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ABSTRACT. This paper aims to solve differential algebraic systems without the need to reduce
the index, which causes a defect in the behavior of the approximate solution. The differential
transform method was developed to solve differential algebraic systems. The differential alge-
braic system is transferred to the algebraic system by applying the differential transform method.
Then the Multi-stage differential transform method is applied to extend the interval of the con-
vergence. The numerical results show the new technique is an efficient and flexible tool to obtain
accurate results that meet the initial conditions and keep the behavior of the approximate solution
consistent.
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1. INTRODUCTION

Differential Algebraic Equations (DAE) systems play a crucial role in modeling various real-
life problems across a board spectrum of fields such as physics, chemistry, mechanics, and
multi-body dynamics([6].[15]. These systems arise naturally in situation where constraints
must be incorporated into the dynamics, such as in mechanical systems with joints or electrical
circuits with Kirchhoff’'s laws. Given their wide applicability, solving DAE systems has been
the focus of significant research, with numerous methods developed to tackle the challenges
they present. Traditionally, many approaches for solving DAE systems rely on techniques like
index reduction, which involves reformulating the DAE into a lower-index system to simplify
its numerical treatment [4],[5]. Index reduction methods, such as those based on the pantelides
algorithm or structural analysis, have proven effective in making DAE more tractable for nu-
merical solvers. Another common approach is the use of backward differential formulas (BDF),
which are implicit time-stepping methods that have shown robustness in dealing with stiff nature
of many DAE problems[7]. However, while these methods have yielded good results in terms
of obtaining solutions, they are not without their drawbacks. One significant issue is the process
of index reduction or the application of drawback differentiation can alter the behavior of the
approximate solution, particularly near the constraints. These alteration can lead to inconsis-
tencies or defects in solution, where the approximate solution no loner faithfully represents the
original problem, especially in maintaining the integrity of the constraints over time. This can
be particularly problematic in sensitive applications where accurate adherence to physical con-
straints is essential. To address these shortcomings, a new technique is proposed that leverages
the differential transform method (DTM). Unlike traditional methods, the DTM presents a di-
rect approach to solving DAEs by transforming them into a system of algebraic equations (AE).
This transformation simplifies the problem while maintaining the essential characteristics of
the original DAE system. By applying the DTM directly to the DAE, the method preserves the
system’s inherent constraints and ensure that the approximate solution retains its correct behav-
ior, even in the presence of complex interactions between differential and algebraic components.
This approach not only overcomes the limitation of traditional methods but also provides a more
robust and accurate framework for solving DAE systems in various scientific and engineering
applications.

2. DIFFERENTIAL TRANSFORM METHOD (DTM)

Definition 2.1. [1}, 2] If a functionwv (¢) is analytical with respect toin the domain of interest,
then

(2.1) Vin) =

is the transformed function of(t).

1 [d”v(t)
n!t o dtn =,

Definition 2.2. [1},[2] The differential inverse transforms of thet {V'(n)} ", is defined by

(2.2) v(t)=) "V (n)(t—to)".
n=0
If the equation[(Z]1) is substituted in the equation](2.2), then the following is obtained
= 1 [d™(t) N
(2.3) v@_gm{wwmyﬁw
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It is clear that the principle of the DTM is generated from the expansion of the power series
according to the definitiorjs 2.1 ahd 2.2 above. To explain how the DTM is applied to solve
a system of ordinary differential equations (ODES), Suppose the nonlinear system of ODE
equations as follows:

dv (t
@.4) w0, et
with initial conditions
(25) U(to) =p-
The DTM generates an approximate solution of|(2.4), which is formulated as
(2.6) Z V (n) (t—to)",

to determine the values of unknowﬁs(o) ,V(1),V(2),.... The DTMis applied to the initial
conditions[(2.#) and (2.5) consecutively, then the following is obtained

(2.7) V' (0) =vo,
and
(2.8) (14n) V (n+1)=F (V (0),...,V (n),n), n=0,1,2,...,

where the differential of (v (¢),¢) is F(V (0),...,V (n),n). From [2.T) and[(2]8), the val-
ues ofV' (n),n=0,1,2,... are computed. Then, the set of valugg'(n)} " generates the
solution as follows:

(2.9) Z V (n) (t—to)",
the exact solution of proble@.z[)z(]w) is obtained from equaliion (2.6).

