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ABSTRACT. In this paper we show how the three variable reciprocity theorem can be easily
derived from the well known two variable reciprocity theorem of Ramanujan by parameter
augmentation. Further we derive someq-gamma,q-beta and eta-function identities from the
three variable reciprocity theorem.
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1. I NTRODUCTION

In his lost notebook [18, p.40] S. Ramanujan recorded the following two variable reciprocity
theorem:

(1.1) ρ(a, b)− ρ(b, a) =

(
1

b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞

(−aq)∞(−bq)∞
where

ρ(a, b) =

(
1 +

1

b

) ∞∑
n=0

(−1)nqn(n+1)/2anb−n

(−aq)n

, a 6= −q−n, n ∈ Z+ and |q| < 1,

and as usual,

(a)∞ := (a; q)∞ =
∞∏

n=0

(1− aqn), |q| < 1

(a)n := (a; q)n =
(a; q)∞

(aqn; q)∞
, n : an integer.

For proofs of (1.1) one may refer the works of G. E. Andrews [3], D. D. Somashekara and
S. N. Fathima [19], T. Kim, Somashekara and Fathima [15], B. C. Berndt, S. H. Chan,
B. P. Yeap and A. J. Yee [9], C. Adiga and N. Anitha [1], P. S. Guruprasad and N. Pradeep [11]
and S. Y. Kang [14].

Recently Kang [14] has given several generalizations of the reciprocity theorem (1.1).
One of the generalizations of (1.1) is the following three-variable reciprocity theorem:

(1.2) ρ3(a, b, c)− ρ3(b, a, c) =

(
1

b
− 1

a

)
(c)∞(aq/b)∞(bq/a)∞(q)∞

(−c/a)∞(−c/b)∞(−aq)∞(−bq)∞
,

where

ρ3(a, b, c) =

(
1 +

1

b

) ∞∑
n=0

(c)n(−1)nqn(n+1)/2anb−n

(−aq)n(−c/b)n+1

, a 6= −q−n, c/b 6= −1,−q−n

for n ∈ Z+ and |q| < 1. Putting c = 0 in (1.2) we obtain (1.1). Kang [14] has proved
(1.2) using the well known1ψ1-summation formula [17, Ch.16] and Jackson’s transformation
formula [10, p.526]. Adiga and Guruprasad [2] have given a proof of (1.2) using the well
knownq-binomial theorem and the Gauss summation formula [4]. Somashekara and D. Mamta
[21] have given a proof of (1.2) using the well known two variable reciprocity theorem (1.1),
Jackson’s transformation formula [11, p.526] and an identity obtained by them in [20].

The main objective of this paper is to derive the three variable reciprocity theorem using
the two variable reciprocity theorem by parameter augmentation, the technique which was
extensively used by Z. G. Liu in [16]. Further, we derive from the reciprocity theorem (1.2)
someq-gamma ,q-beta and eta-function identities, which complement the work of S. Bhargava
and C. Adiga [6], Bhargava and Somashekara [7], Bhargava, Somashekara and Fathima [8],
K. R. Vasuki [23]. For this purpose we employ the following definitions and some simple
related results.

Theq-difference operator and theq-shift operatorζ are defined by [16]

Dqf(a) =
1

a
(f(a)− f(aq)) and ζ{f(a)} = f(aq),

respectively. An operatorθ is defined by

θ = ζ−1Dq.
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The operatorE(bθ) is defined as

E(bθ) =
∞∑

n=0

(bθ)nqn(n−1)/2

(q; q)n

·

Then we have the following operator identities [16, Theorem-1]:

E(bθ){(at; q)∞} = (at, bt; q)∞

E(bθ){(as, at; q)∞} =
(as, at, bs, bt; q)∞

(abst/q; q)∞
,

∣∣∣∣abstq
∣∣∣∣ < 1,

where as usual,
(a1, a2, ..., ak; q)n = (a1; q)n(a2; q)n...(ak; q)n,

wheren is an integer or infinity.

