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1. INTRODUCTION

Let X be a Banach space with dimX ≥ 2, we denote the unit ball and the unit sphere by BX

and SX , respectively.
Recall that the space X is called uniformly convex [9], if, for any ε > 0, there exists δ > 0,

such that for any x, y ∈ SX with ‖x− y‖ ≥ ε, then
∥∥x+y

2

∥∥ ≤ 1− δ.
The modulus of convexity of X is defined in [9] by

δX(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ = ε

}
, ε ∈ [0, 2].

The characteristic of convexity, ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}, is defined in [15].
The space X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2], or equivalently
ε0(X) = 0. The meaning of the modulus of convexity is: if we take x, y ∈ SX far apart, then
this modulus measures "how far" the middle point of the segment joining them must be from
SX .

Later, there have appeared different kinds of expressions of δX(ε) in [27]:

δX(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ BX , ‖x− y‖ ≥ ε

}
= inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ ≥ ε

}
.

Recall that the space X is called uniformly smooth [10], if, for any ε > 0, there exists δ > 0,
such that if x ∈ SX and ‖y‖ ≤ δ, then

‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖.
If instead one wants to measure "how far" the same point can be from SX , Banaś [4] consid-

ered the following parameter:

ρX(ε) = sup

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ = ε

}
.

It turns out to be a "modulus of smoothness". For more results about the modulus of convexity
and the modulus of smoothness, we refer the reader to [6, 11, 21].

Let x, y be two elements in a Hilbert space. Then an element x ∈ X is said to be orthogonal
to y ∈ X (denoted by x ⊥ y) if 〈x, y〉 = 0. In the general setting of Banach space, many
notions of orthogonality have been introduced by means of equivalent propositions to the usual
orthogonality in Hilbert spaces. For example, Roberts [24] introduced Roberts orthogonality:
for any x, y ∈ X , x is said to be Roberts orthogonal to y (denoted by x ⊥R y), if ‖x + λy‖ =
‖x− λy‖ for any λ ∈ R; Birkhoff [8] introduced Birkhoff orthogonality: for any x, y ∈ X , x is
said to Birkhoff orthogonal to y (denoted by x ⊥B y), if ‖x+ λy‖ ≥ ‖x‖ for any λ ∈ R; James
[16] introduced isosceles orthogonality: x is said to be isosceles orthogonal to y (denoted by
x ⊥I y), if ‖x+ y‖ = ‖x− y‖.

Recall that the space X is called uniformly non-square (see [17]), if there exists δ > 0 such
that either ‖x−y‖

2
≤ 1− δ, or ‖x+y‖

2
≤ 1− δ.

The James constant J(X) and the Schäffer constant S(X) are defined in [13] as follows:

J(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX},

S(X) = inf{max{‖x+ y‖, ‖x− y‖} : x, y ∈ SX}.
Recently, Baronti and Papini [7] introduced the following constants:

JB(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX , x ⊥B y},
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SB(X) = inf{max{‖x+ y‖, ‖x− y‖} : x, y ∈ SX , x ⊥B y}.
Moreover, the various properties of these constants are given in [7, 13, 19]:

(1) 1 ≤ S(X) ≤ SB(X) ≤ JB(X) ≤ J(X) ≤ 2.
(2) J(X)S(X) = 2.
(3) X is not uniformly non-square if and only if J(X) = 2.
(4) X is not uniformly non-square if and only if JB(X) = 2.
(5) X is not uniformly non-square if and only if SB(X) = 1.
Inspired by the excellent works mentioned above, we shall consider the following constants

in this paper:

δB(X) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
,

ρB(X) = sup

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
.

The meanings of these moduli related to Birkhoff orthogonality: if we take x, y ∈ SX such that
x ⊥B y, then these moduli measure "how far" the middle point of the segment joining them
must be from SX .

