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ABSTRACT. In this paper, some new generalizations of Jensen’s inequality are presented. In
particular, upper and lower bounds for the Jensen gap are given and compared analytically and
numerically to previously published bounds for both the discrete and continuous Jensen’s in-
equality cases. The new bounds compare favorably to previously proposed bounds. A new
method based on a series of locally linear interpolations is given and is the basis for most of
the bounds given in this paper. The wide applicability of this method will be demonstrated.
As by-products of this method, we shall obtain some new Hermite-Hadamard inequalities for
functions which are 3-convex or 3-concave. The new method works to obtain bounds for the
Jensen gap for non-convex functions as well, provided one or two derivatives of the nonlinear
function are continuous. The mean residual life function of applied probability and reliability
theory plays a prominent role in construction of bounds for the Jensen gap. We also present an
exact integral representation for the Jensen gap in the continuous case. We briefly discuss some
inequalities for other types of convexity, such as convexity in the geometric mean, and briefly
discuss applications to reliability theory.
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2 STEVEN G. FROM

1. I NTRODUCTION

It is well-known that the discrete Jensen’s inequality states that iff is a convex function on
[a, b], pi > 0, i = 1, . . . , n,

∑n
j=1 pj = 1, andxi ∈ [a, b], i = 1, . . . , n, then

(1.1) D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≥ 0 .

The most general form of Jensen’s inequality states that if(Ω,F , µ) is a measure space with
µ(Ω) = 1, f(x) is convex, andg(x) is aµ-intergrable real-valued function, then

(1.2) D =

∫
Ω

(f ◦ g)dµ− f

(∫
Ω

gdµ

)
≥ 0 .

In this paper,g(x) = x, a very important special case. We shall mainly be concerned with the
discrete case and pass to the limit to the possibly continuous case.

Many papers have been written on Jensen’s inequality and its many companion inequalities.
See [9] and [24], for example. In this paper, we shall obtain new inequalities for the Jensen gap,
D, in (1.1) and (1.2). These will allow us to obtain new companion inequalities, including new
Hermite-Hadamard type inequalities for 3-convex functions.

We are concerned with obtaining bounds for the Jensen gapD in (1.1). In continuous cases
where there exists a probability density function absolutely continuous with respect to Lebesgue
measureh(x), then (1.2) becomes, in the continuous case:

(1.3) D =

∫ ∞

−∞
f(x)h(x)dx− f

(∫ ∞

−∞
x · h(x)dx

)
.

We will obtain upper and lower bounds forD in (1.1) and (1.3) even iff(x) is not con-
vex/concave, providedf has one or two continuous derivatives. We focus first on the discrete
case and present new bounds and compare them analytically and numerically to previously pub-
lished bounds. Later, we obtain, as a limiting case, bounds forD in the continuous case. We
shall obtain both an exact integral representation and an exact infinite series representation for
the Jensen gapD in (1.3) for the special case whereh(x) = 0, if x 6∈ [a, b], that is, when the
support ofh(x) is [a, b], wherea < b are real numbers. Then it is a simple matter to extend to
the cases whereb → ∞ or a → −∞. In applied probability and reliability theory areas, the
functiong(x) below is of great importance:

g(x) =

∫ b

x
(t− x)h(t)dt∫ b

x
h(t)dt

, a ≤ x < b

g(b) = 0 .(1.4)

The functiong(x) is known as the mean residual life function. We shall see that the Jensen
gap bounds are strongly related tog(x) as is the exact single integral representation ofD to be
given later in Theorem 4.3. A new method is given to obtain the inequalities in this paper. This
method is widely applicable to obtain new Jensen type inequalities.

First, let’s discuss the finiten discrete case. The following bounds on the Jensen gapD have
previously been published. First, let’s discuss some ‘global’ bounds forD.

Several global bounds for the Jensen gapD have been published. Two of the most prominent
are given below.
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GENERALIZATIONS OF JENSEN’ S INEQUALITY 3

Theorem A. (Dragomir [12]). Supposepi > 0,
∑n

j=1 pj = 1. If f is a differentiable convex
mapping on[a, b], then

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≤ 1

4
(b− a)(f ′(b)− f ′(a)) ≡ Df (a, b) .(1.5)

The next theorem was given in [27].

Theorem B. Under the conditions of Theorem A above,

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)

≤ f(a) + f(b)− 2f

(
a + b

2

)
≡ Sf (a, b) .(1.6)

Theorem C. (Theorem 1 of[15].) Let f : [a, b] → R be a differentiable convex function on
(a, b). Let xi ∈ (a, b), i = 1, 2, . . . , n. Let pi ≥ 0, i = 1, 2, . . . , n and

∑n
i=1 pi = 1. Let

x̄ =
∑n

i=1 pixi. Then

D =
n∑

i=1

pif(xi)− f(x̄)

≥

∣∣∣∣∣
n∑

i=1

pi|f(xi)− f(x̄)| −
n∑

i=1

pi|xi − x̄| · |f ′(x̄)|

∣∣∣∣∣ ≡ LDS .(1.7)

Theorem D. . (Theorems 1 and 2 of[14].) Let f : [a, b] → R be a differentiable convex
function on(a, b), xi ∈ (a, b), pi ≥ 0, i = 1, 2, . . . , n,

∑n
i=1 pi = 1. Let D andx̄ be as given in

Theorem C above. Then

(1.8) (a) D ≤
n∑

i=1

pixif
′(xi)− x̄ ·

n∑
i=1

pif
′(xi) ≡ UD,1

and

(b) D ≤
n∑

i=1

pixif
′(xi) + f

(
(f ′)−1

(
n∑

i=1

pif
′(xi)

))

−(f ′)−1

(
n∑

i=1

pif
′(xi)

)
·

n∑
n=1

pif
′(xi)− f(x̄) ≡ UD,2

≤ UD,1 ,(1.9)

where(f ′)−1 is the inverse function of the derivativef ′.

Next, let’s present some of the best ‘local’ bounds for Jensen gapD. We shall compare these
to the new bounds to be discussed in later sections.
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4 STEVEN G. FROM

Theorem E. (Theorem 1 of[2]). Let f : I → R whereI is an interval. Letxi ∈ I, i =
1, 2, . . . , n, pi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 pi = 1. Let M = max{x1, x2, . . . , xn}, m =

min{x1, x2, . . . , xn}. If f is differentiable andf ′ is strictly increasing, then

(1.10) D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≤ λ ,

where

λ =

(
f(M)− f(m)

M −m

)
(f ′)−1

(
f(M)− f(m)

M −m

)
+

Mf(m)−mf(M)

M −m

− f

(
(f ′)−1

(
f(M)− f(m)

M −m

))
≡ UBPP (1)(1.11)

where(f ′)−1 is the inverse function off ′.

Theorem F. (Theorem 11 of[2]). Let f : [m,M ] → R be a convex function on[m,M ], pi > 0,
i = 1, 2, . . . , n,

∑n
i=1 pi = 1, n ≥ 2 andxi ∈ [m, M ], i = 1, . . . , n, with m ≤ x1 < x2 < · · · <

xn ≤ M . Then

(1.12)

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≤ max

1≤k≤n
{p∗kf(m) + (1− p∗k)f(M)− f(p∗km + (1− p∗k)M)} ≡ UBPP (2)

where

p∗k =
k∑

i=1

pi, k = 1, 2, . . . , n .

Theorem G. (Theorem 1.3 of[17]). Let f [a, b] → R be continuous, twice differentiable on
(a, b). Let xi ∈ [a, b], pi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 pi = 1. Supposem = inf{f ′′(x) : x ∈

[a, b]} andM = sup{f ′′(x) : x ∈ [a, b]} exist. Then

(1.13) D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≥ m

2

 n∑
i=1

pix
2
i −

(
n∑

i=1

pixi

)2
 ≡ FL

and

(1.14) D ≤ M

2

 n∑
i=1

pix
2
i −

(
n∑

i=1

pixi

)2
 ≡ FU .

The following theorem is a special case of a more general result given in [10].
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Theorem H. Let f : [a, b] → R be a differentiable convex function. Letxi ∈ [a, b], pi ≥ 0,
i = 1, . . . , n,

∑n
j=1 pj = 1. Then

(1.15)

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)

≤

(
n∑

i=1

pi(f
′(xi))

2

)1/2

·

 n∑
i=1

pix
2
i −

(
n∑

i=1

pixi

)2
1/2

≡ UDG .

2. NEW BOUNDS - DISCRETE CASE

To present new bounds forD, we shall first need the following lemmas.