Theq-gamma functionΓq(x), aq-analogue of Euler’s gamma function, was introduced by
J. Thomae [22] and later by Jackson [13] as,

(1.3) Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x,

whereq is a fixed real number0 < q < 1. Heine [12] gave an equivalent definition, but without
the factor(1−q)1−x. Whenx = n+1 with n a nonnegative integer, this definition (1.3) reduces
to

(1.4) Γq(n+ 1) = 1(1 + q)(1 + q + q2)...(1 + q + ...+ qn−1),

which clearly approachesn! asq → 1−. HenceΓq(n + 1) tends toΓ(n + 1) = n!, asq → 1−.
The definition ofΓq(x) can be extended to|q| < 1 by using the principal values ofqx and
(1− q)1−x in (1.3). Clearly,

Γq(x+ 1) =
(q; q)∞

(qx+1; q)∞
(1− q)−x

=
∞∏

n=1

(1− qn)(1− qn+1)x

(1− qn+x)(1− qn)x
·

Hence

lim
q→1−

Γq(x+ 1) =
∞∏

n=1

n

n+ x

(
n+ 1

n

)x

= x

[
x−1

∞∏
n=1

(
1 +

x

n

)−1
(

1 +
1

n

)x
]

= Γ(x+ 1)·
Thus Γq(x) → Γ(x), the ordinary gamma function, asq → 1. Askey [5] has obtained
q-analogue of several classical results involving gamma function. For instance, he defined

(1.5) Bq(x, y) = (1− q)
∞∑

n=0

qnx (qn+1)∞
(qn+y)∞

,

and proved that

(1.6) Bq(x, y) =
Γq(x)Γq(y)

Γq(x+ y)
·
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The Dedekind eta-function is defined by

η(τ) := eπiτ/12

∞∏
n=1

(1− e2πinτ )(1.7)

= q1/24(q; q)∞,

whereq = e2πiτ .

2. A PROOF OF (1.2)

Replacinga by−ac andb by−ad in (1.1), and multiplying the resulting identity throughout
by acd/(1− ac)(1− ad) we obtain

d
∞∑

n=0

(−1)nqn(n+1)/2

(ad)n+1

(d/c)n − c
∞∑

n=0

(−1)nqn(n+1)/2

(ac)n+1

(c/d)n = d
(q, qd/c, c/d; q)∞

(ac, ad; q)∞
·

This can be written as

d

∞∑
n=0

(−1)nqn(n+1)/2(d/c)n(adqn+1, ac; q)∞−

c
∞∑

n=0

(−1)nqn(n+1)/2(c/d)n(acqn+1, ad; q)∞ = d(q, qd/c, c/d; q)∞·

On applyingE(bθ) to both sides with respect to the variablea we obtain

d
∞∑

n=0

(−1)nqn(n+1)/2(d/c)n (adqn+1, ac, bdqn+1, bc; q)∞
(abcdqn; q)∞

−c
∞∑

n=0

(−1)nqn(n+1)/2(c/d)n (acqn+1, ad, bcqn+1, bd; q)∞
(abcdqn)∞

= d(q, qd/c, c/d; q)∞·

Multiplying throughout by(abcd)∞/(ad)∞(ac)∞(bd)∞(bc)∞ we obtain

d
∞∑

n=0

(−1)nqn(n+1)/2(abcd)n

(ad)n+1(bd)n+1

(d/c)n − c

∞∑
n=0

(−1)nqn(n+1)/2(abcd)n

(ac)n+1(bc)n+1

(c/d)n

= d
(q, qd/c, c/d, abcd; q)∞

(ac, ad, bd, bc; q)∞
·

Multiplying the above equation by(1 − ac)(1 − ad)/adc and then replacinga by −a, b by
−c/b, c by 1 andd by b/a we obtain (1.2)

3. q-GAMMA AND q-BETA FUNCTION IDENTITIES

In this section we deduce some interesting identities involvingq-gamma andq-beta functions.
If 0 < q < 1 and0 < x < 1 then

(3.1)
Γq(1 + x)

Γq(1− x)
=

[
(1− q2x−1)

(1− q)2x

∞∑
n=0

(q2x)n(−1)nq
n(n+1)

2
−nx

(qx)n(q)n+1

− qx(1− qx−1)

(1− q)2x

∞∑
n=0

(−1)nq
n(n+1)

2
+nx

(qx+1)n+1

]
·
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Proof. Puttinga = −qx−1, b = −q2x−1, c = q2x in (1.2) we obtain

(1− q1−2x)
∞∑

n=0

(q2x)n(−1)nq
n(n+1)

2
−nx

(qx)n(q)n+1

− (1− q1−x)
∞∑

n=0

(−1)nq
n(n+1)

2
+nx

(qx+1)n+1

= (−q1−2x + q1−x)
(q1−x)∞(q1+x)∞
(q1+x)∞(qx)∞

.

