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ABSTRACT. In this paper we show how the three variable reciprocity theorem can be easily
derived from the well known two variable reciprocity theorem of Ramanujan by parameter
augmentation. Further we derive somgamma,g-beta and eta-function identities from the
three variable reciprocity theorem.
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1. INTRODUCTION

In his lost notebook [18, p.40] S. Ramanujan recorded the following two variable reciprocity
theorem:

(1.1) p(a,b) — p(b,a) = (% _ l)

a

(aq/b)o00(bq/ @) 00 (q) o
(—aq)oo(—bg) 0

where
n n(n+1)/2anb—n

pla,b) = (1+%)i(—1) q

, a#—q ",neZ" and |q| <1,

n=0 (_aq)n
and as usual,
(a>oo = (G;Q)oo = H(l - aqn)’ |q, <1
n=0
(a;q)oo

n : an integer

a)p = a;q)n = )
@) (%) (ag"™; ¢)oo
For proofs of [(1.]l) one may refer the works of G. E. Andrews [3], D. D. Somashekara and
S. N. Fathimal[19], T.Kim, Somashekara and Fathima [15], B. C. Berndt, S. H. Chan,

B. P. Yeap and A. J. Yeel |[9], C. Adiga and N. Anitha [1], P. S. Guruprasad and N. Pradeep [11]
and S. Y. Kang([14].

Recently Kang[[14] has given several generalizations of the reciprocity theprgm (1.1).
One of the generalizations ¢f (1.1) is the following three-variable reciprocity theorem:

1 1) (€)o0(@q/0) 0 (bG/ )00 (@) 0o
(

(12) p3<a,b,c>—ps<b’a70>=<g—a S N e I N 7

where

1 o) ) —1 nqn(n+l)/2anbfn . .
>Z(>( ) JG#_q ,C/b%—17—q

ps(a,b,c) = (1 T b (—aq)n(—c/b)ns1

forn € Z* and|q| < 1. Puttingc = 0 in (1.2) we obtain[(1]1). Kand[14] has proved
(1.2) using the well known,-summation formula [17, Ch.16] and Jackson’s transformation
formula [10, p.526]. Adiga and Guruprasad [2] have given a proof of (1.2) using the well
knowng-binomial theorem and the Gauss summation formula [4]. Somashekara and D. Mamta
[21] have given a proof of (1}2) using the well known two variable reciprocity theorem (1.1),
Jackson’s transformation formula |11, p.526] and an identity obtained by themiin [20].

The main objective of this paper is to derive the three variable reciprocity theorem using
the two variable reciprocity theorem by parameter augmentation, the technique which was
extensively used by Z. G. Liu in [16]. Further, we derive from the reciprocity theorem (1.2)
someg-gamma g-beta and eta-function identities, which complement the work of S. Bhargava
and C. Adigal[6], Bhargava and Somashekara [7], Bhargava, Somashekara and Fathima [8],
K. R. Vasuki [23]. For this purpose we employ the following definitions and some simple
related results.

The ¢-difference operator and theshift operator] are defined by [16]

D,f(a) = = (f(a) = f(oq)) and  C{f(@)} = f(aq),

respectively. An operataris defined by
0=C"'D,.

n=0
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The operator® (b0) is defined as

0 bOY™ n(n—1)/2
E(b)) = Z L

—~ (G Dn

Then we have the following operator identities|[16, Theorem-1]:
EW®O){(at;q)} = (at,bt;q)o

(as, at, bs, bt; q)

Eb0){(as,at;q)} = (abst/ 3 0)m =,

abst
q

<1

where as usual,
(a1, @z, ., ar; Q)n = (a1; Q)n(@2; Q- (ak; O,
wheren is an integer or infinity.

Theg-gamma functio’,(x), ag-analogue of Euler's gamma function, was introduced by
J. Thomael[22] and later by Jackson|[13] as,

(q, q)
(1.3) I (x)= 1—q) 7,
whereq is a fixed real numbei < ¢ < 1. Helne [1‘2] gave an equivalent definition, but without
the factor(1 — ¢)'~*. Whenz = n+1 with n a nonnegative integer, this definitign (1.3) reduces
to

(1.4) Lan+1)=11+q)(1+q+¢*)..(1+q+..+¢" ),

which clearly approaches asq — 1~. Hencel',(n + 1) tends tol'(n + 1) = nl, asq — 1~.
The definition of",(z) can be extended t{g| < 1 by using the principal values af* and