The arrangement of this paper is as follows:
In Section 2, we consider the constant δB(X). First, we give some relationships between

δB(X) and other well-known constants by some inequalities. Second, we obtain a characteriza-
tion of Hilbert spaces in terms of δB(X), and establish the relationship between δB(X) and the
fixed point property for nonexpansive mappings. Finally, we study δB(X) in Radon planes. The
bounds of δB(X) in Radon planes are given. Moreover, we use the lower bound to characterize
the Radon plane with affine regular hexagonal unit sphere.

In Section 3, the constant ρB(X) is considered. First, some relations between ρB(X) and
other well-known constants are presented by some equalities and inequalities. Second, we give
a characterization of Hilbert spaces in terms of ρB(X), and consider the relation between ρB(X)
and the fixed point property for nonexpansive mappings.

In Section 4, we summarize the results obtained in this paper.

2. THE MODULUS OF CONVEXITY RELATED TO BIRKHOFF ORTHOGONALITY

2.1. The estimates for δB(X) in terms of other geometric constants.

First, we shall state the relation between the new geometric constant δB(X) and the classical
modulus of convexity δX(ε).

Proposition 2.1. Let X be a Banach space. Then δB(X) ≥ δX(1).

Proof. For each pair of points x, y ∈ SX such that x ⊥B y, we can obtain ‖x+λy‖ ≥ 1 for any
real number λ. In particular, we have ‖x− y‖ ≥ 1. Thus, we can obtain

δB(X) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
≥ inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ ≥ 1

}
= δX(1),

which completes the proof.

Corollary 2.2. Let X be a Banach space. If X is uniformly convex, then δB(X) > 0.
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Proof. By Lemma 2 in [15], if the space X is uniformly convex, then we have δX(ε) > 0 for
any ε ∈ (0, 2]. Hence, by Proposition 2.1, we can obtain the desired result.

Next, we give the bounds of δB(X).

Proposition 2.3. Let X be a Banach space. Then 0 ≤ δB(X) ≤ 1−
√
2
2

.

Proof. It is clear that δX(1) ≥ 0 by the definition of δX(ε), therefore we have δB(X) ≥ 0 by
Proposition 2.1. Notice that there exist x, y ∈ SX such that x ⊥B y and ‖x+ y‖ ≥

√
2 (see [3],

P.141). Then we have

δB(X) ≤ 1− ‖x+ y‖
2

≤ 1−
√
2

2
.

This completes the proof.

We consider the condition of δB(X) = 0.

Example 2.1. Let X = (R2, ‖ · ‖∞). Then δB(X) = 0.

Proof. Let x = (1, 1) and y = (1, 0). Then one can easily verify that x, y ∈ SX and x ⊥B y.
Thus, we obtain

δB(X) ≤ 1− 1

2
‖x+ y‖ = 0,

which implies that δB(X) = 0 by Proposition 2.3.

Recall that the space X is called strictly convex, if for any x, y ∈ SX with x 6= y, then
‖x+ y‖ < 2. Now, we give the definition of strict convexity related to Birkhoff orthogonality.

Definition 2.1. Let X be a real normed linear space. If for any x, y ∈ SX such that x ⊥B y, we
have ‖x+ y‖ < 2, then X is strictly convex related to Birkhoff orthogonality.

Next, we discuss the relation between δB(X) and strict convexity related to Birkhoff orthog-
onality.

Proposition 2.4. Let X be a finite-dimensional Banach space. If δB(X) = 0, then X is not
strictly convex related to Birkhoff orthogonality.

Proof. Suppose that δB(X) = 0, there exist xn, yn ∈ SX satisfying xn ⊥B yn and

lim
n→∞

(
1− 1

2
‖xn + yn‖

)
= 0.

Since the unit sphere of finite-dimensional Banach space is compact, there exist x0, y0 ∈ SX
such that x0 ⊥B y0 and

1− 1

2
‖x0 + y0‖ = 0,

then we have ‖x0 + y0‖ = 2, which implies that X is not strictly convex related to Birkhoff
orthogonality.

