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ABSTRACT. This paper aims to solve differential algebraic systems without the need to reduce
the index, which causes a defect in the behavior of the approximate solution. The differential
transform method was developed to solve differential algebraic systems. The differential alge-
braic system is transferred to the algebraic system by applying the differential transform method.
Then the Multi-stage differential transform method is applied to extend the interval of the con-
vergence. The numerical results show the new technique is an efficient and flexible tool to obtain
accurate results that meet the initial conditions and keep the behavior of the approximate solution
consistent.
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1. I NTRODUCTION

Differential Algebraic Equations (DAE) systems play a crucial role in modeling various real-
life problems across a board spectrum of fields such as physics, chemistry, mechanics, and
multi-body dynamics [6],[15]. These systems arise naturally in situation where constraints
must be incorporated into the dynamics, such as in mechanical systems with joints or electrical
circuits with Kirchhoff’s laws. Given their wide applicability, solving DAE systems has been
the focus of significant research, with numerous methods developed to tackle the challenges
they present. Traditionally, many approaches for solving DAE systems rely on techniques like
index reduction, which involves reformulating the DAE into a lower-index system to simplify
its numerical treatment [4],[5]. Index reduction methods, such as those based on the pantelides
algorithm or structural analysis, have proven effective in making DAE more tractable for nu-
merical solvers. Another common approach is the use of backward differential formulas (BDF),
which are implicit time-stepping methods that have shown robustness in dealing with stiff nature
of many DAE problems [7]. However, while these methods have yielded good results in terms
of obtaining solutions, they are not without their drawbacks. One significant issue is the process
of index reduction or the application of drawback differentiation can alter the behavior of the
approximate solution, particularly near the constraints. These alteration can lead to inconsis-
tencies or defects in solution, where the approximate solution no loner faithfully represents the
original problem, especially in maintaining the integrity of the constraints over time. This can
be particularly problematic in sensitive applications where accurate adherence to physical con-
straints is essential. To address these shortcomings, a new technique is proposed that leverages
the differential transform method (DTM). Unlike traditional methods, the DTM presents a di-
rect approach to solving DAEs by transforming them into a system of algebraic equations (AE).
This transformation simplifies the problem while maintaining the essential characteristics of
the original DAE system. By applying the DTM directly to the DAE, the method preserves the
system’s inherent constraints and ensure that the approximate solution retains its correct behav-
ior, even in the presence of complex interactions between differential and algebraic components.
This approach not only overcomes the limitation of traditional methods but also provides a more
robust and accurate framework for solving DAE systems in various scientific and engineering
applications.

2. DIFFERENTIAL TRANSFORM M ETHOD (DTM)

Definition 2.1. [1, 2] If a functionv (t) is analytical with respect tot in the domain of interest,
then

(2.1) V (n) =
1

n!
[
dnv(t)

dtn
]
t=t0

is the transformed function ofv(t).

Definition 2.2. [1, 2] The differential inverse transforms of theset {V (n)} n
n=0

is defined by

(2.2) v (t) =
∞∑

n=0

V (n) (t−t0)
n .

If the equation (2.1) is substituted in the equation (2.2), then the following is obtained

(2.3) v (t) =
∞∑

n=0

1

n!

[
dnv (t)

dtn

]
t=t0

(t−t0)
n.
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It is clear that the principle of the DTM is generated from the expansion of the power series
according to the definitions 2.1 and 2.2 above. To explain how the DTM is applied to solve
a system of ordinary differential equations (ODEs), Suppose the nonlinear system of ODE
equations as follows:

(2.4)
dv (t)

dt
=f (v (t) , t) , t≥t0,

with initial conditions

(2.5) v(t0) =v0.

