

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 3, Issue 1, Article 15, pp. 1-8, 2006

GENERAL EXTENSION OF HARDY-HILBERT'S INEQUALITY (I) W. T. SULAIMAN

Received 29 October, 2004; accepted 9 July, 2005; published 19 May, 2006.

waadsulaiman@hotmail.com

COLLEGE OF COMPUTER SCIENCE AND MATHEMATICS, UNIVERSITY OF MOSUL, IRAQ.

ABSTRACT. A generalization for Hardy-Hilbert's inequality that extends the recent results of Yang and Debnath [6], is given.

Key words and phrases: Hardy-Hilbert inequalities, Integral inequalities.

2000 Mathematics Subject Classification. 26D15.

ISSN (electronic): 1449-5910

^{© 2006} Austral Internet Publishing. All rights reserved.

The author would like to thank the referee for valuable suggestions that have been implemented in the final version of the manuscript.

1. INTRODUCTION

Let f and g be real functions, such that

$$0 < \int_{0}^{\infty} f^{2}(t) dt < \infty \text{ and } 0 < \int_{0}^{\infty} g^{2}(t) dt < \infty,$$

then

(1.1)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y} dx dy < \pi \left(\int_{0}^{\infty} f^{2}(t) dt\right)^{\frac{1}{2}} \left(\int_{0}^{\infty} g^{2}(t) dt\right)^{\frac{1}{2}},$$

where the constant π is the best possible. A double series inequality associated with (1.1) is as follows :

If $\{a_n\}$ and $\{b_n\}$ are sequences of real numbers such that $0 < \sum_{n=1}^{\infty} a_n^2 < \infty$ and $0 < \sum_{n=1}^{\infty} b_n^2 < \infty$, then

(1.2)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{m+n} < \pi \left(\sum_{n=1}^{\infty} a_n^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} b_n^2\right)^{\frac{1}{2}},$$

where the constant factor π is the best possible.

Hardy-Hilbert's inequalities (1.1) and (1.2) are important in mathematical analysis and its applications (cf. [1, Chap. 9]).

Recently Hu [2] and [3] gave two distinct improvements of (1.1), and Gao [4] gave a strengthened version of (1.2). By introducing parameter $\lambda \in (0, 1]$ and estimating the weight function, Yang [5] gave a generalization of (1.1), as follows:

$$(1.3) \qquad \int_{0}^{\infty} \int_{0}^{\infty} \frac{f\left(x\right)g\left(y\right)}{\left(x+y\right)^{\lambda}} dx dy < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \left(\int_{0}^{\infty} t^{1-\lambda} f^{2}\left(t\right) dt\right)^{\frac{1}{2}} \left(\int_{0}^{\infty} t^{1-\lambda} g^{2}\left(t\right) dt\right)^{\frac{1}{2}},$$

where B(p,q) is the beta function.

By introducing some other parameters, Yang and Debnath [6], established the following results:

Theorem 1.1. If $f, g \ge 0, A, B > 0, p > 1, \frac{1}{p} + \frac{1}{q} = 1, \lambda > 2 - \min\{p, q\}$, such that

$$0 < \int_{0}^{\infty} t^{1-\lambda} f^{p}(t) dt < \infty, 0 < \int_{0}^{\infty} t^{1-\lambda} g^{q}(t) dt < \infty,$$

then

(1.4)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(Ax + By)^{\lambda}} dx dy$$
$$< \frac{k_{\lambda}(p)}{A^{\phi_{\lambda}(p)} B^{\phi_{\lambda}(q)}} \left(\int_{0}^{\infty} x^{1-\lambda} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} y^{1-\lambda} g^{q}(y) dy \right)^{\frac{1}{q}},$$

where

$$k_{\lambda}(p) = B\left(\phi_{\lambda}(p), \phi_{\lambda}(q)\right), \phi_{\lambda}(r) = \frac{r+\lambda-2}{r} (r=p,q),$$

and the constant factor $\frac{k_{\lambda}(p)}{A^{\phi_{\lambda}(p)}B^{\phi_{\lambda}(q)}}$ is the best possible.

