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1. I NTRODUCTION

Ever since Zadeh [18] introduced the concept of a fuzzy set as a function from a setX
into [0, 1]. Rosenfeld [6] formulated the concept of a fuzzy subgroup of a group. Since then a
host of researchers (see for example [1, 2, 3, 4]) are engaged in fuzzifying various subalgebras
of algebras. Swamy and Swamy [16] introduced the notion of a fuzzy prime ideal of a ring.
Further, Swamy and Raju [13, 14] introduced the concept of irreducibility in algebraic fuzzy
systems and applied a general theory of algebraic fuzzy systems to fuzzy ideals of distributive
lattices.
In 1980, Swamy and Rao [15] introduced the concept of an Almost Distributive Lattice (ADL)
as a common abstraction of most of the existing lattice (ring) theoretic generalization of a
Boolean algebra (ring). An ADL is an algebra(A,∨,∧, 0) satisfying the conditions : for all
a, b andc ∈ A,

(1) 0 ∧ a = 0
(2) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
(3) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(4) a ∨ (a ∧ b) = a
(5) (a ∨ b) ∧ b = b
(6) (a ∨ b) ∧ a = a
(7) a ∨ (b ∨ c) = (a ∨ b) ∨ c.

An ADL (A,∨,∧, 0) satisfies all the axioms of a distributive lattice, except the commutativity
of the operations∨ and∧ and the right distributivity of∨ over∧. In fact, these three axioms are
equivalent in any ADL. If any one of these axioms hold, then the ADL becomes a distributive
lattice. A non-empty subsetX of an ADL A is called an ideal ifa ∨ b ∈ X anda ∧ x ∈ X
for all a, b ∈ X andx ∈ A. (X] denotes the smallest ideal ofA containingX. An equivalence
relationθ on an ADLA is called a congruence relation onA if it is compatible with the binary
operations∨ and∧ onA. Maximal element with respect to the partial order≤ on an ADLA
defined bya ≤ b iff a ∧ b = a (equivalently,a ∨ b = b) is called a maximal element ofA.
In recent time, Swamy, Sundar Raj and Teshale [12] have introduced the notion of a fuzzy ideal
of an ADL A as a functionλ from A into L satisfying the conditions thatλ(a0) = 1 for some
a0 ∈ A andλ(a∨ b) = λ(a)∧λ(b) for anya, b ∈ A, whereL is a complete lattice satisfying the
infinite∧-distributivity ; x∧

( ∨
y∈S

y
)

=
∨

y∈S

(x∧y) for anyx ∈ L andS ⊆ L. It is proved that the

set of all fuzzy ideals of an ADL forms a complete distributive lattice under point-wise ordering.
Also, Swamy, Sundar Raj and Teshale [7, 8, 9] have extended the notion of fuzzy ideals to filters
of ADL’s and introduced the concepts of fuzzy prime ideals (filters) and fuzzy maximal ideals
(filters). Further, in [5, 10] the authors of this paper have introduced the notions of fuzzy prime
spectrums and fuzzy initial and final segments of ADL’s. In this paper, we extend the notion
of ideal congruences of ADL’s to the fuzzy ideals. Here, we introduce the concept of a fuzzy
congruence of an ADLA, and obtain a fuzzy congruenceθλ corresponding to a fuzzy idealλ
of an ADL A, which we call the fuzzy ideal congruence ofA and establish a correspondence
λ 7→ θλ (not necessarily one-to-one) between the fuzzy ideals and fuzzy congruences ofA.
Further, we prove that an ADLA with a maximal element is a Boolean algebra if and only if
every fuzzy congruence ofA is a fuzzy ideal congruence.
Throughout this paper,A denote an ADL(A,∨,∧, 0) with a maximal elementm andL stands
for a complete lattice satisfying the infinite∧-distributivity.
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2. FUZZY CONGRUENCE

A fuzzy subsetθ : A × A −→ L is called a fuzzy relation onA. Following [14], a fuzzy
relationθ on A is said to be a fuzzy equivalence ofA if, for any x, y, z ∈ A, θ satisfies the
following:

(i) θ(x, x) = 1
(ii) θ(x, y) = θ(y, x)

(iii) θ(x, y) ∧ θ(y, z) ≤ θ(x, z).