The DTM generates an approximate solution of (2.4), which is formulated as

(2.6) v (t) =
∞∑

n=0

V (n) (t−t0)
n,

to determine the values of unknownsV (0) , V (1) , V (2) , . . .. The DTM is applied to the initial
conditions (2.4) and (2.5) consecutively, then the following is obtained

(2.7) V (0) =v0,

and

(2.8) (1+n) V (n+1) =F (V (0) , . . . ,V (n) , n) , n= 0, 1, 2, . . . ,

where the differential off (v (t) , t) is F (V (0) , . . . ,V (n) , n). From (2.7) and (2.8), the val-
ues ofV (n) , n= 0, 1, 2, . . . are computed. Then, the set of values{V (n)} n

m=0
generates the

solution as follows:

(2.9) v (t) =
m∑

n=0

V (n) (t−t0)
n,

the exact solution of problem (2.4)-(2.5) is obtained from equation (2.6).
If X (n) and Y (n) are the transform function ofx (t) and y(t) respectively, then the basic op-
erations of the DTM are presented in the following table:

Table 2.1: Main Operations of DTM.

Original Function Transformed Function
αx (t)±βy(t) αX (k)±βY (k)
x (t) y(t)

∑n
r=0 X (n) Y (n−r)

x (t) y (t) z(t)
∑n

r=0

∑r
l=0 X (l) Y (r−l) Z(n−r)

dn

dtn
[x (t) ] (k+1) . . . (k+n) X(k+n)

eµt µeµt0

n!

sin(φt) φn

n!
sin

(
φt0+

πn
2

)
cos(φt) φn

k!
cos

(
φt0+

πn
2

)
A recursion system of unknownsV (0) , V (1) , V (2) , . . . is obtained by applying the DTM to
the initial conditions to equations (2.4) and (2.5). Although the DTM converges over small in-
tervals, this is enough reason to think about a technique that is able to enlarge the convergence
to conclude larger intervals. The new technique is MsDTM, which will be illustrated in the next
section.
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3. M ULTI -STAGE DIFFERENTIAL TRANSFORM M ETHOD (M SDTM)

The first time which MsDTM was applied by [8]. The main aim of applying the MsDTM
is to extend the limitations of convergence over larger intervals. The MsDTM is applied by
[8]-[11]. The essential principle of the MsDTM is based on the division of the study interval
into small sub-intervals. To apply the MsDTM to equation (2.2), the following steps will state
that as follows:

• The main interval[0, T ] is divided into N sub-intervals.
• Apply DTM to the first sub-interval[0, t1], then[t1, t2].
• Repeat step 2 until to get the last sub-interval[tN−1, T ].
• The formula of the solution obtained for each subinterval is as follows:vi(t) =

∑K
l=0 Vl(t−

ti)
l, i = 2, 3..., N − 1.

• The approximate solution over the whole study interval is obtained:

(3.1) v(t) =


v1(t) 0 ≤ t ≤ t1,

v2(t) t1 ≤ t ≤ t2,
...

vn(t) tN−1 ≤ t ≤ T .

4. SOLVING NONLINEAR SYSTEMS OF DIFFERENTIAL ALGEBRAIC EQUATIONS

Assume that the formula of the system of nonlinear index-2 DAEs is as follows:

(4.1)

{
M(v).v′ = f(v, v′)−GT (v).λ,

0 = g(v),

wherev is the vector of differential state variables,M(v) is a square coefficient matrix (de-
pending onv), f(v, v′) is a vector of known functions ofv andv′, G(v) = dg(v)

dv
is the Jacobian

matrix of the constraint functionsg(v), andv(t0) = v0 are the initial conditions. Applying
DTM to both sides of the system (4.1):

(4.2) DT [M(v).v′]n−1 = DT [f(v, v′)−GT (v).λ]n−1, n ≥ 1,

then the following is obtained based on the properties of the power series and Adomain poly-
nomials mentioned in [12, 14, 15]:

(4.3)

{∑n−1
l=0 Mn−1−l.(l + 1)Vl+1 = fn−1 −

∑n−1
l=0 GT

n−1−l.λl.

0 = gn

for l = n− 1, then the following equation is obtained:

(4.4) M0nVn = fn−1 −
n−2∑
l=0

Mn−1−l.(l + 1)Vl+1 −GT
0 λn−1 −

n−2∑
l=0

GT
n−1−l.λl.