In a similar way, we can obtain that the following proposition holds:

Proposition 2.5. Let X be a finite-dimensional Banach space. If ε0(X) > 0, then X is not
strictly convex.

Proposition 2.6. Let X be a Banach space. If X is not strictly convex related to Birkhoff
orthogonality, then δB(X) = 0.
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Proof. Assume that X is not strictly convex related to Birkhoff orthogonality, then there exist
x, y ∈ SX such that x ⊥B y and ‖x+ y‖ = 2. Thus we can obtain

0 ≤ δB(X) ≤ 1− 1

2
‖x+ y‖ = 0

by Proposition 2.3, which implies that δB(X) = 0.

In fact, there exists a two-dimensional Banach space X for which 0 < δB(X) < 1−
√
2
2

.

Example 2.2. Let X be the space R2 endowed with the norm

‖x‖ = ‖(x1, x2)‖ = max

{√
x21
4

+ x22,

√
x21 +

x22
4

}
.

Then 0 < δB(X) ≤ 1− 2
5

√
5 < 1−

√
2
2

.

Proof. Let x =
(
2
5

√
5, 2

5

√
5
)

and y =
(
2
5

√
5,−2

5

√
5
)
. It is easy for us to obtain x, y ∈ SX .

Then for any λ ∈ R, we have

‖x+ λy‖ =
∥∥∥∥(2

5
(1 + λ)

√
5,

2

5
(1− λ)

√
5

)∥∥∥∥
= max

{√
1

5
(1 + λ)2 +

4

5
(1− λ)2,

√
4

5
(1 + λ)2 +

1

5
(1− λ)2

}

= max

{√
λ2 − 6

5
λ+ 1,

√
λ2 +

6

5
λ+ 1

}

= max


√(

λ− 3

5

)2

+
16

25
,

√(
λ+

3

5

)2

+
16

25

 .

Thus, to obtain x ⊥B y, we only need to consider the following cases:
Case 1: λ ≥ 0.
Then,

‖x+ λy‖ =

√(
λ+

3

5

)2

+
16

25
≥ 1 = ‖x‖.

Case 2: λ ≤ 0.
Then,

‖x+ λy‖ =

√(
λ− 3

5

)2

+
16

25
≥ 1 = ‖x‖.

Thus, we can obtain

δB(X) ≤ 1− ‖x+ y‖
2

= 1− 2

5

√
5 < 1−

√
2

2
.

Actually, we can obtain that X is strictly convex. In fact, let x = (x1, x2) ∈ SX and y =
(y1, y2) ∈ SX such that ‖x+ y‖ = 2. By a direct calculation, we have

‖x‖ = max

{√
x21
4

+ x22,

√
x21 +

x22
4

}
= 1,
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‖y‖ = max

{√
y21
4

+ y22,

√
y21 +

y22
4

}
= 1,

‖x+ y‖ = max

{√
(x1 + y1)2

4
+ (x2 + y2)2,

√
(x1 + y1)2 +

(x2 + y2)2

4

}
= 2.

Hence, we have x1 = y1 and x2 = y2, which implies that x = y. Thus ε0(X) = 0 by Proposition
2.5. Then we can obtain δB(X) > 0 by Proposition 2.1. This completes the proof.

Next we discuss the relation between δB(X) and the constant JB(X).

Proposition 2.7. Let X be a Banach space. Then δB(X) ≤ 1− 1
2
JB(X).

Proof. It is clear that ‖x+ y‖ ≥ min{‖x+ y‖, ‖x− y‖}, then we can obtain

δB(X) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
= 1− 1

2
sup{‖x+ y‖ : x, y ∈ SX , x ⊥B y}

≤ 1− 1

2
sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX , x ⊥B y}

= 1− 1

2
JB(X).

This completes the proof.

