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ABSTRACT. The purpose of this paper is to study the (EA)-property and noncompatible maps
of a hybrid pair of single-valued and multivalued maps in fixed point considerations. Such maps
have the remarkable property that they need not be continuous at their common fixed points. We
use this property to obtain some coincidence and fixed point theorems for strictly contractive
hybrid maps without using their continuity and completeness or compactness of the space.
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1. I NTRODUCTION

The notion of compatible maps, due to Jungck [6, 7], has proven fruitful in fixed point consid-
erations. On the other hand, noncompatible maps appear to play a vital role in metric fixed point
theory for contractive type maps. Pant [14], Pant et al. [15], [16], Aamri and El Moutawakil
[1] and others have initiated work along these lines. However, the concept of the (EA)-property
[1] generalizes both compatible and noncompatible maps. It is remarkable that maps having
(EA)-property need not be continuous at their common fixed points (see [14] and [19]). For an
excellent discussion on the continuity of maps on their fixed points, one may refer to Rhoades
[17] and Hicks and Rhoades [4].

The purpose of this paper is to extend the concept of (EA)-property to a hybrid pair of single-
valued and multivalued maps on an arbitrary nonempty set with values in a metric space, and
use the same to study coincidence and fixed points of contractive type hybrid maps without
appealing to the continuity of the maps involved. Our results extend, improve and generalize
several results for single-valued and multivalued maps on metric spaces.

2. PRELIMINARIES

We generally follow the definitions and notations used in [2], [7], [10], [11] and [21]. Given a
metric space(X, d), let (CL(X), H) and(CB(X), H) denote respectively the hyper spaces of
nonempty closed and nonempty closed bounded subsets ofX, whereH is the Hausdrorff metric
induced byd. Notice that the hyper spaceCL(X) contains the spaceCB(X). Throughout,
d(A, B) will denote the ordinary distance between subsetsA andB of X andd(x, B) will
stand ford(A, B) whenA is the singleton{x}. Further, letY be an arbitrary nonempty set and
C(S, A) = {u : Su ∈ Au}, the collection of coincidence points of the mapsS : X → X and
A : X → CL(X).

The following definition is due to Ito and Takahashi [5] (see also [21], page 488) whenY =
X andS andA both are self-maps ofX.

Definition 2.1. Let Y be a nonempty set,S : Y → Y andA : Y → 2Y , the collection of
nonempty subsets ofY . Then the maps of the hybrid pair(S, A) are (IT)-commuting atx ∈ Y
if SAx ⊂ ASx. They are (IT)-commuting onY if SAx ⊂ ASx for eachx ∈ Y . (This
formulation in [22], p. 625 is correct with the interchange of symbols for single-valued and
multivalued maps).

MapsA andS are commuting atx ∈ Y whenASx = SAx. Clearly a commuting hybrid
pair of maps is IT-commuting and the reverse implication is not true. For example, ifY =
[0,∞), Sx = 4x andAx = [3 + x,∞), x ∈ Y, then the pair(S, A) is not commuting but
(IT)-commuting.

The following definition is essentially due to Kaneko and Sessa [9] and Beg and Azam [2]
whenS : X → CB(X).

Definition 2.2. [22]. MapsA : X → CL(X) andS : X → X are compatible ifSAx ∈ CL(X)
for eachx ∈ X andlimn→∞H(ASxn, SAxn) = 0 whenever{xn} is a sequence inX such that
limn→∞Axn = M ∈ CL(X) and limn→∞Sxn = t ∈ M . They are weakly compatible if
SAx = ASx wheneverSx ∈ Ax [8].

For fundamental discussions and applications of compatible self-maps of metric spaces, one
may refer to Jungck [6]-[7]. For a good comparison of various weaker forms of commuting
maps (such as weakly/R-weakly commuting maps, compatible maps etc.), one may refer to
Singh and Tomar [23]. We remark that commutativity, compatibility, R-weak commutativity
and weak compatibility ofA : X → CL(X) andS : X → X are equivalent at their coincidence
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points (cf. [21] and [22]). Further, the maps are noncompatible if there exists at least one
sequence{xn} in X, such thatlimn→∞Axn = M andlimn→∞Sxn = t ∈ M for somet ∈ X
but limn→∞H(SAxn, ASxn) is either nonzero or nonexistent.