A fuzzy equivalenceθ of A is said to be a fuzzy congruence ofA if, for any x1, x2, y1, y2 ∈ A,
the following hold:

(iv) θ(x1 ∨ x2, y1 ∨ y2) ≥ θ(x1, y1) ∧ θ(x2, y2)
(v) θ(x1 ∧ x2, y1 ∧ y2) ≥ θ(x1, y1) ∧ θ(x2, y2).

It is easy to verify that a fuzzy equivalenceθ of A is a fuzzy congruence ofA if and only if θ
satisfies the conditions:

(iv) θ(x, y) ≤ θ(x ∨ z, y ∨ z) ∧ θ(x ∧ z, y ∧ z) and
(vii) θ(x, y) ≤ θ(z ∨ x, z ∨ y) ∧ θ(z ∧ x, z ∧ y).
For any fuzzy relationθ onA andα ∈ L, define theα-level set ofθ by

θα = {(x, y) ∈ A× A : θ(x, y) ≥ α}.
Then one can easily observe thatθ is a fuzzy congruence ofA if and only if θα is a congruence
relation onA for eachα ∈ L.

For any congruence relationθ onA, it can be easily verified that the fuzzy subsetχθ ofA×A
defined by

χ
θ
(x, y) =

{
1 if (x, y) ∈ θ

0 otherwise

is a fuzzy congruence ofA. It follows thatχ
∆

is a fuzzy congruence ofA, where(x, y) ∈ ∆ ⇔
x = y. Also,χ

∇
is a fuzzy congruence ofA, whereχ

∇
(x, y) = 1.

Recall (from [17]) that, the associativity relation∼ on an ADLA defined by
∼= {(a, b) ∈ A× A : a ∧ b = b andb ∧ a = a}
is a congruence relation onA. From [15], for anya ∈ A, the relationθa defined by
θa = {(x, y) ∈ A× A : x ∧ a = y ∧ a}
is a congruence relation onA. Corresponding to the relations∼ andθa we shall obtain the fuzzy
congruences as given below.

Lemma 2.1. Defineφ̃ : A× A→ L by

φ̃(a, b) =

{
1 if (a, b) ∈∼
0 otherwise.

Thenφ̃ is a fuzzy congruence ofA.

Proof. It follows by the fact that̃φ = χ∼.

Lemma 2.2. For anya ∈ A, defineψa : A× A −→ L by

ψa(x, y) =

{
1 if (x, y) ∈ θa

0 otherwise.
.

Proof. It is clear byψa = χ
θa .
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Definition 2.3. Let θ andφ be any fuzzy congruences ofA. Define

θ ≤ φ⇔ θ(x, y) ≤ φ(x, y)

(θ ∧ φ)(x, y) = θ(x, y) ∧ φ(x, y)

for all x, y ∈ A.

It is easy to verify that the setFLC(A) of all fuzzy congruences ofA is a partially ordered set
under the point-wise ordering defined above. In which,θ ∧ φ is theg.l.b {θ, φ}. The operation
∧ is called the point-wise infimum.

Theorem 2.4. (FLC(A),≤) is a complete lattice ; in which for any{θi : i ∈ ∆} ⊆ FLC(A).

g.l.b {θi : i ∈ ∆} =
∧
i∈∆

θi, the point-wise infimum ofθi’s

andl.u.b {θi : i ∈ ∆} = g.l.b {θ ∈ FLC(A) : θi ≤ θ for all i ∈ ∆}.

Proof. Proof is simple.

Note that in the above lattice the fuzzy congruencesχ
∆

andχ
∇

are the smallest and greatest
elements respectively.

3. FUZZY I DEAL CONGRUENCE

If θ is a congruence relation on an ADL(A,∨,∧, 0), then the congruence class of0 ; that
is θ(0) = {a ∈ A : (a, 0) ∈ θ} is an ideal ofA and it is the unique congruence class
corresponding toθ, which is an ideal ofA. Now, given a fuzzy congruenceθ of A, we define
a fuzzy subsetλθ of A by λθ(x) = θ(x, 0) for all x ∈ A. Then one can easily seen thatλθ is a
fuzzy ideal ofA. Also, θ ≤ φ impliesλθ ≤ λφ for any fuzzy congruencesθ andφ of A.