Lemma 2.1. Let f(t) be a real-valued function oft on [c, d], such thatf(t) and its first two
derivativesf ′(t) and f ′′(t) are all continuous throughout the intervalc ≤ t ≤ d. Let L(t)
denote the interpolating polynomial of degree 1 or less passing through the points(c, f(c)) and
(d, f(d)). Then for eacht0 in [c, d], there is a numberξ(t0) in (c, d) such that

(2.1) f(t0) = L(t0) +
f ′′(ξ(t0))

2
(t0 − c)(t0 − d) ,

where

(2.2) L(t0) = f(c) +

(
f(d)− f(c)

d− c

)
· (t0 − c), c < d .

Thus, the approximationf(t0) ≈ L(t0) has linear interpolation error

(2.3) E(t0) ≡ f(t0)− L(t0) =
f ′′(ξ(t0))

2
(t0 − c)(t0 − d) .

Proof. See [5], p. 111-113.

Lemma 2.2. Let f(t) be a real-valued function oft on [c, d]. Supposef(t) and its first three
derivativesf ′(t), f ′′(t) andf (3)(t) are continuous throughout[c, d].

a) If f ′′(t) ≥ 0 andf (3)(t) ≥ 0, c ≤ t ≤ d, then for eacht0 in [c, d], the approximation
error E(t0) in the approximationf(t0) ≈ L(t0), whereL(t0) is given by (2.2), satisfies

[(d− c)f ′(d)− f(d) + f(c)] · (t0 − c)(t0 − d)

(d− c)2
≤ E(t0)

≤ [f(d)− f(c)− (d− c)f ′(c)] · (t0 − c)(t0 − d)

(d− c)2
,(2.4)

whereE(t0) = f(t0)− L(t0).
b) If f ′′(t) ≥ 0 andf (3)(t) ≤ 0, then (2.4) holds with the inequality reversed, that is, for

c < d,

[f(d)− f(c)− (d− c)f ′(c)]
(t0 − c)(t0 − d)

(d− c)2
≤ E(t0)

≤ [(d− c)f ′(d)− f(d) + f(c)] · (t0 − c)(t0 − d)

(d− c)2
.(2.5)

Proof. See [19], p 364–366.
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6 STEVEN G. FROM

Now, we are ready to present some main results on bounds for the Jensen gapD in the
discrete case.

Theorem 2.3. Let f(t) be a real-valued function on[a, b]. Suppose thatf and its first two
derivativesf ′ and f ′′ are continuous on[a, b]. Suppose thata ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b.
Supposepi ≥ 0, i = 1, 2, . . . , n, with

∑n
i=1 pi = 1, p1 > 0, pn > 0. Let

(2.6) Ri = pi + pi+1 + · · ·+ pn =
n∑

j=i

pj, i = 1, 2, . . . , n ,

(2.7) x∗i =
pi+1

Ri+1

xi+1 + · · ·+ pn

Ri+1

xn =

∑n
L=i+1 pLxL

Ri+1

, i = 1, 2, . . . , n− 1 ,

and

x(i) =

(
pi

Ri

)
xi +

(
Ri+1

Ri

)
x∗i

=

(
pi

Ri

)
xi +

(
1− pi

Ri

)
x∗i , i = 1, 2, . . . , n .(2.8)

Then there exist real numbersθ1, θ2, . . . , θn−1 with xi < θi < x∗i , i = 1, 2, . . . , n− 1 such that

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)

=
n−1∑
i=1

f ′′(θi)

2
(x(i) − xi)(x

∗
i − x(i))

=
n−1∑
i=1

f ′′(θi)

2
pi

(
1− pi

Ri

)
(x∗i − xi)

2 .(2.9)

Proof. DefineAi by

Ai =
i−1∑
L=1

pLf(xL) + Rif(x(i))

=
i−1∑
L=1

pLf(xL) + Rif

((
pi

Ri

)
xi +

(
1− pi

Ri

)
x∗i

)
, , i = 1, 2, . . . , n ,

(2.10)

where any impossible sum is defined to be zero. Then

(2.11) f

(
n∑

i=1

pixi

)
−

n∑
i=1

pif(xi) = A1 − An =
n−1∑
j=1

(Aj − Aj+1) .

Now simple algebra givesx(j+1) = x∗j and

(2.12) Aj−Aj+1 = Rj

(
f(x(j))−

[(
pj

Rj

)
f(xj) +

(
1− pj

Rj

)
f(x∗j)

])
j = 1, 2, . . . , n−1 .

If xj = x∗j , Aj − Aj+1 = 0. If xj < x∗j , then the expression in brackets of (2.12) is the linearly
interpolated value off(x(j)) on the intervalxj ≤ t ≤ x∗j . Letting c = xj, d = x∗j , t0 = x(j) in
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Lemma 2.1, we obtain this value as

L(x(j)) =
pj

Rj

f(xj) +

(
1− pj

Rj

)
f(x∗j) .

Thus there exists a real numberθj in (xj, x
∗
j) such that

(2.13) f(x(j))− L(x(j)) =
f ′′(θj)

2
(x(j) − xj)(x

(j) − x∗j) .

Thus, (2.12) gives

Aj − Aj+1 = Rj

(
f ′′(θj)

2

)
· (x(j) − xj)(x

(j) − x∗j), 1 ≤ j ≤ n− 1 ,

which is true also whenxj = x∗j , sincex(j) = xj = x∗j in this case. Summing overj gives,
using (2.13):

(2.14) f

(
n∑

i=1

pixi

)
−

n∑
i=1

pif(xi) =
n−1∑
j=1

f ′′(θj)

2
(x(j) − xj)(x

(j) − x∗j) ·Rj .

Also, simple algebra gives

x(i) − xi =

(
1− pi

Ri

)
(x∗i − xi)

and
x∗i − x(i) =

pi

Ri

(x∗i − xi), i = 1, 2, . . . , n− 1 ,

from which we obtain

(2.15) (x(i) − xi)(x
∗
i − x(i)) =

pi

Ri

(
1− pi

Ri

)
(x∗i − xi)

2 , i = 1, 2, . . . , n− 1 .

Thus, (2.14) gives

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)

=
n−1∑
i=1

f ′′(θi)

2
pi

(
1− pi

Ri

)
(x∗i − xi)

2(2.16)

and Theorem 2.3 is proved.

Remark 2.1. Note thatxi ≤ x(i) ≤ x∗i and(x(i)−xi)(x
∗
i −x(i)) ≥ 0, i = 1, 2, . . . , n−1. Thus,

if f(t) is convex on[a, b], then (2.16) above is nonnegative as required by Jensen’s inequality.

From Theorem 2.3, we obtain the following corollary. The proof is omitted since it follows
immediately from Theorem 2.3.

Corollary 2.4. Under the assumptions of Theorem 2.3, we have

LJ ≡
n−1∑
i=1

1

2
mipi

(
1− pi

Ri

)
(x∗i − xi)

2 ≤ D

≤
n−1∑
i=1

1

2
Mipi

(
1− pi

Ri

)
(x∗i − xi)

2 ≡ UJ(2.17)
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8 STEVEN G. FROM

where

mi = inf{f ′′(t) : xi ≤ t ≤ x∗i } and

Mi = sup{f ′′(t) : xi ≤ t ≤ x∗i }, i = 1, 2, . . . , n− 1 .

If f is 3-convex on[a, b], that is, the third derivativef (3)(x) ≥ 0 on [a, b], thenmi = f ′′(xi)
and Mi = f ′′(x∗i ). If f (3)(x) ≤ 0 on [a, b] instead, thenmi = f ′′(x∗i ) and Mi = f ′′(xi),
i = 1, . . . , n.

Theorem 2.5 below improves on the bounds onD, but assumes more conditions onf and its
derivatives.

Theorem 2.5.Letf(t) be a real-valued function oft on [a, b]. Suppose thatf and its first three
derivativesf ′, f ′′ andf (3) are continuous on[a, b]. Suppose thata ≤ x1 < x2 < · · · < xn ≤ b.
Supposepi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 pi = 1, p1 > 0, pn > 0.

a) Suppose thatf ′′(t) ≥ 0 andf (3)(t) ≥ 0, a ≤ t ≤ b. LetD be the difference

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
.

Then

(2.18) h1 ≡
n−1∑
j=1

Wjpj

(
1− pj

Rj

)
≤ D ≤

n−1∑
j=1

Vjpj

(
1− pj

Rj

)
≡ h2 ,

wherex∗j , x(j) andRj are given in Theorem 2.3 above,

Vj = (x∗j − xj)f
′(x∗j)− f(x∗j) + f(xj) ,

and

(2.19) Wj = f(x∗j)− f(xj)− (x∗j − xj)f
′(xj), j = 1, 2, . . . , n− 1 .

b) Supposef ′′(t) ≥ 0 andf (3)(t) ≤ 0 on [a, b]. Then the reverse inequality holds, that is

(2.20) h2 ≤ D ≤ h1 .