Definition 2.3. [20], [21]. MapsA : X → CL(X) andS : X → X are R-weakly commuting if
SAx ∈ CL(X) for all x ∈ X, and there exists a real numberR > 0 such thatH(ASx, SAx) ≤
Rd(Sx,Ax). Further, A and S may be called pointwise R-weakly commuting onX if given x
in X there existsR such thatH(ASx, SAx) ≤ Rd(Sx, Ax).

If R = 1, we get a similar concept due to Hȧdžíc and Gajíc [3]. If the mapA is also single-
valued then we get the definition of R-weak commutativity of single-valued maps due to Pant
[12, 13].

Definition 2.4. Let A : Y → CL(X) andS : Y → X. ThenA andS will be called to satisfy
the (EA)-property if there exists a sequence{xn} in Y such that

limn→∞Axn = M ∈ CL(X) and limn→∞Sxn = t ∈ M

.

In this definition, ifA is a map onY with values inX then we get the definition of (EA)-
property due to Singh and Kumar [19]. If we takeY = X then we get the definition of
(EA)-property (also called tangential maps by Sastry and Murthy [18]) for two self-maps on
X essentially due to Aamri and El Moutawakil [1].

Example 2.1. Let X = [0,∞) with the usual metric,Ax = [0, 3x/2] and Sx = x/2. We
consider the sequence{xn = 1 + 1/n : n ≥ 1} to see thatA andS satisfy the(EA)-property.

Example 2.2.LetX = [2,∞) with the usual metric andAx = {1 + x} andSx = 2x + 1. We
see that there does not exist a sequence{xn} in X for which{Axn} and{Sxn} both converge
to the same element. SoA andS lack the (EA)-property.

3. M AIN RESULTS

First we present a basic result for a hybrid pair of maps.

Theorem 3.1.LetA : Y → CL(X) andS : Y → X be such that
(i) AY ⊂ SY ;
(ii) the pair (S, A) satisfies the (EA)-property;
(iii) H(Ax, Ay) < m(x, y) whenm(x, y) > 0, where

m(x, y) = max {d(Sx, Sy), α[d(Sx,Ax) + d(Sy,Ay)], α[d(Sx,Ay) + d(Sy,Ax)]} ,

0 ≤ α < 1.
If A(Y ) or S(Y ) is a complete subspace ofX then C(S, A) is nonempty. Further,A and
S have a common fixed point provided thatSSz = Sz and A and S are (IT)-commuting at
z ∈ C(S, A).

Proof. Since the pair(A, S) satisfies the (EA)-property, there exists a sequence{xn} in Y such
thatlimn→∞Axn = M ∈ CL(X) andlimn→∞Sxn = t ∈ M . If SY is a complete subspace of
X, there exists a pointz ∈ Y such thatt = Sz. SupposeSz /∈ Az. Then by (iii),
d(Az, Axn) ≤ H(Az, Axn) < max{d(Sz, Sxn), α[d(Sz, Az)+d(Sxn, Axn)], α[d(Sz,Axn)+
d(Sxn, Az)]}.

Making n → ∞ yields H(Az, M) ≤ αd(Az, Sz), a contradiction. SoSz ∈ Az, and
C(S, A) is nonempty. Further, ifSSz = Sz andA, S are (IT)-commuting atz ∈ C(S, A)
thenSz ∈ SAz ⊂ ASz, andSz is a common fixed point ofA andS. If A(Y ) is a complete
subspace ofX, then in view of (i),C(S, A) is evidently nonempty.
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We remark that the Proof of Theorem 3.1 may also follow from Theorem 3.2 (below). Notice
that Theorem 3.1 (without the commutativity requirement) guarantees thatA and S have a
coincidence, whileA, B, S andT of Theorem 3.2 (without the commutativity requirements)
need not have a common coincidence. Indeed, the conclusion “... thenC(A, S) andC(B, T )
are nonempty” in Theorem 3.2 clearly means that there exist pointsu, v in Y such thatSu ∈ Au
andTv ∈ Bv, and notice the important feature thatS andT have the same coincidence value,
i.e.,Su = Tv.