From equation (4.4) the following equation is obtained:

(4.5) M0nVn + GT
0 λn−1 = fn−1 −

n−2∑
l=0

[Mn−1−l.(l + 1)Vl+1 + GT
n−1−l.λl],

(4.6) nVn + M−1
0 GT

0 λn−1 = M−1
0 [fn−1 −

n−2∑
l=0

[l(l + 1)Mn−1−lVl+1 + GT
n−1−l.λl]],
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assumeG0Vn = Sn,thenSn = −gn + G0Vn, n ≥ 1, then the following is obtained:

(4.7) G0M
−1
0 GT

0 λn−1 = −nSn + G0M
−1
0 [fn−1 −

n−2∑
l=0

[l(l + 1)Mn−1−lVl+1 + GT
n−1−l.λl]].

From equation (4.7)λn−1 is calculated as follows:

(4.8) λn−1 = (G0M
−1
0 G0)

−1(−nSn + G0rn−1), n ≥ 1,

wherern−1 = fn−1 −
∑n−2

l=0 [l(l + 1)Mn−1−lVl+1 + GT
n−1−l.λl], then from equation (4.4)

Vn is evaluated:

(4.9) Vn =
1

n
[−M−1

0 GT
0 λn−1 + rn−1].

The system (4.1) is converted into an algebraic system after applying the DTM method. Finally,
the inverse transform function is used to obtain the approximate solution as follows:

(4.10)

{
v(t) =

∑K
k=0 vkt

k,

λ(t) =
∑K

k=0 λkt
k

5. NUMERICAL EXAMPLES

The three examples are solved by the proposed technique in this section.

Example 5.1.Consider a system of nonlinear index-2 DAEs as follows:

(5.1)


u′1 = u2

2 − 2u1λ

u′2 = u1u2 + 2u2λ

0 = u2
1 − u2

2 + 1

with initial valuesu1(0) = 0, u2(0) = 1, and exact solutions as follows :
u1(t) = tan(t), u2(t) = sec(t), λ(t) = 0.

WhereasM(u) =

(
1 0
0 1

)
, f(u) =

(
u2

2

u1u2

)
, g(u) = u2

1 − u2
2 + 1, and the Jacobian of the

functiong(u) in (5.1) is
G(u) =

(
2u1,−2u2

)
,

the full row rank isr = 1. The MsDTM is applied to the interval[0, T ] = [0, 6] in the order
of approximationK = 6, and the subdivisions of the entire interval study areN = 200. The
results obtained in Figures 1-6. Figures 1, 3, and 5 show the solution componentsu1, u2 andλ,
whereas Figures 2, 4, 6 and Tables 5.1, and 5.2 show the errors of the componentsu1, u2 andλ.

Figure 1: Approximate solution of MsDTM, DTM and Exact Solution ofu1 of (5.1)
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Figure 2: MsDTM Error and DTM Error ofu1 of (5.1)

Figure 3: Approximate solution of MsDTM, DTM and Exact Solution ofu2 of (5.1)

Figure 4: MsDTM Error and DTM Error ofu2 of (5.1)

Figure 5: Approximate solution of MsDTM, DTM and Exact Solution ofλ of (5.1)
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Figure 6: MsDTM Error and DTM Error ofλ of (5.1)

Absolute error of componentsu1 andu2 obtained for system (5.1) using MsDTM with step
h = T

N
= 0.03, K = 6 andN = 200 andEu1, Eu2, Eλ are exact solutions of the components

u1, u2 andλ consecutively.