The constant BR(X) which estimates the distance of x, y ∈ SX satisfying x ⊥B y from
being Roberts orthogonal to each other has been performed in [23]:

BR(X) = sup
α>0

{
‖x+ αy‖ − ‖x− αy‖

α
: x, y ∈ SX , x ⊥B y

}
.

In the following, we shall discuss the relation between δB(X) and BR(X).

Proposition 2.8. Let X be a Banach space with δB(X) > 0. Then BR(X) ≤ 1
1+δB(X)

and thus
BR(X) < 1.

Proof. For each pair of elements x, y ∈ SX such that x ⊥B y, we can obtain ‖x− αy‖ ≥ 1 for
any real number α. From the definition of δB(X), we have

‖x+ y‖ ≤ 2(1− δB(X)).

Case 1: 0 < α ≤ 1.
Then

‖x+ αy‖ = ‖(1− α)x+ α(x+ y)‖ ≤ 1− α + 2α(1− δB(X)).

Thus, we obtain
‖x+ αy‖ − ‖x− αy‖

α
≤ 1− 2δB(X) < 1− δB(X) ≤ 1

1 + δB(X)
.

Case 2: 1 < α ≤ 2(1 + δB(X)).
Then

‖x+ αy‖ = ‖(x+ y) + (α− 1)y‖ ≤ ‖x+ y‖+ α− 1.

Therefore, we have
‖x+ αy‖ − ‖x− αy‖

α
≤ 2(1− δB(X)) + α− 2

α
≤ 1− 2δB(X)

α
≤ 1

1 + δB(X)
.
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Case 3: α > 2(1 + δB(X)).
Then we obtain

‖x+ αy‖ − ‖x− αy‖
α

≤ 2

α
≤ 1

1 + δB(X)
.

This completes the proof.

By Proposition 2.8, we can obtain the following corollary:

Corollary 2.9. Let X be a Banach space. If BR(X) = 1, then δB(X) = 0.

Remark 2.1. By Proposition 2.1, Proposition 2.8 and Corollary 2.9, we can obtain Theorem
2.3 and Theorem 2.4 in [23].

The constant A2(X) is defined as follows (see [5, 26]):

A2(X) = sup

{
‖x+ y‖+ ‖x− y‖

2
: x, y ∈ SX

}
.

Now we shall study the relationship between δB(X) and A2(X).

Proposition 2.10. Let X be a Banach space. Then δB(X) ≥ 3
2
− A2(X).

Proof. For any x, y ∈ SX such that x ⊥B y, we have ‖x + λy‖ ≥ 1 for any real number λ. In
particular, we can obtain ‖x− y‖ ≥ 1. Then we have

1− ‖x+ y‖
2

= 1 +
‖x− y‖

2
− ‖x+ y‖+ ‖x− y‖

2

≥ 3

2
− ‖x+ y‖+ ‖x− y‖

2
.

Hence we can obtain

δB(X) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
≥ inf

{
3

2
− ‖x+ y‖+ ‖x− y‖

2
: x, y ∈ SX , x ⊥B y

}
=

3

2
− sup

{
‖x+ y‖+ ‖x− y‖

2
: x, y ∈ SX , x ⊥B y

}
≥ 3

2
− sup

{
‖x+ y‖+ ‖x− y‖

2
: x, y ∈ SX

}
=

3

2
− A2(X).

This completes the proof.

To study the relationship between the constant δB(X) and the modified von Neumann-Jordan
constant C ′

NJ(X), let us recall that the definition of the constant C ′
NJ(X) as follows (see [1,

12]):

C
′

NJ(X) = sup

{
‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}
.

Proposition 2.11. Let X be a Banach space. Then δB(X) ≥ 1−
√

4C
′
NJ (X)−1
2

.
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Proof. According to the definition of the constant C ′
NJ(X), for all x, y ∈ SX , we have

‖x+ y‖2 + ‖x− y‖2 ≤ 4C
′

NJ(X).