Proof of (a). The proof proceeds in the same way as the proof of Theorem 2.3. Then, as before,
using the definitions ofAj given in (2.10) above,
(2.21)

Aj − Aj+1 = Rj

(
f(x(j))−

[(
pj

Rj

)
f(xj) +

(
1− pj

Rj

)
f(x∗j)

])
, j = 1, 2, . . . , n− 1 .

Instead of using Lemma 2.1, we use Lemma 2.2, part (a) withc = xj, d = x∗j . Recalling that

L(x(j)) =
pj

Rj
f(xj) +

(
1− pj

Rj

)
f(x∗j)), we obtain thatAj − Aj+1 = 0, if xj = x∗j . If xj < x∗j ,

then we obtain

−Wj

(
(x(j) − xj)(x

∗
j − x(j))

(x∗j − xj)2

)
≤ f(x(j))− L(x(j))

≤ −Vj

(
(x(j) − xj)(x

∗
j − x(j)

(x∗j − xj)2

)
1 ≤ j ≤ n− 1 .
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Multiplying by Rj, using (2.11) and summing overj gives, as done in the proof Theorem 2.3,

n−1∑
j=1

RjWj

(x(j) − xj)(x
∗
j − x(j))

(x∗j − xj)2
≤ D ≤

n−1∑
j=1

RjVj

(x(j) − xj)(x
∗
j − x(j))

(x∗j − x(j))2
.

From (1), we obtain, upon cancellation of(x∗j − xj)
2 terms

n−1∑
j=1

Wjpj

(
1− pj

Rj

)
≤ D ≤

n−1∑
j=1

Vjpj

(
1− pj

Rj

)
.

This completes the proof of part (a).

The proof of (b) uses Lemma 2.2, part (b) instead and is omitted.

Remark 2.2. If f ′′(t) ≤ 0 on [a, b] and eitherf (3)(t) ≥ 0 on [a, b] or f (3)(t) ≤ 0 on [a, b], then
we may apply Theorem 2.5 to−f(t) instead to get bounds on−D, hence onD.

Remark 2.3. The quantitiesh1 andh2 are nearly Riemann sums for various integrals when
passing from the finiten case to the continuous case asn →∞ and will be discussed later. At
least one of these bounds for largen is usually very good. This will be seen in Theorem 4.3
later.

Remark 2.4. The bounds given in Theorems 2.3 and 2.5 use a series of local linear interpola-
tions ‘moving forward’ fromx = x1 to x = xn from left to right. However, a moment’s reflec-
tion reveals that we could also perform the sequence of local linear interpolations in ‘reverse’
order. Letf ∗(x) = f(a+b−x), wherea = x1, b = xn, a ≤ x ≤ b. Thenf ∗(a+b−x) = f(x),
a ≤ x ≤ b and

∑n
i=1 pif(xi) =

∑n
i=1 pn+1−if

∗(a + b− xn+1−i). Replacingpi by pn+1−i, xi by
a+ b−xn+1−i andf by f ∗ in Theorems 2.3 and 2.5 allows us to obtain ‘reverse order’ versions
of LJ , JJ , h1 andh2. Call theseL∗J , U∗

J , h∗1 andh∗2, respectively. These new ‘reverse order’
bounds sometimes do improve onLJ , UJ , h1, h2 bounds.

Next, we state the famous Hermite-Hadamard inequality. This will be needed in the proofs
of several new results to be discussed in this paper. In addition, we shall present a refinement
of this inequality later for convex functions which are also 3-convex on[a, b].

Hermite-Hadamard inequality. Let f be a convex function on[a, b], wherea < b. Then

(2.22) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Next, we show that the bounds of Theorem 2.5 are better than Corollary 2.4 bounds, if we
have the assumptions of Corollary 2.4 met.

Theorem 2.6.Suppose that the assumptions of Theorem 2.5 hold.

a) If f ′′(t) ≥ 0 andf (3)(t) ≥ 0 on [a, b], then

LJ ≤ h1 ≤ D ≤ h2 ≤ UJ .

b) If f ′′(t) ≥ 0 andf (3)(t) ≤ 0 on [a, b], then

LJ ≤ h2 ≤ D ≤ h1 ≤ UJ .

Proof. We shall prove a) only. The proof of b) is very similar and is omitted. From Theorem
2.5, it remains only to proveLJ ≤ h1 andh2 ≤ J . We shall proveh2 ≤ UJ only; the proof that
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LJ ≤ h1 is very similar and is omitted. Then

h2 =
n−1∑
j=1

Vjpj

(
1− pj

Rj

)

=
n−1∑
j=1

[(x∗j − xj)f
′(x∗j)− f(x∗j) + f(xj)] · pj

(
1− pj

Rj

)
.(2.23)

By the Mean Value Theorem, there is a numberλj ∈ (0, 1) such that

(2.24) f ′(xj + λj(x
∗
j − xj)) =

f(x∗j)− f(xj)

x∗j − xj

=

(∫ x∗j

xj

f ′(t)dt

)(
1

x∗j − xj

)
.

But f (3)(t) ≥ 0, sof ′ is convex on[a, b]. By the Hermite-Hadamard inequality applied tof ′,

(2.25)
1

x∗j − xj

∫ x∗j

xj

f ′′(t)dt ≥ f ′
(

xj + x∗j
2

)
= f ′

(
xj +

1

2
(x∗j − xj)

)
.

From (2.24) and (2.25), we getf ′(xj + λj(x
∗
j − xj)) ≥ f ′

(
xj + 1

2
(x∗j − xj)

)
. Sincef ′ is

increasing,λj ≥ 1
2

must hold. Thus,

f(x∗j)− f(xj) ≥ f ′
(

xj +
1

2
(x∗j − xj)

)
· (x∗j − xj)

and (2.23) gives

h2 ≤
n−1∑
j=1

[
f ′(x∗j)− f ′

(
xj +

1

2
(x∗j − xj)

)]
· (x∗j − xj)pj

(
1− pj

Rj

)
.

Applying the Mean Value Theorem again to the expression in brackets, we can find a number
λ∗j in (0, 1/2) such that

f ′(x∗j)− f ′
(

xj +
1

2
(x∗j − xj)

)
= f ′′(λ∗j) ·

1

2
(x∗j − xj) .

Thus,

h2 ≤
n−1∑
j=1

1

2
f ′′(λ∗j)pj

(
1− pj

Rj

)
(x∗j − xj)

2

≤
n−1∑
j=1

1

2
Mj · pj

(
1− pj

Rj

)
(x∗j − xj)

2 = UJ ,

whereMj = sup{f ′′(t) : xj ≤ t ≤ x∗j}. This completes the proof of a).

How do the new bounds given in this paper compare to previously published bounds? For
largen, the new bounds are quite good, based upon many numerical comparisons done and not
reported here

Next, let’s compare some of the new bounds to the previously proposed bounds discussed in
previous works, both analytically, when it is possible to do so, and numerically. In most cases,
comparisons are somewhat delicate since different bounds have slightly different assumptions,
and have greater degrees of computational complexities so that we are comparing ‘apples and
oranges’. However, such comparisons give some idea about utility and relative merits of bounds.
From the results of numerical comparisons, it is the case that most of the bounds, both old
and new, are the best for some choices ofpi andxi andn, but the new bounds compare very
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favorably to previously published bounds. Moreover, some of the new bounds are still valid for
non-convex/non-concave choices off(x) and lead to some nice applications.

The following theorem states that boundsLJ andUJ are at least as good as the boundsFL

andFU discussed [17] and given in Theorem G earlier. It should be mentioned, however, that
theFL andFU bounds do not require continuity off ′′, whereas the new boundsLJ andUJ of
Theorem 2.3 do require it. Hence, the bounds of [17] are slightly more generally applicable.

Theorem 2.7. Suppose that Theorem 2.3 assumptions hold. LetLJ andUJ be the new bounds
of Corollary 2.4. LetFL andFU be the bounds discussed in Theorem G. Let

D =
n∑

i=1

pif(xi)− f

(
n∑

I=1

pixi

)
.

Then

a) FL ≤ LJ ≤ D
b) D ≤ UJ ≤ FL .