Table 5.1: Absolute value error of MsDTM and Exact solution ofu.

t u1 Eu1 |u1 − Eu1| u2 Eu2 |u2 − Eu2|
0 0 0 0 1 1 0

0.2 0.2027093334 0.2027093334 0 1.020338755 1.020338755 0
0.4 0.4226986666 0.4226986666 0 1.085680355 1.085680355 0
0.6 0.6823680000 0.6823680000 0 1.427542755 1.427542755 0
0.8 1.014357333 1.014357333 0 1.793055555 1.793055555 0
1.0 1.466666666 1.466666666 0 2.404979200 2.404979200 0
1.2 2.107776000 2.107776000 0 3.418252356 3.418252356 0
1.4 3.031765334 3.031765334 0 5.066736355 5.066736355 0
1.6 4.363434666 4.363434666 0 7.688591199 7.688591200 1.0E − 9
1.8 6.263423999 6.263424000 1.0E − 9 11.75555555 11.75555556 1.0E − 8
2.0 8.933333332 8.933333334 2E − 9 17.90613075 17.90613076 1.0E − 8

Table 5.2: Absolute value error of MsDTM and Exact solution ofλ.

t λ Eλ |λ− Eλ|
0 0 0 0

0.2 5.960005023E − 13 0 5.960005023E − 13
0.4 3.072004091E − 12 0 3.072004091E − 12
0.6 8.2801422E − 13 0 8.2801422E − 13
0.8 −2.96956492E − 11 0 2.96956492E − 11
1.0 −1.379999281E − 10 0 1.379999281E − 10
1.2 −4.055038685E − 10 0 4.055038685E − 10
1.4 −9.590277771E − 10 0 9.590277771E − 10
1.6 −1.974271644E − 9 0 1.974271644E − 9
1.8 −3.686795456E − 9 0 3.686795456E − 9
2.0 −6.399999196E − 9 0 6.399999196E − 9
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The numerical results show that the approximate solutions of componentsu1, u2, andλ in
extremely close agreement with the exact solutions of the same components.

Example 5.2.Consider a system of nonlinear index-2 DAEs as follows:

(5.2)


u′1 = u1 + u3

1u2 − 2u1u2λ

u′2 = u4
1u2 − 2u2 − u2

1λ

0 = u2
1u2 − 1

with initial valuesu1(0) = 1, u2(0) = 1, and exact solutions as follows :
u1(t) = exp(t), u2(t) = exp(−2t), λ(t) = exp(2t).

WhereasM(u) =

(
1 0
0 1

)
, f(u) =

(
u1 + u3

1u2

u4
1 − 2u2

)
, g(u) = u2

1u2 − 1, and the Jacobian of the

equation is
G(u) =

(
2u1u2, u

2
1,

)
the full row rank isr = 1. The DTM is applied over the interval[0, T ] =

[0, 2] with K = 16 andN = 200. The results obtained in Figures 7-12. Figures 7, 9, and 11
show the solution componentsu1, u2 andλ, whereas Figures 8, 10, and 12 show the errors of
the componentsu1, u2 andλ.

Figure 7: Approximate Solution of DTM and Exact Solution ofu1 of (5.2)

Figure 8: DTM Error ofu1 of (5.2)
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Figure 9: Approximate Solution of DTM and Exact Solution ofu2 of (5.2)

Figure 10: DTM Error ofu2 of (5.2)

Figure 11: Approximate Solution of DTM and Exact Solution ofλ of (5.2)

Figure 12: DTM Error ofλ of (5.2)

Although MsDTM is not used, the results are accurate and efficient because there is high
agreement between the DTM’s approximation and exact solutions.
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Example 5.3.Consider a system of nonlinear index-2 DAEs as follows:

(5.3)


u′1 = u2 − 2u1u

2
2 − 2u1λ

u′2 = −2u3
1 − u1− 2u2λ

0 = u2
1 + u2

2 − 1

with initial valuesu1(0) = 0, u2(0) = 1, and exact solutions as follows :
u1(t) = sin(t), u2(t) = cos(t), λ(t) = −cos2(t).