Then for any x, y ∈ SX with x ⊥B y, it is easy for us to see that ‖x − y‖ ≥ 1. Hence we can
obtain

sup{‖x+ y‖ : x, y ∈ SX , x ⊥B y} ≤
√

4C
′
NJ(X)− 1,

then we have

δB(X) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
= 1− 1

2
sup{‖x+ y‖ : x, y ∈ SX , x ⊥B y}

≥ 1− 1

2

√
4C

′
NJ(X)− 1,

which completes the proof.

2.2. Some geometric properties related to δB(X).

In this section, we will study some certain geometric properties related to this modulus. First,
in order to characterize Hilbert spaces in terms of δB(X), we need the following lemma:

Lemma 2.12. [2, 25] Let X be a normed linear space and λ > 0 be a fixed number. Then the
following statements are equivalent:

(1) X is an inner product space.
(2) x, y ∈ SX , x ⊥B y⇒ ‖λx+ y‖ ≤

√
1 + λ2.

(3) x, y ∈ SX , x ⊥B y⇒ ‖λx+ y‖ ≥
√

1 + λ2.
(4) x, y ∈ SX , x ⊥B y⇒ ‖λx+ y‖ =

√
1 + λ2.

Theorem 2.13. Let X be a Banach space. Then δB(X) = 1−
√
2
2

if and only if X is a Hilbert
space.

Proof. If X is a Hilbert space, then for any x, y ∈ SX such that x ⊥B y, we have ‖x+y‖ =
√
2

by Lemma 2.12. Hence, we can obtain

1− 1

2
‖x+ y‖ = 1−

√
2

2
,

which implies that δB(X) = 1−
√
2
2

.
Conversely, suppose that δB(X) = 1−

√
2
2

, then for all x, y ∈ SX satisfying x ⊥B y, we have

1− 1

2
‖x+ y‖ ≥ 1−

√
2

2
,

which means that ‖x+ y‖ ≤
√
2. Thus X is a Hilbert space by Lemma 2.12.

Next, we discuss the relationship between δB(X) and uniformly non-square Banach space.

Proposition 2.14. Let X be a Banach space. If δB(X) > 0, then X is uniformly non-square.

Proof. Suppose conversely that X is not uniformly non-square, then JB(X) = 2 from Theorem
4.3 in [7]. Thus, we can obtain δB(X) = 0 by Proposition 2.3 and Proposition 2.7. This
contradicts δB(X) > 0, hence X is a uniformly non-square Banach space.
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Let C be a nonempty subset of a Banach space X . A mapping T : C → C is said to be
nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for any x, y ∈ C. The space X is said to have the fixed point property (for nonexpansive
mappings) if for every nonempty bounded closed convex set C ⊂ X and every nonexpansive
mapping T : C → C, there is an element x ∈ C such that Tx = x, i.e. a fixed point of T .

It is worth nothing that the uniformly non-square Banach space always has the fixed point
property (see [14]). Thus, according to the Proposition 2.14 we may conclude the following
result:

Theorem 2.15. Let X be a Banach space. If δB(X) > 0, then X has the fixed pointed property.

2.3. The constant δB(X) in Radon planes.

Note that an orthogonality notion "⊥" is called symmetric, if x ⊥ y implies y ⊥ x. The usual
orthogonality in Hilbert spaces is, of course, symmetric. However, the Birkhoff orthogonality
in Banach spaces is not symmetric in general. In [18], James proved the following result:

Theorem 2.16. (see [18]) A normed linear space X whose dimension is at least three is an
inner product if and only if Birkhoff orthogonality is symmetric in X .

The assumption on the dimension of the space in the above theorem cannot be omitted. A
two-dimensional normed linear space in which Birkhoff orthogonality is symmetric is called
Radon plane. For more results about Radon planes, we refer the reader to [2, 19].