Multiplying throughout by−q2x−1 we obtain

(1− q2x−1)
∞∑

n=0

(q2x)n(−1)nq
n(n+1)

2
−nx

(qx)n(q)n+1

− (−q2x−1 + qx)
∞∑

n=0

(−1)nq
n(n+1)

2
+nx

(qx+1)n+1

=
(q1−x)∞
(q1+x)∞

.

On using (1.3) and simplifying we obtain (3.1).

If 0 < q < 1 and0 < x < 1 then

(3.2)
Γq(2x)Γq(1− x)

Γq(x)
=

(−q1+x)∞(−q)∞
(−q1+2x)∞(−q−2x)∞

×[
2(1− q−x)

∞∑
n=0

(qx)nq
n(n+1)

2

(−q1+x)n(q2x)n+1

+ (q−x + q−2x)
∞∑

n=0

(qx)nq
n(n+1)

2
−2nx

(q1−x)n(−q)n

]
·

Proof. Putting a = qx, b = −q−x and c = qx in (1.2) we obtain, on simplification,

(1− qx)
∞∑

n=0

(qx)nq
n(n+1)

2

(−q1+x
n )(q2x)n+1

+ (q−x + q−2x)
∞∑

n=0

(qx)nq
n(n+1)

2
−2nx

2(q1+x)n(−q)n

=
(qx)∞(−q1+2x)∞(−q−2x)∞(q)∞
2(−q)∞(q2x)∞(−q1+x)∞(q1−x)∞

·

On using (1.3) and simplifying we obtain (3.2).

If 0 < q < 1, 0 < y < x < 1 then

(3.3)
Γq(x)Γq(y)

Bq(1− x+ y, x− y)
=

(−q1−x)∞(−q1−y)∞(1− q)1−x−y

(q2; q2)∞
×

[
(1 + q−y)

∞∑
n=0

(−q)n−1(−1)nq
n(n+1)

2
−nx+ny

(−q1−x)n(qy)n+1

−(q−y + qx−y)
∞∑

n=0

(−q)n−1(−1)nq
n(n+1)

2
+nx−ny

(−q1−y)n(qx)n+1

]
·

Proof. Putting a = q−x, b = q−y and c = −1 in (1.2) we obtain, on simplification,

(1− q−y)
∞∑

n=0

(−q)n−1(−1)nq
n(n+1)

2
−nx+ny

(−q1−x)n(qy)n+1

−(q−y + qx−y)
∞∑

n=0

(−q)n−1(−1)nq
n(n+1)

2
+nx−ny

(−q1−y)n(qx)n+1

=
(q2; q2)∞(q1−x+y)∞(qx−y)∞

(qx)∞(qy)∞(−q1−x)∞(−q1−y)∞
·
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On using (1.3) and (1.6) and simplifying we obtain (3.3).

If 0 < q < 1 andx = 2, 3, ..., then

(3.4)
Γq(x− 1)

Γq(x)
=

(−qx)∞
2(−q)∞

×

[
(1− q)

∞∑
n=0

(qx)nq
n(n−1)

2

(−q)n(qx−1)n+1

− 2q
∞∑

n=0

(qx)nq
n(n+3)

2

(q2)n(−qx)n+1

]
·

Proof. Putting a = 1, b = −q and c = qx in (1.2) we obtain, on simplification,

(1− q)
∞∑

n=0

(qx)nq
n(n−1)

2

(−q)n(qx−1)n+1

+ 2q
∞∑

n=0

(qx)nq
n(n+3)

2

(q2)n(−qx)n+1

=
2(1− q)(qx)∞(−q)∞

(−qx)∞(qx−1)∞
·

On using (1.3) and simplifying we obtain (3.4).