Following U.M. Swamy and G,C. Rao [15], it is known that, for a given idealI of A.

θI := {(x, y) ∈ A× A : a ∨ x = a ∨ y for somea ∈ I}

is a congruence relation onA and it is the smallest congruence relation onA containingI × I.
Analogous to the congruenceθI , we introduce a fuzzy ideal congruence ofA as follows.

Definition 3.1. For any fuzzy subsetλ ofA, define a fuzzy relationθλ onA by

θλ(x, y) =
∨ {

α ∈ L : a ∨ x = a ∨ y for somea ∈ A such thatλ(a) ≥ α
}
.

Theorem 3.2. If λ is a fuzzy ideal ofA, thenθλ is the smallest fuzzy congruence ofA such that
λθλ

= λ.

Proof. It is clear thatθλ(x, x) = 1 andθλ(x, y) = θλ(y, x).
Considerθλ(x, y) ∧ θλ(y, z)
=

∨ {
α ∈ L : a ∨ x = a ∨ y for somea ∈ A with λ(a) ≥ α

}
∧∨ {

β ∈ L : b ∨ y = b ∨ z for someb ∈ A with λ(b) ≥ β
}

=
∨ {

α ∧ β : a ∨ x = a ∨ y, b ∨ y = b ∨ z for somea, b ∈ A with λ(a) ≥ α andλ(b) ≥ β
}

(by the infinite∧-distributive inL).
Let a, b ∈ A such thata ∨ x = a ∨ y with λ(a) ≥ α andb ∨ y = b ∨ z with λ(b) ≥ β. Then
α ∧ β ≤ λ(a) ∧ λ(b) = λ(a ∨ b). Sincea ∨ b = a ∨ b ∨ a, a ∨ b ∨ x = a ∨ b ∨ z and it follows
thatα ∧ β ∈ {ν ∈ L : c ∨ x = c ∨ z foe somec ∈ A such thatλ(c) ≥ ν}. This implies that
θλ(x, y)∧ θλ(y, z) ≤ θλ(x, z). Thereforeθλ is a fuzzy equivalence ofA. Again, letα ∈ L such
thata ∨ x = a ∨ y for somea ∈ A with λ(a) ≥ α. Thena ∨ (x ∧ z) = (a ∨ x) ∧ (a ∨ z) and
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a∨ z ∨x = a∨ z ∨ a∨x = a∨ z ∨ a∨ y = a∨ z ∨ y which impliesθλ(x, y) ≤ θλ(x∨ z, y∨ z)
andθλ(z ∨ x, z ∨ y). Hence

θλ(x, y) ≤ θλ(x ∧ z, y ∧ z) ∧ θλ(z ∧ x, z ∧ y) and

θλ(x, y) ≤ θλ(x ∨ z, y ∨ z) ∧ θλ(z ∨ x, z ∨ y)
.
Thusθλ is a fuzzy congruence ofA. Further, letα ∈ L such thata ∨ x = a andλ(a) ≥ α for
somea ∈ A. Thenλ(a) = λ(a ∨ x) = λ(a) ∧ λ(x) and henceλ(a) ≤ λ(x), so thatα ≤ λ(x).
It follows that λθλ

≤ λ. Also, it is clear thatλ ≤ λθλ
. Henceλθλ

= λ. Let θ be a fuzzy
congruence ofA such thatλθ = λ. By condition (vii),θλ ≤ θ.

We callθλ, the fuzzy ideal congruence ofA corresponding toλ. If θ is a fuzzy congruence
of A, then we note thatθλθ

≤ θ andθλ ≤ θλθ
for any fuzzy idealλ of A. By this fact, we have

the following.

Lemma 3.3. Letθ be any fuzzy congruence ofA. Thenθ = θλθ
iff θ is a fuzzy ideal congruence

ofA.

Theorem 3.4.A is a Boolean algebra iff every fuzzy congruence ofA is a fuzzy ideal congru-
ence.