Since Radon planes are Banach spaces, now we present the following result:

Proposition 2.17. Let X be a Radon plane. Then 0 ≤ δB(X) ≤ 1−
√
2
2

.

In the following, we will provide an example to illustrate that the lower bound shown in the
above result is sharp and the converse of Proposition 2.14 is not true.

Example 2.3. Let X be a Radon plane `∞ − `1, that is, the space R2 with the norm defined by

‖x‖ = ‖(x1, x2)‖ =
{
‖(x1, x2)‖∞, (x1x2 ≥ 0),
‖(x1, x2)‖1, (x1x2 ≤ 0).

Then δB(X) = 0.

Proof. It is well known that X is uniformly non-square. Now let x = (1, 0) and y = (1, 1), it is
clear that x, y ∈ SX . Actually, we also have x ⊥B y. In fact, to obtain x ⊥B y, we only need to
consider the following three cases:

Case 1: 1 + λ ≥ 0 and λ ≥ 0.
Then, we obtain λ ≥ 0 and

‖x+ λy‖ = ‖(1 + λ, λ)‖ = max{|1 + λ|, |λ|} = 1 + λ ≥ 1 = ‖x‖.

Case 2: (1 + λ)λ ≤ 0.
Then, we have −1 ≤ λ ≤ 0 and

‖x+ λy‖ = ‖(1 + λ, λ)‖ = |1 + λ|+ |λ| = 1 + λ− λ = 1 = ‖x‖.

Case 3: 1 + λ ≤ 0 and λ ≤ 0.
Then we obtain λ ≤ −1 and

‖x+ λy‖ = ‖(1 + λ, λ)‖ = max{|1 + λ|, |λ|} = −λ ≥ 1 = ‖x‖.
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Hence, by Proposition 2.17, we have

0 ≤ δB(X) ≤ 1− ‖x+ y‖
2

= 0.

This completes the proof.

Notice that the unit sphere of `∞ − `1 is actually an affine regular hexagon, then `∞ − `1 is a
Radon plane with δB(X) = 0 and such that its unit sphere is an affine regular hexagon. In fact,
this also holds in general, see the following result:

Theorem 2.18. Let X be a Radon plane. Then δB(X) = 0 if and only if its unit sphere SX is
an affine regular hexagon.

Proof. If δB(X) = 0, then we have A2(X) ≥ 3
2

by Proposition 2.10. Thus we can obtain
A2(X) = 3

2
by Theorem 3.1 in [22]. So SX is an affine regular hexagon by Theorem 5.1 in

[22].
Conversely, suppose that SX is an affine regular hexagon. Then there exist u, v ∈ SX such

that ±u, ±v, ±(u+ v) are the vertices of SX .

u

O
v−v

−u

u+ v

−(u+ v)

Figure 1. Affine regular hexagonal unit sphere.

Let x = u + v ∈ SX and y = u ∈ SX . Then one can deduce that x ⊥B y by considering the
following four cases for λ ∈ R:

Case 1: λ ≥ 1.
Then,

‖x+ λy‖ = ‖(1 + λ)u+ v‖ ≥ (1 + λ)− 1 = λ ≥ 1 = ‖x‖.
Case 2: λ ≤ −1.
Then,

‖x+ λy‖ = ‖(1 + λ)u+ v‖ ≥ 1− (1 + λ) = −λ ≥ 1 = ‖x‖.
Case 3: 0 ≤ λ ≤ 1.
Then,

‖x+ λy‖ = ‖(1 + λ)u+ v‖ = (1 + λ)

∥∥∥∥u+ 1

1 + λ
v

∥∥∥∥
= (1 + λ)

∥∥∥∥(1− 1

1 + λ

)
u+

1

1 + λ
(u+ v)

∥∥∥∥
= 1 + λ ≥ 1 = ‖x‖.