If X (n) and Y (n) are the transform function af (¢) and y(t) respectively, then the basic op-
erations of the DTM are presented in the following table:

Table 2.1: Main Operations of DTM.

| Original Function | Transformed Function |

azx (t) £Py(t) aX (k) £6Y (k)

(1) y(t) 2o X (n)Y(n—r)

xn(t) y (t) 2(t) Do 20 X (DY (r=1) Z(n—r)
Lz (t)] (k:;it—ol) .. (k+n) X(k+n)

sin(¢t) 7: sin (¢to+75)

cos(¢t) —cos (Ppto+22)

A recursion system of unknownig (0),V (1),V (2), ... is obtained by applying the DTM to

the initial conditions to equationf (2.4) and (2.5). Although the DTM converges over small in-
tervals, this is enough reason to think about a technique that is able to enlarge the convergence
to conclude larger intervals. The new technique is MsDTM, which will be illustrated in the next
section.
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3. MULTI -STAGE DIFFERENTIAL TRANSFORM METHOD (MsSDTM)

The first time which MsDTM was applied by![8]. The main aim of applying the MsDTM
is to extend the limitations of convergence over larger intervals. The MsDTM is applied by
[8]-[11]. The essential principle of the MsDTM is based on the division of the study interval
into small sub-intervals. To apply the MsDTM to equatipn(2.2), the following steps will state
that as follows:

e The main interval0, 7] is divided into N sub-intervals.
e Apply DTM to the first sub-interval0, ¢,], then[t,, ¢s].
e Repeat step 2 until to get the last sub-intefval ,, 7.
e The formula of the solution obtained for each subinterval is as folloys} = Zfio Vi(t—
t)i=23.,N—1.
e The approximate solution over the whole study interval is obtained:
vi(t) 0<t<t,
va(t)  t <t <ty,

(3.1) v(t) =

on(t) ty_y <t <T.

4. SOLVING NONLINEAR SYSTEMS OF DIFFERENTIAL ALGEBRAIC EQUATIONS

Assume that the formula of the system of nonlinear index-2 DAEs is as follows:

I N _ T

4.1) M(v)' = f(v,v") — G" (v).A,

0 =g(v),
wherev is the vector of differential state variable¥/(v) is a square coefficient matrix (de-
pending o), f(v,v’) is a vector of known functions af andv’, G(v) = dﬁl—sj”) is the Jacobian
matrix of the constraint functiong(v), andwv(tg) = v, are the initial conditions. Applying
DTM to both sides of the systerm (4.1):
(4.2) DT[M(v).)u1 = DT[f(v,0') = GT () Nuorin > 1,

then the following is obtained based on the properties of the power series and Adomain poly-
nomials mentioned in [12, 14, 15]:

(4_3) ?;01 Mn—l—l'(l + 1)‘/2-1-1 = fo-1— ;:01 Ggflfl')‘l'
0= gn

for = n — 1, then the following equation is obtained:

n—2 n—2
(4.4) MonViy = fo1 = Y M1 (l4+ DV = G = > Ghy A

=0 =0
From equation (4]4) the following equation is obtained:

n—2

(4.5) MonViy + GiAno1 = fuor = > _[Moo (14 DVia + Gy A,

=0

n—2
(4.6) Vo + My ' GE Ay = Mg [faoa = D [+ D)Moy Vi + Gry ),

=0
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assume-,V,, = S,,thensS, = —g, + GoV,,,n > 1, then the following is obtained:
n—2

(4.7)  GoMy'Gi Ny = —nS, + GoMy [fact — Y [+ )My Vigr + GLy ],
=0

From equation(4]7),,_1 is calculated as follows:

(4.8) M1 = (GoMi'Go)H(=nS, + Gorp_1),n > 1,

wherer,_1 = f,_1 — ?j[l(l + )M, 1 Viy1 + GE .\, then from equatior (4.4)
V,, is evaluated:

1
(4.9) Vv, = E[—MO‘lGOT/\n_l + Tn1).