(1 —¢)'==in (1.3). Clearly,

Lz +1) = —(qx“'q) (1—q)
_ H 1_q _anrl)z'
n:1 1 _ qn—i—x ]_ _ qn)x

Hence

lim Ty(z +1) = ﬁnix("“)

_ x[x11:[< z)_l (1+%)z
— T(z+1)

ThusT'y(z) — I'(z), the ordinary gamma function, as — 1. Askey [5] has obtained
g-analogue of several classical results involving gamma function. For instance, he defined

_ - ne (qn+1>00
(1.5) By(z,y)=(1-9)> ¢ )
n=0 o0
and proved that
1.6) Byfo.) = ).
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The Dedekind eta-function is defined by

[e.9]

(17) 77(7_) — miT/12 H(l . 62m‘nr)

n=1

Y24 (4 0) sos

= (q
whereq = 27,

2. APROOF OF (1.2)
Replacingz by —ac andb by —ad in (1.7]), and multiplying the resulting identity throughout
by acd/(1 — ac)(1 — ad) we obtain

n n (n+1)/2 0o n n (n+1)/2 .
dz d/C CZ (C/d)n:d(q’qd/cac/daq)oo

ad n+1 n+1 (CLC, ad; q)oo

This can be written as

dz n nn+1 /2(d/6) (adqn+1’ac;q)oo

CZ )"q" 2 (/) (acq™ !, ad; q)oo = d(q. qd/c, ¢/d; q)s
On applylngE(bQ) to both sides with respect to the variableve obtain
2 (adg"™ ac, bdg™ be; q) o

n n(n+1 /2 ) Loy )
! Z ey (abedq™; q)oc
n+1 n+1 .
_ n n (n+1) /2 (CLCq i ) (ld, bcq ) bd, q)oo _ .
Multiplylng throughout by(abed) s / (ad) oo (a€) 0o (bd) oo (bC) o WeE Obtain
n n(n+1)/2 abed),, . o0 -1 nqn(n+l)/2 abed),, .

ad Jnt1(0d) i1 -0 (aC)nt1(bC)ns1

( ,qd/c,c/d, abed; @)oo
(ac,ad,bd, bc; @)oo

Multiplying the above equation byl — ac)(1 — ad)/adc and then replacing by —a, b by
—c/b, ¢ by 1 andd by b/a we obtain[(1.p)

3. -GAMMA AND ¢-BETA FUNCTION IDENTITIES

In this section we deduce some interesting identities involyiggmma and-beta functions.
If 0 < ¢<1land0 < x < 1then

(3.1) L(+a)
I['y(1—2x)
(1 Q:E 1 f: 1’ 1)nq% ne 1 _ q i n ”<”+1)+nx
1 - q QI n(Q)n—H 1 - C] 296 I—H

n=0 n=0
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Proof. Puttinga = —¢*~!, b = —¢**1, ¢ = ¢*® in ([L.9) we obtain

n 7L(7L+l)

oo n(n+1) oo
3 (q2x>n(_1)nq 5 —NT - (_1) q +nx
1 — ql 2z - 1 — q x
( )nZ:O (q$>n(Q)n+1 ( ) n—0 (qx—H)n—&-l
1—x 1+
1-2z 1oy (@) oo(@ ) oo
= (=" +q :
( @) (@)
Multiplying throughout by—¢**~! we obtain
oo 2x _1\n 7n(n2+1)—nr o0 n n("+l>+nm
(1—¢=Y) (q )n(ml) q (= 4 Z :c+1
n—=0 (q )n(Q>n+1 n—0
_ (ql_m)oo
. . e . () oo
On using [(1.B) and simplifying we obtain (B.1).
If 0 <g<1land0 < x < 1then
r,22)',(1— —q' ) o (—
(3.2) q(22)0y( ) _ (1:]_2 Joo ?)200
Ly(z) (=" ) oo (=0 ) o
o w n(n+1) 0 ac n(n'H) —2nzx
2(1—q~ ¢ +q?
RZ: 1+:L" )n+1 nz q z )n
Proof. Putting a = ¢*, b= —¢~® and ¢ = ¢® in (1.2) we obtain, on simplification,
0 n(n+1) 00 n(n+1)
(¢*)ng 2 e, 2 (¢")ng = ™
=0 Crnim * )2 ST,
(0o (=0 ) oo (D)oo |
2( @)oo (3% ) oo (=) oo (€)oo
On using [(1.B) and simplifying we obtain (B.4).
f0<g¢g<1,0<y<x<lthen
_ 1=z 1y . l—z—y
By(l—z+y,z—y) (4% ¢%) o
o n(n+1)
_ (—@)ua(=1)"g 2 "y
I+q7"
) R
00 n(n+1)
B B (_q) _ _1>nq 75— tnr—ny
—(q Y _|_qz Y
( ); — ) (¢%)n+1
Proof. Putting « = ¢ *b = ¢ ¥ and ¢ = —1 in (1.2) we obtain,on simplification,