Case 4: −1 ≤ λ ≤ 0.
Then,

‖x+ λy‖ = ‖(1 + λ)u+ v‖ = ‖[1− (−λ)](u+ v) + (−λ)v‖ = 1 ≥ ‖x‖.
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Moreover, we can also obtain

‖x+ y‖ = ‖2u+ v‖ = 2

∥∥∥∥u+ 1

2
v

∥∥∥∥ = 2

∥∥∥∥12(u+ v) +
1

2
u

∥∥∥∥ = 2,

then we have
0 ≤ δB(X) ≤ 1− 1

2
‖x+ y‖ = 0,

by Proposition 2.17, which implies that δB(X) = 0. This completes the proof.

3. THE MODULUS OF SMOOTHNESS RELATED TO BIRKHOFF-JAMES
ORTHOGONALITY

3.1. The estimates for ρB(X) in terms of other geometric constants.

First, we shall study the relation between ρB(X) and the constant µ′
(X). Now we recall that

definition of the constant µ′
(X) (see [3]) as follows:

µ
′
(X) = sup

{
2

‖x+ y‖
: x, y ∈ SX , x ⊥B y

}
.

Proposition 3.1. Let X be a Banach space. Then ρB(X) = 1− 1
µ′ (X)

Proof. According to the definition of µ′
(X), we have

inf{‖x+ y‖ : x, y ∈ SX , x ⊥B y} =
2

µ′(X)
.

Then we can obtain

ρB(X) = sup

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
= 1− 1

2
inf{‖x+ y‖ : x, y ∈ SX , x ⊥B y}

= 1− 1

µ′(X)
.

This completes the proof.

Corollary 3.2. Let X be a Banach space. Then 1−
√
2
2
≤ ρB(X) ≤ 1

2
.

Proof. From [3], we have
√
2 ≤ µ

′
(X) ≤ 2. Then we can obtain the desired result by Proposi-

tion 3.1.

The following example shows that the upper bounds of ρB(X) given in the above result is
sharp.

Example 3.1. Let X = (R2, ‖ · ‖∞). Then ρB(X) = 1
2
.

Proof. Let x = (−1, 1) and y = (1, 0). Then one can easily verify that x, y ∈ SX and x ⊥B y.
Thus, we obtain

ρB(X) ≥ 1− 1

2
‖x+ y‖ = 1

2
,

which implies that ρB(X) = 1
2

by Corollary 3.2.

In the following, we intend to present the relationship between ρB(X) and SB(X).

Proposition 3.3. Let X be a Banach space. Then ρB(X) ≥ 1− 1
2
SB(X).
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Proof. It is easy for us to obtain ‖x+ y‖ ≤ max{‖x+ y‖, ‖x− y‖}, then we have

ρB(X) = sup

{
1− ‖x+ y‖

2
: x, y ∈ SX , x ⊥B y

}
= 1− 1

2
inf{‖x+ y‖ : x, y ∈ SX , x ⊥B y}

≥ 1− 1

2
inf{max{‖x+ y‖, ‖x− y‖} : x, y ∈ SX , x ⊥B y}

= 1− 1

2
SB(X),

which completes the proof.

3.2. Some geometric properties related to ρB(X).

In this section, we will obtain a characterization of Hilbert spaces in terms of ρB(X) and
establish the relationship between ρB(X) and the fixed point property for nonexpansive map-
pings.

First, it is easy for us to see that the lower bound of ρB(X) can be used to characterize the
Hilbert space.

Theorem 3.4. Let X be a Banach space. Then ρB(X) = 1 −
√
2
2

if and only if X is a Hilbert
space.

Proof. Assume that X is a Hilbert space, then for any x, y ∈ SX satisfying x ⊥B y, we can
obtain ‖x+ y‖ =

√
2 by Lemma 2.12. Thus, we have

1− ‖x+ y‖
2

= 1−
√
2

2
,

which implies that ρB(X) = 1−
√
2
2

.
On the other hand, suppose that ρB(X) = 1−

√
2
2

, then for any x, y ∈ SX such that x ⊥B y,
we can obtain

1− ‖x+ y‖
2

≤ 1−
√
2

2
,

which means that ‖x+ y‖ ≥
√
2. Hence X is a Hilbert space by Lemma 2.12.