Theorem 1.2. If $a_n, b_n > 0 (n \in N), p > 1, \frac{1}{p} + \frac{1}{q} = 1, 2 - \min\{p, q\} < \lambda \le 2, A, B > 0$ are such that $0 < \sum_{n=1}^{\infty} n^{1-\lambda} a_n^p < \infty, 0 < \sum_{n=1}^{\infty} n^{1-\lambda} b_n^q < \infty$, then

(1.5)
$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{a_mb_n}{\left(Am+Bn\right)^{\lambda}} < \frac{k_{\lambda}\left(p\right)}{A^{\phi_{\lambda}\left(p\right)}B^{\phi_{\lambda}\left(q\right)}}\left(\sum_{n=1}^{\infty}n^{1-\lambda}a_n^p\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty}n^{1-\lambda}b_n^q\right)^{\frac{1}{q}},$$

where the constant factor $\frac{k_{\lambda}(p)}{A^{\phi_{\lambda}(p)}B^{\phi_{\lambda}(q)}}$ is the best possible.

The aim of this paper is to give further generalization for the inequality (1.4).

2. GENERALIZATION

We start with the following lemma

Lemma 2.1. Let F, G, L(f,g), M(f), N(g), be positive functions, $p > 1, \frac{1}{p} + \frac{1}{q} = 1$, such that

$$0 < \int_{a}^{b} M^{p}\left(f\left(t\right)\right) F^{p}\left(t\right) dt < \infty, 0 < \int_{c}^{d} N^{q}\left(g\left(t\right)\right) G^{q}\left(t\right) dt < \infty,$$

then the following inequalities

$$(2.1) \qquad \int_{a}^{b} \int_{c}^{d} \frac{F(x) G(y)}{L(f(x), g(y))} dx dy \leq K \left(\int_{a}^{b} M^{p}(f(t)) F^{p}(t) dt \right)^{\frac{1}{p}} \left(\int_{c}^{d} N^{q}(g(t)) G^{q}(t) dt \right)^{\frac{1}{q}},$$

where K is a constant, and

(2.2)
$$\int_{c}^{d} N^{-p}(g(y)) \left(\int_{a}^{b} \frac{F(x)}{L(f(x), g(y))} dx \right)^{p} dy \le K^{p} \int_{a}^{b} M^{p}(f(t)) F^{p}(t) dt,$$

are equivalent.

Proof. Suppose that (2.2) is satisfied, then we have

$$\begin{split} &\int_{a}^{b} \int_{c}^{d} \frac{F(x) G(y)}{L(f(x), g(y))} dx dy \\ &= \int_{c}^{d} N(g(y)) G(y) \left(N^{-1}(g(y)) \int_{a}^{b} \frac{F(x)}{L(f(x), g(y))} dx \right) dy \\ &\leq \left(\int_{c}^{d} N^{q}(g(y)) G^{q}(y) dy \right)^{\frac{1}{q}} \left(\int_{c}^{d} N^{-p}(g(y)) \left(\int_{a}^{b} \frac{F(x)}{L(f(x), g(y))} dx \right)^{p} dy \right)^{\frac{1}{p}} \\ &\leq K^{p} \left(\int_{a}^{b} M^{p}(f(t)) F^{p}(t) dt \right)^{\frac{1}{p}} \left(\int_{c}^{d} N^{q}(g(t)) G^{q}(t) dt \right)^{\frac{1}{q}}. \end{split}$$