n(n+1)

1 g3 e 1

(=¢")n(@¥)nt

—nr+ny

n=0

e D (DT (26 ) (@)
(ARCDY (=" ) (g% nt (%)
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On using [(1.B) and (1.6) and simplifying we obtdin {3.8).

If 0 <g<landx =2,3,...,then

(3.4) = 2_ X

n(n 1) n(n+3)

n+1

Proof. Puttinga =1, b = —¢ and ¢ = ¢* in (1.2) we obtain, on simplification,

X ()" "7 21— ()0
1-— 2q = .

D DY e ji: Do )l D
On using [(1.B) and simplifying we obtal.li).

If 0 <g<landx =2,3,...,then

Fq(x —1) o <_qx71)oo
(3:9) L@ 2w

(1—q)— (¢%) S
(1+Q)Z(Q)n +Zq

n=0 n=

n(n+

n(n+l)
2

I

n )n—l—l

Proof. Puttinga = ¢, b = —¢ and ¢ = ¢* in (1.2) we obtain, on simplification,

RO —  (4")ng "(";1)

D By v R CR D DY 7 v o
2(q”")oo( 0)5 (@)oo
(=" Moo (@)oo (=)0 (0%)
2(1 = 9)(¢") (=)o (1+Q)_
(=" oo(@" oo

On using [(1.B) and simplifying we obtain (B.9).
If0<g<landl <y <z < 1then,

Ly(2)0y(1 — y)By(x,1 — )

(3.6) By(z —y,z)By(z —y,1 —z +7v) —

(1-¢7Y) X (¢ )u(—1)"g" 2 W (g7V — g7 )
(1—(1)”,; (" )n (g )1 T
- 1)" )

Z )

n— n+1
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Proof. Puttinga = —¢~%, b = —¢~¥, andc = ¢*~¥ in (1.2) we obtain, on simplification,

& T—Yy _1\n w—nm—i—ny
(1—g")) g )gq(l—i))n?qm)nﬂ + (Y —q"Y)x
i (¢ )n(=1)"g" 5 () (6o (67 oo (@)
— ()@Y (0% 7)o (0%) o0 (4" )0 ) (€' ¥) o0

On using[(1.B),[(1]6) and simplifying we obtajn (3.§).

4. SOME ETA-FUNCTION IDENTITIES

This section will be devoted to obtain some eta function identities.

n27) 1| (@) nn-n)
(4.1) = - q .

n(r) 2 ; (a)7
Proof. Puttinga = —¢, b = g andec = —¢? in (1.2) we obtain

[e'e] n(n+1) [e’9) n(n+1)
2(—=q)x (=¢*)ng >
(144 (1—¢q
(q ) ; q )n q)n+1 ;) n+1

Since

) n(nt1)

DY et

n—0 ( Q)n—i-l

on using[(1.Jr) and simplifying we obtain (4.7).

n(n+1)

’r) 1 1 (=% ¢*)ng"
*.2) nt(2r) 2 | (1+q)g'/? ; (45 @*)n (@ P )nta

. q2)nqn(n+1)

(19 ¢ & :
(=% ¢y

(—q
(I+4q)?* = (—d%q

Proof. Puttinga = —¢~'/?, b = ¢*/> andc = —¢ in (1.2) and then replacingby ¢> we obtain

<1+q2)( 3000 (—156%) oo (=" %) o0 (0%; 4%) 50
(—g% 2

q QQ)OO(CLQ) (—¢% ¢*) o

1+gq (=% ¢*)n g" ™Y =~ (—8%)ng
a ( ) ; —(1-02 (—¢% ¢®)n(—¢% ¢*)

qa )= (q,q )n(q,q Jnt1
On simplifying and using (1]7) we obtain (4.3).
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