By Theorem 3.4 and Proposition 3.1, we can obtain Corollary 3.5, which implies Theorem
4.8.19 in [3].

Corollary 3.5. Let X be a Banach space. Then the following statements are equivalent:
(1) µ

′
(X) =

√
2.

(2) ρB(X) = 1−
√
2
2

.
(3) X is a Hilbert space.

In the following, we will discuss the relationship between ρB(X) and uniform non-squareness.

Proposition 3.6. Let X be a Banach space. If ρB(X) < 1
2
, then X is uniformly non-square.

Proof. Assume conversely thatX is not a uniformly non-square Banach space, then SB(X) = 1
(see Theorem 3.2 in [7]). Thus we can obtain ρB(X) = 1

2
by Proposition 3.3 and Corollary 3.2.

This contradicts ρB(X) < 1
2
, hence X is a uniformly non-square Banach space.

In fact, the converse of Proposition 3.6 is not true. Now we provide the counterexample as
follows:
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Example 3.2. Let X be the space R2 endowed with the norm

‖x‖ = ‖(x1, x2)‖ =
{
‖(x1, x2)‖1, x1x2 ≥ 0,
‖(x1, x2)‖∞, x1x2 ≤ 0.

Then ρB(X) = 1
2
.

Proof. It is obvious that X is uniformly non-square. Let x = (1, 0) and y = (−1, 1), it is clear
that x, y ∈ SX . Actually, we also have x ⊥B y. In fact, to obtain x ⊥B y, we only need to
consider the following three cases:

Case 1: (1− λ)λ ≥ 0.
Then, we have 0 ≤ λ ≤ 1 and

‖x+ λy‖ = ‖(1− λ, λ)‖ = |1− λ|+ |λ| = 1 = ‖x‖.

Case 2: λ ≥ 1.
Then, we obtain

‖x+ λy‖ = ‖(1− λ, λ)‖ = max{|1− λ|, |λ|} = λ ≥ 1 = ‖x‖.

Case 3: λ ≤ 0.
Then, we have

‖x+ λy‖ = ‖(1− λ, λ)‖ = max{|1− λ|, |λ|} = −λ+ 1 ≥ 1 = ‖x‖.

Thus, by Corollary 3.2, we have

1

2
= 1− 1

2
‖x+ y‖ ≤ ρB(X) ≤ 1

2
.

This completes the proof.

By Proposition 3.1, Proposition 3.6 and Example 3.2, we can obtain the following corollary:

Corollary 3.7. Let X be a Banach space. If µ
′
(X) < 2, then X is uniformly non-square, and

the converse is not true.

By Proposition 3.6, we can obtain the following result:

Theorem 3.8. Let X be a Banach space. If ρB(X) < 1
2
, then X has the fixed pointed property.

4. CONCLUSIONS

In this paper, we introduce two new constants δB(X) and ρB(X), which are the modulus
of convexity and the modulus of smoothness related to Birkhoff orthogonality, respectively.
It makes sense to investigate the relationships between the two new constants and other well-
known constants by some equalities and inequalities, characterize the Hilbert space in terms
of them. Meanwhile, we establish the relations between δB(X) and the fixed point property.
Moreover, we provide a study of the constant δB(X) in Radon planes. The characterization
of the Radon plane with affine regular hexagonal unit sphere in terms of δB(X) is obtained.
How can the constant ρB(X) be utilized to characterize more geometrical properties? Besides
the geometric constants mentioned in the paper, what other important geometric constants are
closely related to δB(X) and ρB(X)? Henceforth, more results about the two constants δB(X)
and ρB(X) will be presented in future research for the readers who are interested in the theory
of geometrical constants in Banach spaces.
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