WhereasM(u) =

(
1 0
0 1

)
, f(u) =

(
u2 − 2u1u

2
2

−2u3
1 − u1

)
, g(u) = u2

1 + u2
2 − 1, and

G(u) =
(
2u2

1, 2u
2
2

)
is the Jacobian of the functiong(u)in (5.3), the full row rank isr = 1, the

study interval is[0, T ] = [0, 3], the order of derivative isK = 6, and the divisions isN = 300.
Figures 13, 15, and 17 show the solutions of componentsu1, u2 and λ. The errors of the
componentsu1, u2 andλ are presented in figures 14, 16, 18 and Tables 5.3 and 5.4. It is clear
from the numerical results that there is a good agreement between the approximate and exact
solutions ofu1, u2 andλ.

Figure 13: Approximate Solution of MsDTM, DTM and Exact Solution ofu1 of (5.3)

Figure 14: MsDTM Error and DTM Error ofu1 of (5.3)

AJMAA, Vol. 22 (2025), No. 2, Art. 4, 13 pp. AJMAA

https://ajmaa.org


SOLVING INDEX-2 DAES BY MSDTM 11

Figure 15: Approximate Solution of MsDTM, DTM and Exact Solution ofu2 of (5.3)

Figure 16: MsDTM Error and DTM Error ofu2 of (5.3)

Figure 17: Approximate Solution of MsDTM, DTM and Exact Solution ofλ of (5.3)

Figure 18: MsDTM Error and DTM Error ofλ of (5.3)

The absolute error of the componentsu1 andu2 obtained for the system (5.3) using MsDTM
with steph = T

N
= 0.01, K = 6, N = 300 andEu1, Eu2, Eλ are exact solutions of the

componentsu1, u2 andλ consecutively.
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Table 5.3: Absolute Value Error of MsDTM and Exact solution ofu.

t u1 Eu1 |u1 − Eu1| u2 Eu2 |u2 − Eu2|
0 1 1 0 1 1 0

0.2 1.221402759 1.221402759 0 0.6703200461 0.6703200461 0
0.4 1.49182408 1.49182408 0 0.4493289640 0.4493289640 0
0.6 1.822118801 1.822118801 0 0.301194212100.30119421210 0
0.8 2.225540929 2.225540929 0 0.2018965183 0.2018965182 1.0E − 10
1.0 2.7182828182 2.7182828183 1.0E − 9 0.1353352831 0.1353352837 6.0E − 10
1.2 3.320116916 3.320116923 7.0E − 9 0.090717942200.09071796050 1.8E − 8
1.4 4.055199893 4.055199967 7.4E − 8 0.060809928240.06081016007 12.3E − 7
1.6 4.953031901 4.953032424 5.23E − 7 0.040761192570.04076312682 1.9E − 6
1.8 6.049644650 6.049647465 2.8E − 6 0.027317312700.02733042486 1.3E − 5
2.0 7.389043626 7.382056099 1.2E − 5 0.018284346040.01835508622 7.0E − 5

Table 5.4: Absolute Value Error of MsDTM and Exact solution ofλ.

t λ Eλ |λ− Eλ|
0 1 1 0

0.2 1.491824628 1.491824628 0
0.4 2.225540929 2.225540929 0
0.6 3.320116923 3.320116923 0
0.8 4.953032424 4.953032424 0
1.0 7.389056103 7.389056099 4.0E − 9
1.2 11.23017644 11.02317638 6.0E − 8
1.4 16.44464695 16.44446650 3.0E − 7
1.6 24.53252978 24.5325288 9.0E − 7
1.8 36.59822288 36.59822441 1.8E − 6
2.0 54.59804733 54.59808820 4.0E − 5

6. CONCLUSION

Although the MsDTM method is well established, this study introduces a novel approach to
utilize it to solve systems of nonlinear DAE equations of index 2. Unlike traditional methods,
this approach avoids the need for linearization, index reduction, or altering the inherent behavior
of the solutions. To demonstrate its effectiveness, the proposed technique was applied to three
distinct examples, each highlighting its ability to handle complex systems with precision. The
numerical results consistently showed an excellent agreement between the approximate and
exact solutions, underscoring the method’s reliability and potential for broader application in
solving similar differential algebraic systems.
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