Proof. Suppose that every fuzzy congruence ofA is a fuzzy ideal congruence. Thenφ̃ is a fuzzy
ideal congruence ofA. By Lemma 3.3,̃φ = θλφ̃

. If x = y, then it is clear thatθλφ̃
= χ

∆
(x, y). If

x 6= y and letα ∈ L such thata∨x = a∨y for somea ∈ Awith λφ̃ ≥ α. Thenα ≤ φ̃(a, 0) = 0

since(a, 0) /∈∼. Henceα = 0 which impliesθλφ̃
(x, y) = 0 = χ

∆
(x, y). Thereforẽφ = χ

∆
. As

(x ∧ y, y ∧ x) ∈∼, χ
∆
(x ∧ y, y ∧ x) = 1 and it follows thatx ∧ y = y ∧ x. ThereforeA is a

bounded distributive lattice. Further, leta ∈ A and consider the fuzzy relationψa. By Lemma
2.2, ψa is a fuzzy congruence ofA and henceψa = θλ for some fuzzy idealλ of A. Since
m ∧ a = a, (m, a) ∈ θa so thatψa(m, a) = 1 and henceθλ(m, a) = 1. So there existsb ∈ A
such thatb ∨m = b ∨ a andλ(b) = 1. Now a ∨ b = b ∨ a = m. Sinceλ(b) = 1 andλθλ

= λ,
we haveθλ(b, 0) = 1 so that(b, 0) ∈ θa which impliesa ∧ b = b ∧ a = 0. Thereforeb is the
complement ofa. ThusA is a Boolean algebra.

Conversely, ifθ is a fuzzy congruence ofA, thenλθ is a fuzzy ideal ofA and clearlyθλθ
≤ θ.

On the other hand, puta = (x ∧ yp) ∨ (y ∧ xp). Thena ∨ x = a ∨ y. Now,
θ(x, y) ≤ θ(x ∧ yp, 0) ∧ θ(y ∧ xp, 0)
= λθ(x ∧ yp) ∧ λθ(y ∧ xp)
= λθ

(
(x ∧ yp) ∨ (y ∧ xp)

)
= λθ(a)
which implies thatθ(x, y) ≤ θλθ

(x, y) for all x, y ∈ A. Thereforeθ ≤ θλθ
. Henceθ = θλθ

and
thusθ is a fuzzy ideal congruence ofA.

Theorem 3.5.Letλ andµ be fuzzy ideals ofA. Then

(1) λ ≤ µ⇔ θλ ≤ θµ

(2) θλ∧µ ≤ θλ ∧ θµ

(3) λ = χ
{0}
⇔ θλ = χ

∆

(4) λ = χ
A
⇔ θλ = χ

∇
(5) θχ

I
= χ

θI
, for any idealI ofA.

Proof. Proof is simple and straight forward verification.
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Let θ denotes the smallest fuzzy congruence ofA generated by a fuzzy relationθ on A.
Following [12],λ is the smallest fuzzy ideal ofA generated byλ and is described by
λ(0) = 1 and

λ(x) =
∨ { ∧

a∈X

λ(a) : x ∈ (X], X is a finite subset ofA
}

Proposition 3.6. θλ = θλ for any fuzzy subsetλ ofA.

Proof. By Theorem 3.5(1),θλ ≤ θλ. Let φ be a fuzzy congruence ofA such thatθλ ≤ φ. Let
α ∈ L such thata ∨ x = a ∨ y for somea ∈ A with λ(a) ≥ α. Then,

α =
∨ { ∧

b∈X

λ(b) ∧ α : a ∈ (X], X is a finite subset ofA
}
.