Proof. We shall prove part a). The proof of part b) is similar and is omitted. The inequality
LJ ≤ D was proven in Corollary 2.4. First, replacingf(x) by fA(x) = x2 in Theorem 2.3, we
obtain

n∑
i=1

pix
2
i −

(
n∑

i=1

pixi

)2

=
n−1∑
j=1

pj

(
1− pj

Rj

)
(x∗j − xj)

2 .

Then, withm = inf{f ′′(t) : a ≤ t ≤ b}, mi = inf{f ′′(t) : xi ≤ t ≤ x∗i }, we get

FL =
m

2

 n∑
i=1

pix
2
i −

(
n∑

I=1

pixi

)2
 =

m

2

(
n−1∑
j=1

pj

(
1− pj

Rj

)
(x∗j − xj)

2

)

≤
n−1∑
j=1

mj

2
pj

(
1− pj

Rj

)
(x∗j − xj)

2 = LJ .

This completes the proof of part a).

From numerical comparisons done, it appears that the following general conclusions are
valid.

(1) The new bounds based onh1 andh2 of Theorem 2.5 are often the best, but these are not
as widely applicable as the other bounds, both old and new.

(2) The new lower boundsLJ andLJ∗ are not as good asLDS when the variance ofxi is
large, unlessn is large. Then they are significantly better.

(3) Among the upper bounds,UJ andUJ∗ are usually better thanUD,1, UD,2, UBPP (1),
UBPP (2), UDG, if the variance of thexi values is not too large. But for largen, UJ and
UJ∗ are substantially better regardless of variance.

(4) For non-convex/non-concave choices forf(x) with f ′′(x) continuous, only the new
bounds given in Theorem 2.3 and Corollary 2.4 and theFL, FU bounds of [17] are
applicable. Of course, in this case, Theorem 2.7 stated that the new bounds are at least
as good.

(5) Most of the bounds discussed in this paper are the best or nearly so, for some choices
of pi andxi. Given this fact, how amenable are the bounds, both old and new, for con-
venient applications? It will be seen that the new bounds can be used to refine various
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inequalities, such as the Hermite-Hadamard inequality and to obtain brand new inequali-
ties in probability and reliability theory. We briefly discuss some other applications first,
which are more of a classical nature.

Remark 2.5. If f(x) is log-convex on[a, b], then we may apply Theorems 2.3 and 2.5 toLnf(x)
instead off(x) to obtain bounds onD∗ =

∑n
i=1 piLnf(xi)−Lnf (

∑n
i=1 pixi). Then exponen-

tiation will provide bounds on the ratio

eD∗
=

∏n
i=1(f(xi))

pi

f (
∑n

I=1 pixi)
.

If f(x) = Ln
[(

1−x
x

)r]
, r > 0, 0 < x < 1/2, then we obtain new and improved inequalities of

Ky-Fan type. In [11], upper bounds are given foreD∗
. See their Theorem 1, p. 52 and Proposi-

tion 5.6, p. 61. Numerical comparisons of these bounds to the new bounds suggest that the new
bounds derived from Theorem 2.5 are always better and that the Corollary 2.4 bounds foreD∗

are better if either the variance of thexi values is not too great, or ifn is large. Theorems 2.3
and 2.5 can be used to obtain new refinements of the classical arithmetic mean-geometric mean
(AM-GM) inequality. These new refinements compare favorably to many previously discussed
bounds for the difference and ratio of arithmetic mean and geometric means. Theorems 2.3
and 2.5 have been applied to obtain many new bounds in information theory such asb-entropy
bounds discussed in Theorem 4.3 of [11]. These new bounds, in numerical comparisons done
have been found to compare very favorably to other bounds in this case as well.

The new bounds can also be widely applied to obtain bounds for quantities of interest in
information theory. We consider here one such application. SupposeX is a discrete random
variable with support{x1, x2, . . . , xn} where0 < x1 < · · · < xn. Let pi = Prob(X = xi),
i = 1, 2, . . . , n. Supposepi > 0, i = 1, 2, . . . , n. Then theb-entropy ofX is, using the notation
of Dragomir and Goh (1996):

Hb(x) =
n∑

I=1

piLogb

(
1

pi

)
, b > 1 .

In Dragomir and Goh (1996), the following theorem is given.

Theorem I. (Theorem 4.3 of Dragomir and Goh (1991).)

(2.26) 0 ≤ Logbn−Hb(x) ≤ 1

Ln b

[
n

n∑
i=1

p2
i − 1

]
≡ UH .

Equality holds if and only ifpi = 1
n
, i = 1, 2, . . . , n.

If we takef(x) = −Logbx in Theorem 2.5, part (b), we immediately obtain the following
corollary, which gives both an upper and lower bound for Logbn−Hb(x).

Corollary 2.8. Suppose thatpj > 0, j = 1, 2, . . . , n,
∑n

j=1 pj = 1. Let P(1) ≥ P(2) ≥ · · · ≥
P(n) denote thepj values ordered from largest to smallest. Letxj = 1

P(j)
, j = 1, 2, . . . , n. Let

f(x) = −Logbx. Then

(2.27) IL ≤ Logbn−Hb(x) ≤ IU ,

whereIL is the value ofh2 in Theorem 2.5 withP(j) replacingpj everywhere in Theorems 2.3
and 2.5 andIU is the value ofh1 with these same replacements.
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Proof. The results is immediate, except we note here that since it was assumed thatx1 ≤ x2 ≤
· · · ≤ xn, and we are choosingxi = 1

pi
, we must order thepj values before we can apply

Theorem 2.5, part (b). This is no problem since entropies are invariant to permutations. Of
course, ifpj = 1

n
for all j, then we obtainIL = JU = 0.

Numerical comparisons of the upper boundUH given in Theorem 4.3 of [10] with the new
boundIU of Corollary 2.4 found that the new upper boundIU is always at least as good asUH ,
but no proof could be found. However, Corollary 2.4 also provides a very good lower bound
IL. Here we present a small numerical comparison.

Supposen = 3, P1 = .5, P2 = .3, P3 = .2 Then we takeb = e here, but the choice of the
baseb > 1 is irrelevant for purposes of comparison. We obtain

Logen−He(X) = 0.0690, UH = 0.1400 ,

IL = 0.0569, IU = 0.0881, L1 = 0.0379, U1 = 0.1400 .

The boundIU improves onUH especially if thepi values are not extremely diverse. The
lower boundIL is also quite good. A theoretical reason for this will be given later. TheUH

bound is, however, easier to compute than the new bounds.U1 is better thanUH when thepi

values are not too diverse. Otherwise,UH is better thanU1. (Here, bothUH andU1 are the
same.)

3. I NTEGRAL REPRESENTATIONS AND BOUNDS

Theorem 3.1 below extends the bounds to the continuous case. We present bounds for the
continuous Jensen gapD.

In the continuous case, we assume thatH(x) in Theorem 3.1 below is continuous on[a, b],
with H(a) = 0, H(b) = 1. Thus,H(x) is a continous distribution function on[a, b]. In most, but
not all cases, there will exist a probability density function absolutely continuous with respect to
Lebesgue measure,h(x) with H ′(x) = h(x) on [a, b], but we do not have to make this assump-
tion in Theorem 3.1. For this reason, we shall use Riemann-Stieltjes integrals in Theorem 3.1
to obtain a slightly more general result. All integrals below are of Lebesgue-Stieltjes type.
Since we are intergrating with respect to a bounded continuous monotonic function, they can
be considered Riemann-Stieltjes integrals as well. The functiong(x) given in (3.1) in Theorem
3.1 is called the mean residual life function and plays a prominent role in applied probability,
reliability theory and statistics. See [18], for example. First, we consider the bounded support
case.

Next, we consider the continuous version of Jensen’s gap utilizing Lebesgue/Riemann Stielt-
jes integrals.

Theorem 3.1. Suppose thatf ′′ is continuous on[a, b]. Let H(x) be a bounded, continuous
nondecreasing function on[a, b] with H(a) = 0 andH(b) = 1. Suppose0 < H(x) < 1 on
(a, b). Let

(3.1) g(x) =


∫ b

x
(t− x)dH(t)

1−H(x)
limx→b− g(x) = 0,

,
a ≤ x < b,

x = b.

Let

(3.2) q1(x) = inf{f ′′(t) : x ≤ t ≤ x + g(x)} ,

and

(3.3) q2(x) = sup{f ′′(t) : x ≤ t ≤ x + g(x)} .
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Let

(3.4) L1 =
1

2

∫ b

a

q1(x)(g(x))2dH(x) ,

and

(3.5) U1 =
1

2

∫ b

a

q2(x)(g(x))2dH(x) .