Now, suppose that (2.1) is satisfied, then

$$\begin{split} &\int_{c}^{d} N^{-p} \left(g \left(y \right) \right) \left(\int_{a}^{b} \frac{F \left(x \right)}{L \left(f \left(x \right), g \left(y \right) \right)} dx \right)^{p} dy \\ &= \int_{c}^{d} \left(\int_{a}^{b} \frac{F \left(x \right)}{L \left(f \left(x \right), g \left(y \right) \right)} dx \right) N^{-p} \left(g \left(y \right) \right) \left(\int_{a}^{b} \frac{F \left(x \right)}{L \left(f \left(x \right), g \left(y \right) \right)} dx \right)^{\frac{p}{q}} dy \\ &\leq K \left(\int_{a}^{b} M^{p} \left(f \left(x \right) \right) F^{p} \left(x \right) dx \right)^{\frac{1}{p}} \\ &\times \left(\int_{c}^{d} N^{q} \left(g \left(y \right) \right) N^{-pq} \left(g \left(y \right) \right) \left(\int_{a}^{b} \frac{F \left(x \right)}{L \left(f \left(x \right), g \left(y \right) \right)} dx \right)^{p} dy \right)^{\frac{1}{q}} \\ &= K \left(\int_{a}^{b} M^{p} \left(f \left(x \right) \right) F^{p} \left(x \right) dx \right)^{\frac{1}{p}} \left(\int_{c}^{d} N^{-p} \left(g \left(y \right) \right) \left(\int_{a}^{b} \frac{F \left(x \right)}{L \left(f \left(x \right), g \left(y \right) \right)} dx \right)^{p} dy \right)^{\frac{1}{q}}, \end{split}$$

which implies

$$\int_{c}^{d} N^{-p}\left(g\left(y\right)\right) \left(\int_{a}^{b} \frac{F\left(x\right)}{L\left(f\left(x\right), g\left(y\right)\right)} dx\right)^{p} dy \leq K^{p} \int_{a}^{b} M^{p}\left(f\left(t\right)\right) F^{p}\left(t\right) dt.$$

The following is our main result:

Theorem 2.2. Let *F*, *G*, *f*, *g*, *f'*, *g'* be positive functions, p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $0 < c < \lambda$ (c = a + 1, b + 1) and

$$\begin{array}{lll} 0 & < & \displaystyle \int\limits_{0}^{\infty} \frac{\left[f\left(t\right)\right]^{\frac{(aq-bp)}{q} + (1-\lambda)} F^{p}\left(t\right)}{\left[f'\left(t\right)\right]^{\frac{p}{q}}} dt < \infty, \\ \\ 0 & < & \displaystyle \int\limits_{0}^{\infty} \frac{\left[g\left(t\right)\right]^{\frac{(bp-aq)}{p} + (1-\lambda)} G^{q}\left(t\right)}{\left[g'\left(t\right)\right]^{\frac{q}{p}}} dt < \infty, \end{array}$$

then we have

$$(2.3) \qquad \begin{array}{l} & \int_{0}^{\infty} \int_{0}^{\infty} \frac{F(x) G(y)}{\left(f(x) + g(y)\right)^{\lambda}} dx dy \\ & \leq B^{\frac{1}{p}} \left(a + 1, \lambda - a - 1\right) B^{\frac{1}{q}} \left(b + 1, \lambda - b - 1\right) \\ & \quad \left(\int_{0}^{\infty} \frac{\left[f(t)\right]^{\frac{(aq-bp)}{q} + (1-\lambda)} F^{p}(t)}{\left[f'(t)\right]^{\frac{p}{q}}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{\left[g(t)\right]^{\frac{(bp-aq)}{p} + (1-\lambda)} G^{q}(t)}{\left[g'(t)\right]^{\frac{q}{p}}}\right)^{\frac{1}{q}}, \end{array}$$

and

The inequalities (2.3) and (2.4) are equivalent.