Putβ =
∧

b∈X

λ(b) ∧ α anda ∈ (X], whereX is a finite subset ofA. Thena =
( n∨

i=1

bi
)
∧ c for

someb1, b2, ..., bn ∈ X andc ∈ A. Now a =
( n∨

i=1

bi
)
∧ a and hence

( n∨
i=1

bi
)
∨ a =

n∨
i=1

bi. As

β ≤ λ(bi) for all 1 ≤ i ≤ n and by the definition ofθλ, we have

β ≤ θλ(x, bi ∨ x) andβ ≤ θλ(y, bi ∨ y)
so that

β ≤ θλ(x, bi ∨ x) ∧ θλ(y, bi ∨ y) ≤ φ(x, bi ∨ x) ∧ φ(y, bi ∨ y)
which implies that

β ≤
n∧

i=1

φ(x, bi ∨ x) ∧
n∧

i=1

φ(bi ∨ y, y)

≤ φ
(
x,

n∨
i=1

(bi ∨ x)
)
∧ φ

( n∨
i=1

(bi ∨ y), y
)

≤ φ
(
x,

n∨
i=1

bi ∨ a ∨ x
)
∧ φ

( n∨
i=1

bi ∨ a ∨ y, y
)

≤ φ(x, y)
and it follows thatθλ(x, y) ≤ φ(x, y) for all x, y ∈ A. Thereforeθλ ≤ φ. Thusθλ = θλ.

The fuzzy congruenceθλ of A exhibits the properties analogous to almost all the properties
of ideal congruences on ADLs ; in particular the mappingλ 7→ θλ establishes a correspondence
(not necessarily one-to-one) between the lattice of fuzzy ideals and the lattice of fuzzy congru-
ences of an ADLA.
It can be easily verified that, for any fuzzy equivalencesθ andφ of A,
θ ◦ φ = φ ◦ θ ⇔ θ ◦ φ = θ ∨ φ, thel.u.b {θ, φ} ⇔ θ ◦ φ is a fuzzy equivalence ofA,
where(θ ◦ φ)(a, b) =

∨
c∈A

(
φ(a, c) ∧ θ(c, b)

)
for all a, b ∈ A.

Proposition 3.7. Letλ andµ be fuzzy ideals ofA. Then

θλ ◦ θµ ◦ θλ = θλ ∨ θµ = θµ ◦ θλ ◦ θµ.

Proof. We observe that

(θλ ◦ θµ ◦ θλ)(x, y) =
∨

z, a∈A

(
θλ(x, z) ∧ θµ(z, a) ∧ θλ(a, y)

)
.

It follows thatθλ ◦ θµ ◦ θλ is anu.b {θλ, θµ}. Let θ be a fuzzy congruence ofA and
θ = u.b {θλ, θµ}. Thenθλ(x, z) ∧ θµ(z, a) ∧ θλ(a, y) ≤ θ(x, y), which implies that
(θλ ◦ θµ ◦ θλ)(x, y) ≤ θ(x, y). Thereforeθλ ◦ θµ ◦ θλ ≤ θ.
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Lemma 3.8. Letλ andµ be fuzzy ideals ofA. Then

θλ ∨ θµ = θλ∨µ, whereλ ∨ µ = l.u.b {λ, µ}.

Proof. Clearly θλ ≤ θλ∨µ andθµ ≤ θλ∨µ. Let φ be another fuzzy congruence ofA such that
θλ ≤ φ andθµ ≤ φ. Thenλθλ

≤ λφ andλθµ ≤ λφ. By Theorem 3.2, we get thatλ ≤ λφ and
µ ≤ λφ so thatλ ∨ µ ≤ λφ which implies thatθλ∨µ ≤ θλφ

≤ φ. Thusθλ ∨ θµ = θλ∨µ.

Theorem 3.5(1) and Lemma 3.8 yields the following result.

Theorem 3.9.λ 7→ θλ is an order isomorphism of the latticeFLI(A) of fuzzy ideals ofA onto
a∨-subsemilattice of the latticeFLC(A) of fuzzy congruences ofA.

4. CONCLUSION

It is well known that, for any lattice
(
L,∧,∨

)
, interchanging the operations∧ and∨ again

yields a lattice
(
L,∨,∧

)
, called as the dual ofL. An ideal of the dual lattice

(
L,∨,∧

)
is called

as the filter of the lattice
(
L,∧,∨

)
. However, an ADL do not have the duality priciple; in the

same that, by interchanging∧ and∨ in an ADL
(
A,∧,∨, 0

)
we do not get an ADL again, the

main reason is that the right distributive of∨ over∧ does not hold inA. This necessitates a
separate study of fuzzy filter congruence of an ADL in future work.
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