Then

(3.6) L1 ≤
∫ b

a

f(x)dH(x)− f

(∫ b

a

xdH(x)

)
≤ U1 .

The proof of Theorem 3.1 will utilize Lebesgue-Stieltjes sum approximations. SinceH(t) is
a bounded nondecreasing function, this is equivalent to Riemann-Stieltjes sum approximations.

Given any partitionP = {x0, x1, . . . , xn} of [a, b] with a = x0 < x1 < · · · < xn = b, we
shall let‖P‖ denote the norm or mesh of the partition. Then‖P‖ = max{xi+1 − xi : 0 ≤
i ≤ n − 1}. We shall apply Theorems 2.3 and 2.5 to a partitionP with suitably small enough
‖P‖. We shall assumexi+1 − xi = ‖P‖ = ∆x, i = 0, 1, . . . , n − 1 throughout. Letpj =
H(xj) − H(xj−1), j = 1, 2, . . . , n. Thenpj ≥ 0, j = 2, . . . , n − 1, p1 > 0, pn > 0 and∑n

j=1 pj = 1. The Riemann-Stieltjes sums involved with utilize integrand values atx = xj

j = 1, 2, . . . , n. Let Ri, x∗i andx(i) be given by (2.7)–(2.8) of Theorem 2.3 for these choices of
xj andpj, j = 1, 2, . . . , n. ThenRi = 1−H(xi), i = 1, 2, . . . , n− 1.

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2. There exists a constantK1 > 0 such that

(3.7) |g2(x∗i )− (x∗i − xi)
2| ≤ K1∆x, i = 1, 2, . . . , n .

Proof. Let

Bi = 1−H(xi), Ci =

∫ b

xi

(t− xi)dH(t) ,

Ĉi =
n−1∑
L=i

(xL+1 − xi) · (H(xL+1)−H(xi)) .

Then

g(xi)− (x∗i − xi) =
Ci − Ĉi

Bi

=

∑n−1
L=i

∫ xL+1

xL
(t− xL+1)dH(t)∑n−1

L=i

∫ xL+1

xL
dH(t)

.

Now |t− xL+1| ≤ ∆x, L = i, . . . , n− 1. Thus,

(3.8) |g(xi)− (x∗i − xi)| ≤ ∆x, i = 1, 2, . . . , n− 1 .

Also, clearly we have

|g(xi) + (x∗i − xi)| ≤ sup{g(t) : a ≤ t ≤ b}+ max{x∗i − xi, i = 1, 2, . . . , n− 1}
≤ (b− a) + (b− a) = 2(b− a) .(3.9)

Multiplication of (3.8) and (3.9) produces

|g2(xi)− (x∗i − xi)
2| ≤ 2(b− a)∆x, i = 1, 2, . . . , n .

LettingK1 = 2(b− a), the proof of Lemma 3.2 is complete.
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Lemma 3.3. Under the conditions of Lemma 3.2, we have the following. Let

Zi = sup {|f ′′(t)− f ′′(x∗i )| : x∗i ≤ t ≤ xi + g(xi)} , if x∗i ≤ xi + g(xi) ,

Zi = sup {|f ′′(t)− f ′′(xi + g(xi)| : xi + g(xi) ≤ t ≤ x∗i } ,

if xi + g(xi) ≤ x∗i , i = 1, 2, . . . , n− 1 .

Then

|sup{f ′′(t) : xi ≤ t ≤ x∗i } − sup{f ′′(t) : xi ≤ t ≤ xi + g(xi)}| ≤ Zi , i = 1, 2, . . . , n− 1 .

Proof. Consider the casex∗i ≤ xi + g(xi). Then forxi ≤ t ≤ xi + g(xi), we have

f ′′(t) = f ′′(x∗i ) + (f ′′(t)− f ′′(x∗i ))

≤ sup{f ′′(t) : xi ≤ t ≤ x∗i }+ (f ′′(t)− f ′′(x∗i ))

≤ sup{f ′′(t) : xi ≤ t ≤ x∗i }+ Zi ,

sincexi ≤ x∗i ≤ xi + g(xi). Since this holds for allt with xi ≤ t ≤ xi + g(xi), we obtain

sup{f ′′(t) : xi ≤ t ≤ xi + g(xi)} ≤ sup{f ′′(t) : xi ≤ t ≤ x∗i }+ Zi .

Since[xi, x
∗
i ] ⊆ [xi, xi + g(xi)], subtraction proves the lemma. The proof of the other case is

similar and is omitted.

Proof of Theorem 3.1.First, assume thatH(x) satisfiesH(x) ≤ k+x−a
k+b−a

, a ≤ x ≤ b or some
integerk. We shall then prove the general case.

We shall prove only the upper bound right half of (3.6) in Theorem. 3.1 The proof of the
other half is very similar and is omitted. Let’s show that there exists a positive numberM such
that for everyε > 0, we have

(3.10)
∫ b

a

f(x)dH(x)− f

(∫ b

a

xdH(x)

)
≤ U1 + εM ,

whereU1 = 1
2

∫ b

a
q2(x)(g(x))2dH(x). Sincef is uniformly continuous on[a, b], there is aδ1 >

0 such that ifP = {x1, x2, . . . , xn} is a partition of[a, b] with
∣∣∣∫ b

a
xdH(x)−

∑n
i=1 pixi

∣∣∣ < δ1,

then ∣∣∣∣∣f
(∫ b

a

xdH(x)

)
− f

(
n∑

i=1

pixi

)∣∣∣∣∣ < ε .

Since
∑n

i=1 pixi is a Riemann-Stieltjes sum for
∫ b

a
xdH(x), there is aδ2 > 0 such that‖P‖ < δ2

implies
∣∣∣∫ b

a
xdH(x)−

∑n
i=1 pixi

∣∣∣ < δ1 and thus

(3.11)

∣∣∣∣∣f
(∫ b

a

xdH(x)

)
− f

(
n∑

i=1

pixi

)∣∣∣∣∣ < ε .

Similarly, there is aδ3 > 0 such that‖P‖ < δ3 implies

(3.12)

∣∣∣∣∣
∫ b

a

f(x)dH(x)−
n∑

i=1

pif(xi)

∣∣∣∣∣ < ε .
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Takingδ4 = min(δ1, δ3), we see that if‖P‖ < δ4, then∫ b

a

f(x)dH(x)− f

(∫ b

a

xdH(x)

)
≤

n∑
i=1

pif(xi)− f

(
n∑

i=1

pixi

)
+ 2ε .(3.13)

Now apply Theorem 2.3 to the right-hand side of (3.13) utilizing Lemmas 3.2 and 3.3 to show
that (3.10) holds. To this end, define

Y1,i = sup{f ′′(t) : xi ≤ t ≤ x∗i }
Y2,i = sup{f ′′(t) : xi ≤ t ≤ xi + g(xi)}, i = 1, 2, . . . , n− 1

= q2(xi) .

Let

Q1 =
1

2

n−1∑
i=1

Y1,ipi

(
1− pi

Ri

)
(x∗i − xi)

2 ,

Q2 =
1

2

n−1∑
i=1

Y2,ipi

(
1− pi

Ri

)
(g(xi))

2 ,

Q3 =
1

2

n−1∑
i=1

Y1,ipi

(
1− pi

Ri

)
(g(xi))

2 ,

Q4 =
1

2

n−1∑
i=1

Y2,ipi(g(xi))
2 .

Note thatY1,i = Mi in Corollary 2.4 andQ1 is the upper bound on

D =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
given there. Then

(3.14)
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≤ Q1 .

Now, clearly, we have

(3.15) |Q1 − U1| ≤ |Q1 −Q3|+ |Q3 −Q2|+ |Q2 −Q4|+ |Q4 − U1| .
Then

(3.16) |Q1 −Q3| ≤
1

2

n−1∑
i=1

|Y1,i| · pi

(
1− pi

Ri

)
· |(x∗i − xi)

2 − (g(xi))
2| .

Since|f ′′| is bounded, Lemma 3.2 shows that|Q1 − Q3| is O(∆x), that is, there is a constant
K2 > 0 such that

|Q1 −Q3| ≤ K2∆x .

By Lemmas 3.2 and 3.3, from the fact that|Y1,i − Y2,i| ≤ Zi and the uniform continuity off ′′

on [a, b], givenε > 0, we may take∆x small enough so that

(3.17) |Q3 −Q2| ≤
ε

2
sup{(g(t))2 : a ≤ t ≤ b} ≤ ε

2
(b− a)2 .
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SinceQ4 is a Riemann sum approximation toU1, givenε > 0, we may choose∆x small enough
so that

(3.18) |Q4 − U1| ≤ ε .