The system (4]1) is converted into an algebraic system after applying the DTM method. Finally,
the inverse transform function is used to obtain the approximate solution as follows:

_ K k
(4.10) o) = Lo vt
A(t) = Zk:o Akl
5. NUMERICAL EXAMPLES

The three examples are solved by the proposed technique in this section.

Example 5.1. Consider a system of nonlinear index-2 DAEs as follows:

uy = ui — 2ui\
(5.1) uh = Ut + 2ugA

0=u?—ui+1

with initial valuesu, (0) = 0, u5(0) = 1, and exact solutions as follows :
uy(t) = tan(t), ua(t) = sec(t), A(t) = 0.
2
WhereasM (u) = ((1) ?) flu) = (uui ) g(u) = u? — uZ + 1, and the Jacobian of the
102

functiong(u) in (6.3) is
G(u) = (2u1, —2uy),
the full row rank isr = 1. The MsDTM is applied to the intervél, 7'] = [0, 6] in the order
of approximationk = 6, and the subdivisions of the entire interval study Are= 200. The

results obtained in Figuré$ 1-6. Figufé$|l, 3,[and 5 show the solution companentsind\,
whereas Figurgd P| @], 6 and Taljleg 5.1,[and 5.2 show the errors of the companentnd .

AR
s

—10 -
~10 =
—— MsDTM approximate solution -
= = +Exact solution [' = + Exact Solution

DTM solution]

Figure 1: Approximate solution of MsDTM, DTM and Exact Solutiom06f (5.7)
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1.x 10712

error ofuy s-x 1071

o
1 2 3 4 s 6
.
-5.x10°134
-1.x 10°12-
I—' MsDTM error ofuTI

° 1} 2 3 3 s
_so]
| —— DTM error of uy |

Figure 2: MsDTM Error and DTM Error ofu; of (5.7)

w

uz

MsDTM approximate solution
= = * Exact solution

——— DTM approximate solution
= = « Exact Solution

Figure 3: Approximate solution of MsDTM, DTM and Exact Solutionpbf (5.1)

6.x 10713 error of U
lerror ofu; ° ,W B 3 3 3
(== DT ero ofu2] [=— DM error of wo)
Figure 4: MsDTM Error and DTM Error ofu, of (5.7)
i _ oncon
A

MsDTM approximate solution
= = =+ Exact solution

= = *Exact Solution
DTM approximate solution

Figure 5: Approximate solution of MsDTM, DTM and Exact Solutiot of (5.7)
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MsDTM ervor of ) [ | | I —— D ervor of A

E—

Figure 6: MsDTM Error and DTM Error of\ of (5.7))

Absolute error of components andu, obtained for system (5.1) using MsDTM with step
h = % = 0.03, K = 6 andN = 200 and Fuy, Fus, EX are exact solutions of the components

u1, up @and\ consecutively.

Table 5.1: Absolute value error of MsDTM and Exact solutiom.of

’ t ‘ (A} ‘ Eu1 ‘ |U1 — EU1| ‘ U2 ‘ EUQ ‘ ‘U,Q — EU2| ‘
0 0 0 1 1 0
0.2/ 0.2027093334 0.2027093334 0 1.020338755 1.020338755 0
0.4 0.4226986666 0.4226986666 0 1.085680355 1.085680355 0
0.6| 0.6823680000 0.6823680000 0 1.427542755 1.427542755 0
0.8| 1.014357333| 1.014357333 0 1.793055555 1.793055555 0
1.0| 1.466666666 1.466666666 0 2.404979200 2.40497920( 0
1.2| 2.107776000] 2.107776000 0 3.418252356 3.418252356 0
1.4| 3.031765334| 3.031765334 0 5.066736355 5.066736355 0
1.6| 4.363434666| 4.363434666 0 7.688591199 7.688591200 1.0E —9
1.8| 6.263423999| 6.263424000 1.0E —9 | 11.75555555 11.75555556 1.0F — 8
2.0| 8.933333332| 8.933333334| 2E -9 |17.9061307517.90613076 1.0E —8