Example 3.1.LetX = [1,∞) be endowed with the usual metric,Ax = [1, 2x−1] andSx = x2.
We consider a sequence{xn = 1 + 1/n, n ≥ 1} to see that the mapsA andS satisfy the (EA)-
property. AlsoA andS are (IT)-commuting atx = 1. Indeed, it is easy to verify thatA andS
satisfy all the hypotheses of Theorem 3.1. EvidentlyS1 = 1 ∈ A1.

The following is our main result for a hybrid quadruple of maps on an arbitrary nonempty
set.

Theorem 3.2. Let (X, d) be a metric space andA, B : Y → CL(X) andS, T : Y → X such
that
(iv) AY ⊂ TY andBY ⊂ SY ;
(v) one of the pairs(S, A) or (T,B) satisfies the (EA)-property;
(vi) H(Ax, By) < M(x, y) whenM(x, y) > 0, where

M(x, y) = max{d(Sx, Ty), α[d(Sx,Ax) + d(Ty, By)],

α[d(Ty, Ax) + d(Sx,By)]}, 0 ≤ α < 1.

If A(Y ) or B(Y ) or S(Y ) or T (Y ) is a complete subspace ofX thenC(S, A) andC(B, T ) are
nonempty. Further,
(I) A and S have a common fixed pointSu provided thatSSu = Su and A, S are (IT)-
commuting atu ∈ C(S, A);
(II) B and T have a common fixed pointTv provided thatTTv = Tv and B, T are (IT)-
commuting atv ∈ C(T,B);
(III) A, B, S andT have a common fixed point provided that (I) and (II) are true.

Proof. If the pair(B, T ) satisfies the (EA)-property then there exists a sequence{xn} in Y such
thatlimn→∞Bxn = M ∈ CL(X) andlimn→∞Txn = t ∈ M .

SinceBY ⊂ SY for eachxn, there exist a sequence{yn} in Y such thatSyn ∈ BXn and
limn→∞Syn = t ∈ M = limn→∞Bxn. We show thatlimn→∞Ayn = M . If not, there exists a
subsequence{Ayk} of {Ayn}, a positive integer N, and a real numberε > 0 such that for some
k ≥ N we haveH(Ayk, M) ≥ ε. From (vi),

H(Ayk, Bxk) ≤ H(Ayk, Bxk) + H(Bxk, M)

< max{d(Syk, Txk), α[d(Syk, Ayk) + d(Bxk, Txk)], α[d(Txk, Ayk) + d(Syk, Bxk)]}+ H(Bxk, M).

≤ max{d(Syk, Txk), α[d(Syk, M) + H(M, Bxk) + d(Bxk, Txk)],

α[d(Txk, M) + H(M, Ayk) + d(Syk, Bxk)]}+ H(Bxk, M).

Makingk →∞ gives

limn→∞H(Ayn, M) ≤ αH(M, Ayk),
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and so

limn→∞Ayn = M.

SupposeSY or BY is a complete subspace ofX, then there exists a pointu ∈ Y such that
t = Su. To show thatSu ∈ Au, we suppose otherwise and use the condition (vi) to have
d(Au, Bxn) ≤ H(Au, Bxn) < max{d(Su, Txn), α[d(Su,Au)+d(Txn, Bxn)], α[d(Txn, Au)+
d(Su,Bxn)]}.
Makingn →∞ implies
H(Au, M) ≤ αd(Au, Su) ≤ αH(Au, M), a contradiction. ConsequentlyC(S, A) is non-
empty.