It remains to show that|Q2 − Q4| can be made arbitrarily small as‖P‖ = ∆x → 0. By the
boundedness of|f ′′| on [a, b], there exists a constantK2 such that|f ′′(x)| ≤ K2, a ≤ x ≤ b.
Then

|Q2 −Q4| ≤
1

2
K2

n−1∑
i=1

p2
i

Ri

(g(xi))
2 .

Clearly, g(xi) ≤ b − xi, i = 1, . . . , n. Also, Ri = 1 − H(xi), i = 1, 2, . . . , n − 1. Let
S(x) = (b−x)2

1−H(x)
, a ≤ x < b. SinceH(x) ≤ k+x−a

k+b−a
, S(x) ≤ (k + b− a)(b− x), a ≤ x < b. Let

S(b) ≡ limx→b− S(x) = 0. ThenS(x) is bounded on[a, b]. Since0 ≤ (g(xi))
2

Ri
≤ S(xi), there is

a constantK3 such that0 ≤ (g(xi))
2

Ri
≤ K3. Thus,

|Q2 −Q4| ≤
1

2
K2K3

n−1∑
i=1

p2
i .

Now
n−1∑
i=1

p2
i ≤

n∑
i=1

p2
i ≤

n∑
i=1

pi · sup
1≤i≤n

(H(xi)−H(xi−1))

which can be made arbitrarily small asn →∞, by the uniform continuity ofH(·) on [a, b], and
since

∑n
i=1 pi = 1. Thus, we may take‖P‖ = ∆x small enough so that

(3.19) |Q2 −Q4| ≤ ε .

Since all four absolute differences in (3.15) can be made arbitrarily small as∆x = ‖P‖ → 0,
we can make|Q1 − U1| arbitrarily small. So we can choose∆x small enough so that, from
(3.15)–(3.19), we obtain

|Q1 − U1| ≤ K2∆x +
ε

2
(b− a)2 + 2ε .

Choosing∆x ≤ ε, then

|Q1 − U1| ≤
(

K2 +
1

2
(b− a)2 + 2

)
· ε .

In particular,

(3.20) Q1 ≤ U1 +

(
K2 +

1

2
(b− a)2

2

)
· ε .

From the definition ofQ1 and Corollary 2.4, and (3.20), we obtain for∆x small enough,∫ b

a

f(x)dh(x)− f

(∫ b

a

xdH(x)

)
≤

n∑
i−1

pif(xi)− f

(
n∑

i=1

pixi

)
≤ Q1 ≤ U1 + Mε ,

whereM = K2 + 1
2
(b− a)2 + 2 .
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Thus, (3.10) holds for allε > 0 andH(x) with H(x) ≤ k+x−a
k+b−a

for some integerk. Now
suppose the general case forH(x). Let

Hk(x) =
H(x) + x−a

k

1 + b−a
k

, a ≤ x ≤ b , k = 1, 2, 3, . . . .

Then

Hk(x) ≤ k + x− a

k + b− a
, a ≤ x ≤ b , k = 1, 2, 3, . . . .

Thus, the conclusion of Theorem 3.1 is valid forHk(x) in place ofH(x). Now limk→∞Hk(x) =
H(x), a ≤ x ≤ b, |Hk(x)| ≤ 1, a ≤ x ≤ b, k ≥ 1. Let gk(x), q2,k(x), L1,k andU1,k be the
values ofg(x), q2(x), L1 andU1 given in Theorem 3.1 withHk(x) replacingH(x) throughout,
respectively. Then

(3.21)
∫ b

a

f(x)dHk(x)− f

(∫ b

a

x · dHk(x)

)
≤ U1,k ,

where

U1,k =
1

2

∫ b

a

q2,k(x)(gk(x))2dHk(x) ,

gk(x) =

∫ b

x
(t− x)dHk(t)

1−Hk(x)
, a ≤ x < b , gk(b) = 0, and

q2,k(x) = sup{f ′′(t) : x ≤ t ≤ x + gk(x)} ,

Clearly,|q2,k(x)| ≤ sup{|f ′′(t)| : a ≤ t ≤ b}. Also, |gk(x)| ≤ b− a, a ≤ x ≤ b, k ≥ 1. Also,
limk→∞ q2,k(x) = q2(x). In addition,

lim
k→∞

∫ b

a

f(x)dHk(x) =

∫ b

a

f(x)dH(x) + lim
k→∞

−(b− a)

(k + b− a)

∫ b

a

f(x)dx

=

∫ b

a

f(x)dH(x) .(3.22)

Similarly, by the continuity off ,

lim
k→∞

f

(∫ b

a

xdHk(x)

)
= lim

k→∞
f

(∫ b

a

xdH(x)−
1
2
(b− a)(b2 − a2)

k + b− a

)
= f

(∫ b

a

xdH(x)

)
,(3.23)

and

lim
k→∞

gk(x) =
limk→∞

(∫ b

x
(t− x)dH(t) +

∫ b

x
(t− x) ·

(
−(b−a)
k+b−a

)
dt
)

1−H(x)

= g(x) , a ≤ x < b .
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This holds forx = b, also. Also, by the Dominated Convergence Theorem,

lim
k→∞

U1,k = lim
k→∞

1

2

(∫ b

a

q2,k(x)(gk(x))2dH(x) +

∫ b

a

q2,k(x)(gk(x))2 · −(b− a)

k + b− a
dx

)

=
1

2

∫ b

a

q2(x)(g(x))2dH(x) = U1 .

(3.24)

and the proof of Theorem 3.1 is complete.

Remark 3.1. In a few results to come later, we shall need to assume the existence of a density
functionh(x) = H ′(x) on [a, b]. This will be needed in some applications to be discussed next.
In this case, the mean residual life function is

g(x) =

∫ b

x
(t− x)h(t)dt∫ b

x
h(t)dt

, a ≤ x < b

g(b) = 0 .(3.25)

4. EXACT I NTEGRAL REPRESENTATIONS AND APPLICATIONS

Next, we present various applications of some theorems in Section 3. They are improvements
on the classical Hermite-Hadamard inequality. Many such papers have been published and they
are too numerous to cite. However, see [1], [3], [22] and [23].

Theorem 4.1 below is a refinement of the Hermite-Hadamard inequality for convex functions
which are also 3-convex on[a, b], and is an application of Theorem 3.1.

Theorem 4.1. Let f be a convex function on[a, b]. Suppose thatf is also 3-convex on[a, b],
that is, the third derivativef (3)(x) ≥ 0 on [a, b]. Then

a)

(4.1) 0 ≤ N1 ≤
1

b− a

∫ b

a

f(x)dx− f

(
a + b

2

)
≤ N2

where

(4.2) N1 =
1

2

[
−(b− a)

4
f ′(a) +

1

2

(
f

(
a + b

2

)
− f(a)

)]
and

(4.3) N2 =
−(b− a)

4
f ′
(

a + b

2

)
+

1

2

(
f(b)− f

(
a + b

2

))
and

b)

(4.4)
1

b− a

∫ b

a

f(x)dx ≤ N2 + f

(
a + b

2

)
≤ f(a) + f(b)

2
,

that is,N2+f
(

a+b
2

)
is at least as good an upper-bound asf(a)+f(b)

2
is for 1

b−a

∫ b

a
f(x)dx.
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Proof of (a). We apply Theorem 3.1 to obtainN1 from L1 in Theorem 3.1. Thenh(x) = 1
b−a

,
a ≤ x ≤ b, g(x) = b−x

2
, andq1(x) = f ′′(x), sincef (3) ≥ 0. Then

1

b− a

∫ b

a

f(x)dx− f

(
a + b

2

)
≥ L1 =

1

2

∫ b

a

q1(x)h(x)(g(x))2dx =
1

2

∫ b

a

f ′′(x) · 1

b− a
·
(

b− x

2

)2

dx .

Integrating by parts twice, we obtain

L1 =
−(b− a)

8
f ′(a) +

1

2(b− a)

∫ b

a

(
b− x

2

)
f ′(x)dx

=
1

2(b− a)

[
−(b− a)2

4
f ′(a)−

(
b− a

2

)
f(a) +

1

2

∫ b

a

f(x)dx

]
.(4.5)

Applying the Hermite-Hadamard inequality to the integral in (4.5), we obtain:

L1 ≥ 1

2(b− a)

[
−(b− a)2

4
f ′(a)−

(
b− a

2

)
f(a) +

1

2
(b− a) · f

(
a + b

2

)]

=
1

2

[
−(b− a)

4
f ′(a)− 1

2
f(a) +

1

2
f

(
a + b

2

)]
= N1 .