Table 5.2: Absolute value error of MsDTM and Exact solution .of

|t A | EX] A — EA| |

0 0 0 0

0.2| 5.960005023E — 13 | 0 | 5.960005023E — 13
0.4| 3.072004091FE —12 | 0 | 3.072004091E — 12
0.6 8.2801422F — 13 0 | 8.2801422F — 13
0.8| —2.96956492F — 11 | O | 2.96956492F — 11
1.0| —1.379999281EF — 10| O | 1.379999281F — 10
1.2| —4.055038685E — 10 | O | 4.055038685E — 10
1.4 —9.590277771E — 10| O |9.590277771E — 10
1.6 —1.974271644F —9 | 0 | 1.974271644F — 9
1.8| —3.686795456E —9 | O | 3.686795456L — 9
2.0 —6.399999196E —9 | 0 | 6.399999196F — 9
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The numerical results show that the approximate solutions of compongnis, and\ in
extremely close agreement with the exact solutions of the same components.

Example 5.2. Consider a system of nonlinear index-2 DAEs as follows:

U,l =u + u%UQ - 2U1U2)\
(5.2) uhy = uiuy — 2uy — ui\

0=uluy — 1

with initial valuesu, (0) = 1, u2(0) = 1, and exact solutions as follows :
ui(t) = exp(t), us(t) = exp(—2t), A(t) = exp(2t).
1 0 up + u:fu2 (w)

WhereasV/ (u) = (0 1), flu) = <u111_2u2 :

= uluy, — 1, and the Jacobian of the
equation is

G(u) = (2uiug,ui,) the full row rank isr = 1. The DTM is applied over the intervé), 7’| =

[0,2] with K = 16 and N = 200. The results obtained in Figure§ 7}12. Figures|7, 9,[and 11
show the solution componenis, u, and\, whereas Figuregg 8, L0, and 12 show the errors of

the components;, u, and .

2

0 05 1 1.5
t

—— DTM approximate solution
= * Exact solution

Figure 7: Approximate Solution of DTM and Exact Solution:pbf (5.3)

0
05 1\ 15 2

-5.x10°° t
“1.x10°F

error of U3
~15x10°8

~2.x10°%

—— DTM error of U;

Figure 8: DTM Error ofu, of (5.2)
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%

0 05 1 15 2
T

— DTM approximate solution
= = * Exact solution

Figure 9: Approximate Solution of DTM and Exact Solutiongff (5.2)

I—DT.\I error ofU2|

Figure 10: DTM Error ofu; of (5.2)

P
© = b W e Oy =)

=x

05 1 15 2
t

—— DTM approximate solution
=  Exact solution

Figure 11: Approximate Solution of DTM and Exact Solution aff (5.2)

error of & -1 x 10"’

-16x107

I—DTMerrorof)LI

Figure 12: DTM Error of\ of (5.2)

Although MsDTM is not used, the results are accurate and efficient because there is high
agreement between the DTM'’s approximation and exact solutions.
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Example 5.3. Consider a system of nonlinear index-2 DAEs as follows:

uh = uy — 2ugud — 2ug\
(5.3) uhy = —2ud — ul — 2ug\

0=uf+ui—1

with initial valuesu; (0) = 0, u2(0) = 1, and exact solutions as follows :
uy(t) = sin(t), uz(t) = cos(t), A(t) = —cos?(t).
1 0 Uy — 2uqu’

WhereasV/ (u) = (0 1) , flu) = (—2u3 B u1> , g(u) =u?+u3—1,and

G(u) = (2uf,2u3) is the Jacobian of the functiof{w)in (5-3), the full row rank is- = 1, the

study interval i50, 7’| = [0, 3], the order of derivative i& = 6, and the divisions iV = 300.

Figures 13, 15, and 17 show the solutions of components:;; and A. The errors of the
components,;, u, and\ are presented in figures 14, 16, 18 and Taplels 5.3 and 5.4. It is clear
from the numerical results that there is a good agreement between the approximate and exact
solutions ofuy, uy and\.