Proof. Observe that

$$\begin{split} & \int_{0}^{\infty} \int_{0}^{\infty} \frac{F(x) G(y)}{(f(x) + g(y))^{\lambda}} dx dy \\ &= \int_{0}^{\infty} \int_{0}^{\infty} \frac{F(x) \frac{[g(y)]^{\frac{a}{p}}[g'(y)]^{\frac{1}{p}}}{[f(x)]^{\frac{b}{q}}[f'(x)]^{\frac{1}{q}}}}{(f(x) + g(y))^{\frac{\lambda}{p}}} \times \frac{G(y) \frac{[f(x)]^{\frac{b}{q}}[f'(x)]^{\frac{1}{q}}}{[g(y)]^{\frac{a}{p}}[g'(y)]^{\frac{1}{p}}}}{(f(x) + g(y))^{\frac{\lambda}{q}}} dx dy \\ &\leq \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{F^{p}(x) \frac{[g(y)]^{a}}{[f(x)]^{\frac{bp}{q}}} \frac{g'(y)}{[f'(x)]^{\frac{b}{q}}}}{(f(x) + g(y))^{\lambda}} dx dy \right)^{\frac{1}{p}} \times \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{G^{q}(y) \frac{[f(x)]^{b}}{[g(y)]^{\frac{ag}{p}}} \frac{f'(x)}{[g'(y)]^{\frac{q}{p}}}}{(f(x) + g(y))^{\lambda}} dx dy \right)^{\frac{1}{q}} \\ &= M^{\frac{1}{p}} \times N^{\frac{1}{q}}, \end{split}$$

say. Then

$$\begin{split} M &= \int_{0}^{\infty} \frac{\left[f\left(x\right)\right]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}\left(x\right)}{\left[f'\left(x\right)\right]^{\frac{p}{q}}} dx \int_{0}^{\infty} \frac{\left[\frac{g(y)}{f(x)}\right]^{a} \frac{g'(y)}{f(x)}}{\left(1+\frac{g(y)}{f(x)}\right)^{\lambda}} dy \\ &= \int_{0}^{\infty} \frac{\left[f\left(x\right)\right]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}\left(x\right)}{\left[f'\left(x\right)\right]^{\frac{p}{q}}} dx \int_{0}^{\infty} \frac{u^{a}}{(1+u)^{\lambda}} du \\ &= B\left(a+1,\lambda-a-1\right) \int_{0}^{\infty} \frac{\left[f\left(x\right)\right]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}\left(x\right)}{\left[f'\left(x\right)\right]^{\frac{p}{q}}} dx. \end{split}$$

Similarly, we can show that

$$N = B\left(b+1, \lambda-b-1\right) \int_{0}^{\infty} \frac{\left[g\left(y\right)\right]^{\frac{bp-aq}{p}+(1-\lambda)} G^{q}\left(y\right)}{\left[g'\left(y\right)\right]^{\frac{q}{p}}} dy.$$

The equivalence of (2.3) and (2.4) follows from Lemma 2.1, by putting:

$$M(f(t)) = \frac{[f(t)]^{\left(\frac{a}{p} - \frac{b}{q}\right) + (1-\lambda)}}{[f'(t)]^{\frac{1}{q}}},$$

$$N(g(t)) = \frac{[g(t)]^{\left(\frac{b}{q} - \frac{a}{p}\right) + (1-\lambda)}}{[g'(t)]^{\frac{1}{p}}}.$$

Corollary 2.3. Theorem 2.2 implies the inequality (1.4), in which the constant coefficient is the best possible.