This proves the first non-trivial left half of (4.1). To prove the other half involvingN2, we pro-
ceed similarly with a few modifications. Usingq2(x) = f ′′(x+g(x)) = f ′′

(
x+b
2

)
, Theorem 3.1

gives

U1 =
1

2

∫ b

a

q2(x) · h(x) · (g(x))2dx

=
1

2

∫ b

a

f ′′
(

x + b

2

)
· 1

b− a
·
(

b− x

2

)2

dx .

Making the substitutionu = x+b
2

and again integrating by parts twice, we obtain

U1 =

∫ b

a+b
2

1

b− a
f ′′(u) · (b− u)2du

=
−(b− a)

4
f ′
(

a + b

2

)
− 1

b− a

∫ b

a+b
2

2(u− b)f ′(u)du

=
−(b− a)

4
f ′
(

a + b

2

)
− f

(
a + b

2

)
+ 2

∫ b

a+b
2

f(u)du(4.6)

Applying the Hermite-Hadamard inequality on[a+b
2

, b] to the integral in (3.6), we obtain:

U1 ≤ −(b− a)

4
f ′
(

a + b

2

)
− f

(
a + b

2

)
+

1

2

(
f

(
a + b

2

)
+ f(b)

)
=

−(b− a)

4
f ′
(

a + b

2

)
− 1

2
f

(
a + b

2

)
+

1

2
f(b)

= N2 .

This complets the proof.
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Proof of (b). Now simple algebra gives

N2 + f

(
a + b

2

)
≤ f(a) + f(b)

2

if and only if

f

(
a + b

2

)
− f(a) ≤

(
b− a

2

)
f ′
(

a + b

2

)
,

which is equivalent to ∫ a+b
2

a

f ′(t)dt ≤ (b− a)

2
f ′
(

a + b

2

)
.

But f is convex, sof ′(t) ≤ f ′
(

a+b
2

)
, a ≤ t ≤ a+b

2
. So∫ a+b

2

a

f ′(t)dt ≤
(

b− a

2

)
f ′
(

a + b

2

)
holds and the proof of (b) is complete.

Remark 4.1. Upper bound (4.6) is a better upper bound thanN2 and is exact for quadratic
choices off(x). Similarly, (4.5) is a better lower bound thanN1 and is also exact for qua-
dratic choices forf(x). Using (4.5) and (4.6), we could, if desired, get even better refinements
by applying the Theorem 4.3 to the integrals in (4.5) and (4.6) and ‘iterating’ to the limit on
successive intervals half as large at each iteration. Of course, this would give much longer
expressions for bounds and involve evaluation off andf ′ at more and more points in[a, b].

Theorem 4.1 required convexity off in the form off ′′(x) ≥ 0 on [a, b]. But, as pointed out
in Fink and Páles (2007), we may often replace this condition by less restrictive assumptions
onf(x). In any case, the next theorem, Theorem 4.2, gives a Hermite-Hadamard type of bound
requiring only 3-convexity or 3-concavity on[a, b], and not convexity off itself.

Theorem 4.2.Supposef (3)(x) is continuous on[a, b].

a) If f(x) is 3-convex on[a, b], that is,f (3)(x) ≥ 0 on [a, b], then∫ b

a
f(x)dx

b− a
≤ f

(
a + b

2

)
+

(
b− a

12

)
·
(

f ′(b)− f ′
(

a + b

2

))
(4.7)

and∫ b

a
f(x)dx

b− a
≥ f

(
a + b

2

)
+

(
b− a

12

)
·
(

f ′
(

a + b

2

)
− f ′(a)

)
.(4.8)

b) If f(x) is 3-concave on[a, b], then inequalities (4.7) and ( 4.8) hold with the inequality
signs reversed.

Proof. We shall prove only (4.7) part (a). The proof of (4.8) of part (a) follows upon considering
the functionf ∗(x) = f(a + b− x) and noting thatf ∗(x) is 3-convex, iff(x) is 3-concave and
vice-versa. Also,

∫ b

a
f(x)dx =

∫ b

a
f ∗(x)dx andf

(
a+b
2

)
= f ∗

(
a+b
2

)
. Part (b) follows from part

(a) using−f(x) instead off(x) in part (a). To prove (a), apply Theorem 3.1 withH(x) = x−a
b−a

,
a ≤ x ≤ b. Theng(x) = b−x

2
, a ≤ x ≤ b. Sincef is 3-convex,f ′′ is nondecreasing in its

argument. Clearly(g(x))2 =
(

b−x
2

)2
is nonincreasing inx. Then Theorem 3.1 gives∫ b

a
f(x)dx

b− a
≤ f

(
a + b

2

)
+

1

2

∫ b

a

f ′′(x + g(x)) · g2(x) · 1

b− a
dx .
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An application of the Chebychev-Gruss inequality gives:∫ b

a
f(x)dx

b− a
≤ f

(
a + b

2

)
+

1

2

∫ b

a

f ′′
(

x + b

2

)
·
(

b− x

2

)2

· 1

b− a
dx

≤ f

(
a + b

2

)
+

1

2
·
(∫ b

a

f ′′
(

x + b

2

)
· 1

b− a
dx

)
·

(∫ b

a

(
b− x

2

)2

· 1

b− a
dx

)

= f

(
a + b

2

)
+

(
b− a

12

)
·
(

f ′(b)− f ′
(

a + b

2

))
.

The proof of (4.7) in part (a) is complete.

Next, let’s consider bounds for
∫ b

a
f(x)h(x)dx−f

(∫ b

a
x · h(x)dx

)
= D. From Theorem 2.5,

we obtained in (2.18)

h1 =
n−1∑
j=1

Wjpj

(
1− pj

Rj

)
≤

n∑
i=1

pif(xi)− f

(
n∑

i=1

pixi

)

≤
n−1∑
j=1

Vjpj

(
1− pj

Rj

)
= h2

or its reversal (2.20). We shall now show that the boundh2 is a ‘best possible’ bound asn →∞
when consideringpi = H(x) − H(xi−1). Even if f ′′ andf (3) are not of one sign, it will be
proven thath2 approachesD asn →∞, so that the integral or continuous analogue forh2 will
be an exact representation. Thush2 behaves like a Riemann sum forD. We have the following
theorem.

Theorem 4.3.Supposef ′ andh are continuous on[a, b]. Let

(4.9) a1(x) = f(x + g(x))− f(x)− g(x)f ′(x)

and

(4.10) a2(x) = g(x)f ′(x + g(x))− f(x + g(x)) + f(x) .

Then

a)

(4.11) D ≡
∫ b

a

f(x)h(x)dx− f

(∫ b

a

xh(x)dx

)
=

∫ b

a

a2(x)h(x)dx ≡ H2 .

b) If f (3)(x) is continuous on[a, b], f ′′(x) ≥ 0 andf (3)(x) ≥ 0 on [a, b], then

(4.12) H1 ≡
∫ b

a

a1(x)h(x)dx ≤ D =

∫ b

a

a2(x)h(x)dx ≡ H2 .

c) If f (3)(x) is continuous on[a, b], f ′′(x) ≥ 0 on [a, b] andf (3)(x) ≤ 0 on [a, b], then

(4.13) H2 = D ≤ H1 .

d) Under the assumptions of part b),H1 is a better lower bound forD than isL1 given in
Theorem 3.1, that is,L1 ≤ H1.

e) Under the assumptions of part c),H1 is a better upper bound forD than isU1 given in
Theorem 3.1, that is,U1 ≥ H1.
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Proof of (a). Recall thatg(x) =
R b

x (t−x)h(t)dt
R b

x h(t)dt
, upon differentiation ofg(x) using Leibnitz’s rule

for differentiating an integral, we obtain

(4.14) g′(x) =
h(x)g(x)

H̄(x)
− 1 ,

whereH̄(x) =
∫ b

x
h(t)dt. Thus

h2 =

∫ b

a

a2(x)h(x)dx =

∫ b

a

(g(x)f ′(x + g(x))− f(x + g(x)) + f(x))h(x)dx

=

∫ b

a

g(x)f ′(x + g(x))h(x)dx−
∫ b

a

f(x + g(x))h(x)dx +

∫ b

a

f(x)h(x)dx .

Making the substitutionw = w(x) = x + g(x) and using (4.14) to obtainw′(x), we obtain

h2 =

∫ b

a

f ′(w(x))w′(x)H̄(x)dx−
∫ b

a

f(x + g(x))h(x)dx +

∫ b

a

f(x)h(x)dx .