0 1 2 3
I s

MsDTM approximate solution — DTM approximate solution
= = = Exact solution = = s Exact solution

Figure 13: Approximate Solution of MsDTM, DTM and Exact Solution,06f (5.3)

3.x107
R 03
2 7
ervor ofu; 2.x 10 error of u; 02
1.x10"’ 0.1
O.
o+ 2
0 1 2 3 L 3
¢ t
| MsDTM error of uy | I— DTM error ofull

Figure 14: MsDTM Error and DTM Error ofs; of (5.3)
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, 0.6 " 0.61’\
0
0 1 2 3 1 \2\/
-04 ¢ -04 rT
-08 -08 ..
—— MsDTM approximate solution = = +Exact solution
= =  Exact solution DTM approximate solution

Figure 15: Approximate Solution of MsDTM, DTM and Exact Solution06f (5.3)

1.x10°¢ 08
-9
6.x10
error ofu, error ofuo 03
04
0
o 1 2 3 12z 3
I r
| MsDTM error ofu;l |_ DTM error of uz I

Figure 16: MsDTM Error and DTM Error oti, of (5.3)

0
1 3
-02 ¢
5 04 A
-0.6
-08
-1

—— MsDTM approximate solution —— DTM approximate solution
= = Exact solution = = +Exact solution

Figure 17: Approximate Solution of MsDTM, DTM and Exact Solutioi of (5.3)

-10 0
2.x 10 Iy 1 3
1.x 10710 ) ¢
error of A o error of b 10
112 3
-1.x 1010 -14
-2.x 10710 -18
I MsDTM error ofll I_DT.\'I error Of;'tl

Figure 18: MsDTM Error and DTM Error o\ of (5.3)

The absolute error of the componentsandu, obtained for the systerp (.3) using MsDTM
with steph = % = 0.01, K = 6, N = 300 and Eu,, Euy, EX are exact solutions of the
components:;, us and\ consecutively.
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Table 5.3: Absolute Value Error of MsDTM and Exact solutiom.of

|t ]

Uy \

Eu1

| |u1 — FBuy] |

Uy \

EUQ ‘

|U2 — EUQ| ‘

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1
1.221402759
1.49182408
1.822118801
2.225540929
2.718282818%
3.320116916
4.055199893
4.953031901
6.049644650
7.389043626

1
1.221402759
1.49182408
1.822118801
2.225540929
»2.7182828183
3.320116923
4.055199967
4.953032424
6.049647465
7.382056099

[oNeoNoNoNe)

3 1.0E—9
70E -9
T4E -8
5.23E -7
28E -6
1.2E =5

1
0.6703200461
0.4493289640

0.3011942121(
0.2018965183
0.1353352831

0.0907179422(

0.06080992824 0.0608101600]
0.040761192570.0407631268%
0.027317312700.0273304248¢
0.01828434604 0.01835508621

1
0.6703200461
0.4493289640
00.3011942121(

0.2018965182
0.1353352837
00.0907179605(

(N olNolNo)

D
1.0 - 10
6.0E — 10

D) 1.8E —8

[ 12.3E — 7

? 1.9E —6

b 1.3 —5

? T.0E -5

Table 5.4: Absolute Value Error of MsDTM and Exact solution of

!

|

EX

[\ —EX]

1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1.491824628

1.491824628

1

2.225540929 2.225540929
3.320116923 3.320116923
4.953032424 4.953032424
7.389056103 7.389056099
11.23017644 11.02317638
16.44464695 16.4444665(

S e e T e &

eoNeolNoNoNe)

4.0E -9
6.0 —8
3.0E -7

24.53252978
36.59822288¢
54.59804733

24.5325288
36.59822441
54.5980882(

9.0E — 7
L 1.8E -6
4.0E -5

6. CONCLUSION

Although the MsDTM method is well established, this study introduces a novel approach to
utilize it to solve systems of nonlinear DAE equations of index 2. Unlike traditional methods,
this approach avoids the need for linearization, index reduction, or altering the inherent behavior
of the solutions. To demonstrate its effectiveness, the proposed technique was applied to three
distinct examples, each highlighting its ability to handle complex systems with precision. The
numerical results consistently showed an excellent agreement between the approximate and
exact solutions, underscoring the method’s reliability and potential for broader application in
solving similar differential algebraic systems.
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