Proof. Follows by putting a = p, b = q, f(x) = Ax, g(y) = By. It remains to show that $B^{\frac{1}{p}}(p+1, \lambda - p - 1) B^{\frac{1}{q}}(q+1, \lambda - q - 1)$ has the value $B\left(\frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q}\right)$ as best possible. For this purpose, let us consider a+b=k. Then

$$B^{\frac{1}{p}}(a, \lambda - a) B^{\frac{1}{q}}(b, \lambda - b)$$

$$= \frac{1}{\Gamma\lambda} \Gamma^{\frac{1}{p}} a \Gamma^{\frac{1}{q}} b \Gamma^{\frac{1}{p}}(\lambda - a) \Gamma^{\frac{1}{q}}(\lambda - b)$$

$$\geq \frac{1}{\Gamma\lambda} \Gamma\left(\frac{a}{p} + \frac{b}{q}\right) \Gamma\left(\frac{\lambda - a}{p} + \frac{\lambda - b}{q}\right) \left(\log \Gamma \text{ being convex}, \frac{1}{p} + \frac{1}{q} = 1\right).$$

Now, let

$$f(a) = \frac{a}{p} + \frac{b}{q} = \frac{a}{p} + \frac{k-b}{q}$$

$$f'(a) = 0 = \frac{1}{p} - \frac{1}{q}$$
 which implies $p = q = 2$.

Therefore, $\min f(a) = \frac{k}{2}$ which is realised for a = b. This implies

$$\min B^{\frac{1}{p}}(a,\lambda-a) B^{\frac{1}{q}}(b,\lambda-b) = B(a,\lambda-a).$$

In order to find $\min B^{\frac{1}{p}}(a+1, \lambda - a - 1) B^{\frac{1}{q}}(b+1, \lambda - b - 1)$, we can take $a+1 = \lambda - b - 1$, that is $a+b = \lambda - 2$. If a = p, b = q, then we have

$$p+q = \lambda - 2 \Rightarrow pq = \lambda - 2 \Rightarrow a = \frac{\lambda - 2}{q} \Rightarrow a + 1 = \frac{\lambda + q - 2}{q},$$

therefore

$$\min B^{\frac{1}{p}}(a+1,\lambda-a-1)B^{\frac{1}{q}}(b+1,\lambda-b-1) = B\left(\frac{\lambda+p-2}{p},\frac{\lambda+q-2}{q}\right).$$

3. SERIES ANALOGUES

In what follows, some results on the associated double series forms are also stated.

Theorem 3.1. Let *F*, *G*, *f*, *g*, *f'*, *g'* be positive functions, p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $0 < c < \lambda$ (c = a + 1, b + 1) and

$$\begin{array}{lll} 0 & < & \sum_{m=1}^{\infty} \frac{\left[f\left(m\right)\right]^{\frac{aq-bp}{q} + (1-\lambda)} F^{p}\left(m\right)}{\left[f'\left(m\right)\right]^{\frac{p}{q}}} < \infty, \\ 0 & < & \sum_{n=1}^{\infty} \frac{\left[g\left(n\right)\right]^{\frac{bp-aq}{p} + (1-\lambda)} G^{q}\left(n\right)}{\left[g'\left(n\right)\right]^{\frac{q}{p}}} < \infty. \end{array}$$

Then we have

$$(3.1) \qquad \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{F(m) G(n)}{(f(m) + g(n))^{\lambda}} \\ \leq B^{\frac{1}{p}} (a + 1, \lambda - a - 1) B^{\frac{1}{q}} (b + 1, \lambda - b - 1) \\ \times \left(\sum_{m=1}^{\infty} \frac{[f(m)]^{\frac{aq-bp}{q} + (1-\lambda)} F^{p}(m)}{[f'(m)]^{\frac{p}{q}}} \right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} \frac{[g(n)]^{\frac{bp-aq}{p} + (1-\lambda)} G^{q}(n)}{[g'(n)]^{\frac{q}{p}}} \right)^{\frac{1}{q}},$$

and

(3.2)

$$\sum_{n=1}^{\infty} [g(n)]^{p\left(\frac{a}{p} - \frac{b}{q}\right) + (\lambda - 1)} \left(\sum_{m=1}^{\infty} \frac{F(m)}{(f(m) + g(n))^{\lambda}} \right)^{p}$$

$$\leq B(a + 1, \lambda - a - 1) B^{\frac{p}{q}}(b + 1, \lambda - b - 1)$$

$$\times \sum_{m=1}^{\infty} \frac{[f(m)]^{\frac{aq - bp}{q} + (1 - \lambda)} F^{p}(m)}{[f'(m)]^{\frac{p}{q}}}.$$

Inequalities (3.1) and (3.2) are equivalent.