If 0 < q < 1 andx = 2, 3, ..., then

(3.5)
Γq(x− 1)

Γq(x)
=

(−qx−1)∞
2(−q)∞

×

[
(1− q)

(1 + q)

∞∑
n=0

(qx)nq
n(n+1)

2

(q2)n(qx−1)n+1

+
∞∑

n=0

(qx)nq
n(n+1)

2

(q2)n(−qx−1)n+1

]
·

Proof. Putting a = q, b = −q and c = qx in (1.2) we obtain, on simplification,

(1− q)
∞∑

n=0

(qx)nq
n(n+1)

2

(q2)n(qx−1)n+1

+ (1 + q)
∞∑

n=0

(qx)nq
n(n+1)

2

(q2)n(−qx−1)n+1

=
2(qx)∞(−q)2

∞(q)∞
(−qx−1)∞(qx−1)∞(−q2)∞(q2)∞

=
2(1− q)(qx)∞(−q)∞(1 + q)

(−qx−1)∞(qx−1)∞
·

On using (1.3) and simplifying we obtain (3.5).

If 0 < q < 1 and0 < y < x < 1 then,

(3.6)
Γq(x)Γq(1− y)Bq(x, 1− x)

Bq(x− y, x)Bq(x− y, 1− x+ y)
=

(1− q−y)

(1− q)x−y

∞∑
n=0

(qx−y)n(−1)nq
n(n+1)

2
−nx+ny

(q1−x)n(qx)n+1

+
(q−y − qx−y)

(1− q)x−y
×

∞∑
n=0

(qx−y)n(−1)nq
n(n+1)

2
+nx−ny

(q1−y)n(q2x−y)n+1

·

AJMAA, Vol. 9, No. 1, Art. 13, pp. 1-9, 2012 AJMAA

http://ajmaa.org


ON THE THREE VARIABLE RECIPROCITYTHEOREM AND ITS APPLICATIONS 7

Proof. Puttinga = −q−x, b = −q−y, andc = qx−y in (1.2) we obtain, on simplification,

(1− q−y)
∞∑

n=0

(qx−y)n(−1)nq
n(n+1)

2
−nx+ny

(q1−x)n(qx)n+1

+ (q−y − qx−y)×

∞∑
n=0

(qx−y)n(−1)nq
n(n+1)

2
+nx−ny

(q1−y)n(q2x−y)n+1

=
(qx−y)∞(q1−x+y)∞(qx−y)∞(q)∞
(q2x−y)∞(qx)∞(q1−x)∞)(q1−y)∞

·

On using (1.3), (1.6) and simplifying we obtain (3.6).

4. SOME ETA-FUNCTION IDENTITIES

This section will be devoted to obtain some eta function identities.

(4.1)
η(2τ)

η2(τ)
=

1

2

[
∞∑

n=0

(−q)n

(q)2
n

q
n(n−1)

2

]
·

Proof. Puttinga = −q, b = q andc = −q2 in (1.2) we obtain

2(−q)∞
(q2)∞

= (1 + q)
∞∑

n=0

(−q2)nq
n(n+1)

2

(q2)n(q)n+1

+ (1− q)
∞∑

n=0

q
n(n+1)

2

(−q)n+1

·

Since
∞∑

n=0

q
n(n+1)

2

(−q)n+1

= 1,

on using (1.7) and simplifying we obtain (4.1).

(4.2)
η5(4τ)

η4(2τ)
=

1

2

[
1

(1 + q)q1/2

∞∑
n=0

(−q2; q2)nq
n(n+1)

(q; q2)n(q; q2)n+1

− (1− q) q1/2

(1 + q)2

∞∑
n=0

(−q; q2)nq
n(n+1)

(−q3; q2)n(−q3; q2)n+1

]
·

Proof. Puttinga = −q−1/2, b = q1/2 andc = −q in (1.2) and then replacingq by q2 we obtain

(
1 + q2

q

)
(−q2; q2)∞(−1; q2)∞(−q4; q2)∞(q2; q2)∞

(−q3; q2)∞(q; q2)2
∞(−q3; q2)∞

=

(
1 + q

q

) ∞∑
n=0

(−q2; q2)n q
n(n+1)

(q; q2)n(q; q2)n+1

− (1− q)
∞∑

n=0

(−q; q2)n q
n(n+1)

(−q3; q2)n(−q3; q2)n+1

·

On simplifying and using (1.7) we obtain (4.2).
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