6β0λk3
1)

3β2
2

+
4λ2k4

1

β2
exp (−φ (ξ)) +

4λk4
1

β2
exp (−2φ (ξ)) ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.
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Using (4.12) and the solutions to Eq. (2.8), we can find the following exact solutions to the
space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equations:

Family 1. Whenµ 6= 0, (λ2 − 4µ) > 0,

(4.21)



G1 (ξ) =



(
k2+k3

1(λ2+8µ)
3k1

)

+2λk2
1


µ

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�

2µ



+

(
2µ

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�
)



+2k2
1


µ2

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�

2µ

2

+

(
2µ

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�
)2





,

H1 (ξ) =



k1µ(γ1λk3
1(λ2+20µ)−γ0µk3

1(λ2+8µ)−4k2(γ0µ−γ1λ))
3γ2

1
+

+
k1µ2(4k2+k3

1(λ2+8µ))
3γ1

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�

2µ



+
k1µ(4k2+k3

1(λ2+8µ))
3γ1

(
2µ

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�
)


,

W1 (ξ) =


γ0 + γ1

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�

2µ


+γ1

µ

(
2µ

−λ−
√

λ2−4µ tanh

�
(ξα+αc)

√
λ2−4µ

2α

�
)

 ,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.
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Family 2. Whenµ 6= 0, (λ2 − 4µ) < 0,

(4.22)



G2 (ξ) =



(
k2+k3

1(λ2+8µ)
3k1

)

+2λk2
1


µ

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�

2µ



+

(
2µ

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�
)



+2k2
1


µ2

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�

2µ

2

+

(
2µ

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�
)2





,

H2 (ξ) =



(
k1µ(γ1λk3

1(λ2+20µ)−γ0µk3
1(λ2+8µ)−4k2(γ0µ−γ1λ))

3γ2
1

)

+
k1µ2(4k2+k3

1(λ2+8µ))
3γ1

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�

2µ



+
k1µ(4k2+k3

1(λ2+8µ))
3γ1

(
2µ

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�
)


,

W2 (ξ) =


γ0 + γ1

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�

2µ



+γ1

µ

(
2µ

−λ+
√

4µ−λ2 tan

�
(ξα+αc)

√
4µ−λ2

2α

�
)


,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.
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Family 3. Whenµ 6= 0, λ 6= 0, (λ2 − 4µ) = 0,
(4.23)

G3 (ξ) =


k2+k3

1(λ2+8µ)
3k1

+ 2λk2
1

(
µ
(
− 2

λ
− 4α

λ2(ξα+αc)

)
+
(
− 2

λ
− 4α

λ2(ξα+αc)

)−1
)

+2k2
1

(
µ2
(
− 2

λ
− 4α

λ2(ξα+αc)

)2

+
(
− 2

λ
− 4α

λ2(ξα+αc)

)−2
)

 ,

H3 (ξ) =



(
k1µ(γ1λk3

1(λ2+20µ)−γ0µk3
1(λ2+8µ)−4k2(γ0µ−γ1λ))

3γ2
1

)

+
k1µ2(4k2+k3

1(λ2+8µ))
3γ1

(
− 2

λ
− 4α

λ2(ξα+αc)

)
+

k1µ(4k2+k3
1(λ2+8µ))

3γ1

(
− 2

λ
− 4α

λ2(ξα+αc)

)−1


,

W3 (ξ) = γ0 + γ1

(
− 2

λ
− 4α

λ2(ξα+αc)

)
+ γ1

µ

(
− 2

λ
− 4α

λ2(ξα+αc)

)−1

,

ξ =
(

k1

α

)
xα +

(
k2

α

)
tα.

Similarly, using formulas (4.14), (4.16), (4.18), and (4.20), we can obtain a greater set of so-
lutions to the space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equa-
tions.

5. CONCLUSION

In this study, the fractionalexp (−φ (ξ))− expansion method was successfully applied to
solve the space–time fractional nonlinear Whitham–Broer–Kaup equations and space–time frac-
tional generalized nonlinear Hirota–Satsuma coupled KdV equations. We obtained several use-
ful solutions for both equations, which can be used in practical applications. Previous appli-
cations have shown that the proposed method is effective and has the ability to demonstrate
various forms of solutions. In addition, we are confident of its ability to find solutions to nu-
merous nonlinear fractional partial differential equations in mathematical physics.
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