Proof. On replacing the integral by the sum and following the same steps done in the proof of Theorem 2.2, we can state that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{F\left(m\right) G\left(n\right)}{\left(f\left(m\right)+g\left(n\right)\right)^{\lambda}} \leq L^{\frac{1}{p}} \times H^{\frac{1}{q}},$$

where

$$\begin{split} L &= \sum_{m=1}^{\infty} \frac{[f(m)]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}(m)}{[f'(m)]^{\frac{p}{q}}} \sum_{n=1}^{\infty} \frac{\left[\frac{g(n)}{f(m)}\right]^{a} \frac{g'(n)}{f(m)}}{\left(1+\frac{g(n)}{f(m)}\right)^{\lambda}} \\ &\leq \sum_{m=1}^{\infty} \frac{[f(m)]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}(m)}{[f'(m)]^{\frac{p}{q}}} \int_{0}^{\infty} \frac{\left[\frac{g(y)}{f(m)}\right]^{a} \frac{g'(y)}{f(m)}}{\left(1+\frac{g(y)}{f(m)}\right)^{\lambda}} dy \\ &= \sum_{m=1}^{\infty} \frac{[f(m)]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}(m)}{[f'(m)]^{\frac{p}{q}}} \int_{0}^{\infty} \frac{u^{a}}{(1+u)^{\lambda}} du \\ &= B\left(a+1,\lambda-a-1\right) \sum_{m=1}^{\infty} \frac{[f(m)]^{\frac{aq-bp}{q}+(1-\lambda)} F^{p}(m)}{[f'(m)]^{\frac{p}{q}}} \end{split}$$

Similarly,

$$H \le B \left(b + 1, \lambda - b - 1 \right) \sum_{n=1}^{\infty} \frac{\left[g \left(n \right) \right]^{\frac{bp-aq}{p} + (1-\lambda)} G^{q} \left(n \right)}{\left[g' \left(n \right) \right]^{\frac{q}{p}}}.$$

The equivalence of (3.1) and (3.2) follows from Lemma 2.1, by replacing the integral with the sum, and putting

$$L(f(m)) = \frac{[f(m)]^{\left(\frac{a}{p} - \frac{b}{q}\right) + (1-\lambda)}}{[f'(m)]^{\frac{1}{q}}},$$

$$H(g(n)) = \frac{[g(n)]^{\left(\frac{b}{q} - \frac{a}{p}\right) + (1-\lambda)}}{[g'(n)]^{\frac{1}{p}}}.$$

Corollary 3.2. *Theorem 3.1 implies the inequality (1.5), in which the constant coefficient is the best possible.*

REFERENCES

- [1] G. H. HARDY, J. E. LITTLEWOOD, and G. POLYA, *Inequalities*, Cambridge Univ. Press, Cambridge, 1952.
- [2] H. KE, On Hilbert's inequality, Chinese Ann. of Math., 13B, No.1 (1992), 35-39.
- [3] M. GAO, TAN LI, and L. DEBNATH, Some improvements on Hilbert's integral inequality, *J. Math. Anal. Appl.*, **229** (1999), 682-689.
- [4] M. GAO, A note on Hilbert double series theorem, *Hunan Ann. Math.*, **12**, Nos. 1-2 (1992), 142-147.
- [5] B. YANG, On Hilbert's integral inequality, J. Math. Anal. Appl., 220 (1998), 778-785.
- [6] B. YANG and L. DEBNATH, On the extended Hardy-Hilbert's inequality, *J. Math. Anal. Appl.*, **272** (2002), 187-199.