SinceAY ⊂ TY, there exists a pointv ∈ Y such thatSu = Tv ∈ Au. So by (vi),

d(Tv, Bv) = d(Su,Bv) ≤ H(Au, Bv)

< max{d(Su, Tv), α[d(Su,Au) + d(Tv, Bv)], α[d(Tv, Au) + d(Su,Bv)]}.

Sod(Tv, Bv) < d(Tv, Bv), andC(T,B) is nonempty.
Further,Su = SSu and the (IT)-commutativity ofA and S at u ∈ C(A, S) imply that

Su ∈ SAu ⊂ ASu. SoSu is a common fixed point ofA andS. The proof of (II) is similar.
Now (III) is immediate. Analogous argument establishes the theorem whenAY or TY is a
complete subspace ofX.

In view of the above proof, we have other versions of Theorem 3.2.

Theorem 3.3.Theorems 3.2 with M(x, y) replaced byM1(x, y), where
(vii) M1(x, y) = max{d(Sx, Ty), α[d(Sx, Ax)+d(Ty, By)]/2, [d(Ty, Ax)+d(Sx, By)]/2}, 1 ≤
α < 2.

Theorem 3.4.LetA, B : X → CL(X) andS, T : X → X be such that (iv) holds withY = X.
Further, assume
(viii) one of the pairs(S, A) or (T,B) is noncompatible;
(ix) pairs (S, A) and(T, B) are R-weakly commuting;
ThenC(S, A) andC(T,B) are nonempty. Further
(Ia) A andS have a common fixed pointSu provided thatSSu = Su.
(IIa) B andT have a common fixed pointTv provided thatTTv = Tv.
(IIIa) A, B, S andT have a common fixed point provided that (Ia) and (IIa) are true.

Now we derive some corollaries with slightly different versions. The following result is an
improvement of Pant and Pant [15], Th. 2.3 (see also [16]).

Corollary 3.5. Let A, B, S, T : X → X such that(S, A) and (T, B) are pointwise R-weakly
commuting selfmaps of a metric space(X, d) satisfying the conditions (iv), (viii), (ix) and the
following:
(x) d(Ax, By) < L(x, y) whenL(x, y) > 0, whereL(x, y) = max{d(Sx, Ty), α[d(Sx, Ax) +
d(Ty, By)]/2, [d(Ty, Ax) + d(Sx, By)]/2}, 1 ≤ α ≤ 2. If the range of one of the maps is a
complete subspace ofX thenC(S, A) andC(T, B) are nonempty. Further,
(Ib) A andS have a common fixed point provided thatA andS commute atu ∈ C(S, A);
(IIb) B andT have a common fixed point provided thatB andT commute atv ∈ C(T,B).
(IIIb ) A, B, S andT have a common fixed point provided that (Ib) and (IIb) are true.

The following result is a considerable improvement and extension of Aamri and El Moutawakil’s
result [1], Theorem 1.
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Corollary 3.6. LetA, S : Y → X be self-maps of a metric space(X, d) such that
(xi) AY ⊂ SY ;
(xii) the pair (S, A) satisfies the (EA)-property;
(xiii) d(Ax, Ay) < f(x, y) whenf(x, y) > 0, where
f(x, y) = {d(Sx, Sy), [d(Sx,Ax) + d(Sy,Ay)]/2, [d(Sy,Ax) + d(Sx, Ay)]/2}. If the range
of AY or SY is a complete subspace ofX thenC(S, A) is nonempty. Further,A andS have a
common fixed point provided that they are weakly compatible.

Remark 3.1. If S = T in Theorems 3.2 - 3.4 and Corollary 3.5, then the conclusion regarding
the coincidence part is a slightly improved and consequentlyA, B andS(= T ) have a common
coincidence. Further, our results are good variants and generalizations of several results from
Jungck [7], Nadler, Jr. [10], Smithson [24], Tan and Minh [25] and others. Finally, we may
conclude that our results are obtained effectively under tight minimal conditions and are not
subject to further simplification.
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