Integrating by parts, and usinḡH(b) = 0, H̄(a) = 1, we obtain

h2 = −H̄(a)f(w(a)) +

(∫ b

a

f(w(x))h(x)dx−
∫ b

a

f(w(x)h(x)dx)

)
+

∫ b

a

f(x)h(x)dx ,(4.15)

upon application of (4.14) above. Sincew(a) = a + g(a) =
∫ b

a
xh(x)dx, we obtain

(4.16) h2 = −f

(∫ b

a

x · h(x)dx

)
+

∫ b

a

f(x)h(x)dx ,

since the expression in parentheses in (4.15) equals zero. Thus,h2 = D and part (a) is proven.
Parts (b) and (c) explain why the boundh2 is so good for largern when bounding

∑n
i=1 pif(xi)−

f (
∑n

i=1 pixi) and has been verified in many numerical comparisons done.

Proof of (b). Since the proof of the left half of (4.12) is very similar to the proof of Theorem 3.1
given earlier, we merely sketch its proof. Now choosing the same partition of[a, b] as used for
Theorem 3.1, we have

h1 =
n−1∑
j=1

Wjpj −
n−1∑
j=1

Wj

p2
j

Rj

,

where from (2.19).

Wj = f(x∗j)− f(xj)− (x∗j − xj)f
′(xj) ≈ f(xj + g(xj))− f(xj)− f(xj)f

′(xj) ,

sincex∗j ≈ xj + g(xj) was shown in Lemma 3.2 earlier. Also,
∑n−1

j=1 Wj
p2

j

Rj
can be shown to be

O(∆x). Now
∑n−1

j=1 Wjpj is a Riemann sum forD =
∫ b

a
a2(x)h(x)dx. Similarly, for a sketch

of a proof for part (c).
The proofs of parts (d) and (e) are similar to the proof of Theorem 3.1, part (a) given earlier

and are omitted.
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Remark 4.2. The results given on bounds for the Jensen’s gap in the continuous case on an
interval [a, b] are easily extended to certain types of improper integrals. For many applications
in applied probability, the choicea = 0, b = ∞ is very important. For example, ifa = 0 and
b = ∞, Theorems 3.1 and 4.3 are valid in this case provided the improper integrals exist, and
f ′′ is continuous on[0,∞).

For purposes of comparison, let’s determine the values ofL1, U1 in Theorem 3.1 andH1

andH2 in Theorem 3.1 and compare them to the lower bound given in Walker [28] for the
case wheref(x) = ex/2 andh(x) = e−x, x > 0. As discussed in Remark 4.2, Theorem 3.1
is valid for improper integrals as well since convergence of all integrals holds. These choices
for f(x) andh(x) were also used in [28]. There, the author obtainedD = 2.00 and Walker’s
lower bound onD was given as1.920. The new lower bounds onD (usinga = 0, b = ∞ in
Theorems 3.1 and 4.3, per Remark 4.2), areL1 = 1.899 andH1 = 1.946. Thus,H1 improves
on the lower bound of Walker [28], butL1 does not. However, Theorems 3.1 and 4.3 provide
upper bounds as well. They areU1 = 2.062 andH2 = 2.000. Per Theorem 4.3, part (b),H2

is exact in this case. The computer algebra package ‘MAPLE’ easily computed all necessary
integrals. The bounds of Walker [28] assumesf(x) has a power series representation of the
form f(S) =

∑∞
n=0 ωnS

n for 0 < S < R, whereR > 0, and assumesf(x) is convex. The new
boundsL1 andU1 make no convexity assumption and require only continuity off ′′(x). The
H1 andH2 bounds do, however, require convexity and either 3-convexity or 3-concavity. The
bounds of Walker [28] are given in terms of an arbitrary probability measure on(0,∞), so it is
valid, in particular, in the discrete and continuous cases; one does not need separate formulas for
these two cases, unlike the bounds of Theorem 4.3 given in this paper. However, the new bounds
presented in this paper can handle cases that previously proposed bounds can not. Moreover,
they lead to extensions of various well-known results, such as Levinson’s inequalities and other
types of convexity, such as convexity in the geometric and harmonic mean. They also have
applications to applied probability and reliability theory some of which was discussed in [21].

Next, we demonstrate how Theorem 4.2 can be used, along with Theorem 4.3 to get more
inequalities of Hermite-Hadamard type for 3-convex/concave functions. Note that convexity of
f is not required, just convexity off ′.

Theorem 4.4.Letf (3) be continuous on[a, b]. If f (3)(x) ≥ 0 on [a, b], then∫ b

a
f(x)dx

b− a
− f

(
a + b

2

)
≤ −f

(
a + b

2

)
+ f

(
a + 3b

4

)
+

b− a

24

(
f ′(b)− f ′

(
a + 3b

4

))

(4.17) +
2

3
f

(
3a + b

4

)
− 2

3
f

(
3a + 5b

8

)
− b− a

24

(
f ′
(

3a + 5b

8

)
− f ′

(
3a + b

4

))
.

If f (3)(x) ≤ 0 on [a, b], then the reverse inequality holds.

Proof. We shall prove only the 3-convexity case. Theorem 4.3, part (a) gives, withh(x) = 1
b−a

andg(x) = b−x
2

, a ≤ x ≤ b
(4.18)∫ b

a
f(x)dx

b− a
− f

(
a + b

2

)
=

∫ b

a

[(
b− x

2

)
f ′
(

b + x

2

)
− f

(
b + x

2

)
+ f(x)

]
· 1

b− a
dx .

Now

f

(
b + x

2

)
− f(x) =

∫ b+x
2

x

f ′(t)dt .
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Sincef ′ is convex, the Hermite-Hadamard inequality applied tof ′ gives

(4.19) f

(
b + x

2

)
− f(x) ≥ f ′

(
b + 3x

4

)
·
(

b− x

2

)
.

Then (4.18) and (4.19) and integration by parts gives

(4.20)

∫ b

a
f(x)dx

b− a
− f

(
a + b

2

)
≤ −f

(
a + b

2

)
+

∫ b

a
f
(

b+x
2

)
dx

b− a
−
∫ b

a
f ′
(

b+3x
4

)
·
(

b−x
2

)
dx

b− x
.

Also,

(4.21)

∫ b

a
f ′
(

b+3x
4

)
·
(

b−x
2

)
dx

b− a
= −2

3
f

(
3a + b

4

)
+

2

3

∫ b

a

f

(
b + 3x

4

)
dx .

Applying Theorem 4.2, part (a) to the functionsf1(x) = f
(

b+x
2

)
andf2(x) = f

(
b+3x

4

)
in

(4.20), we obtain, sincef1 andf2 are 3-convex,

(4.22)

∫ b

a
f
(

b+x
2

)
dx

b− a
≤ f

(
a + 3b

4

)
+

(
b− a

24

)(
f ′(b)− f ′

(
a + 3b

4

))
and

(4.23)
∫ b

a

f

(
b + 3x

4

)
dx ≥ f

(
3a + 5b

8

)
+

(
b− a

16

)(
f ′
(

3a + 5b

8

)
− f ′

(
3a + b

4

))
.

From (4.21)–(4.23), we obtain upon addition and subtraction, the desired result.

Remark 4.3. Numerical investigations suggest (4.17) improves on (4.7) in Theorem 4.2, but
no proof has been found. Also, the bounds given in Theorem 4.4 are quite good. Iff(x) is
3-convex, then we may apply the above theorem tof ∗(x) = f(a+ b−x) instead in the obvious

way to obtain a lower bound for
R b

a f(x)dx

b−a
− f

(
a+b
2

)
, (or an upper bound for this difference, iff

is 3-concave). Many more such inequalities of Hermite-Hadamard type can be obtained using
the methods given in this paper and will be discussed in a forthcoming paper.

Next, let’s consider some applications to reliability theory and applied probaiblity. First, let’s

obtain more convenient representations of the Jensen gapD =
∫ b

a
f(x)h(x)dx−f

(∫ b

a
xh(x)dx

)
in the form of (possibly) infinite series. Assume for the moment thatf(x) is real analytic on
some open set containing[a, b). In reliability theory,0 ≤ a < b ≤ ∞, so we assume this here
also. Then by Theorem 4.3, part (a), with the extension to a possibly improper integral with
g(x) < ∞ on [a, b), we obtain

(4.24) D =

∫ b

a

[g(x)f ′(x + g(x))− f(x + g(x)) + f(x)] · h(x)dx .

Sincef has a Taylor series expansion atx, we may write

(4.25) f(x + g(x)) = f(x) +
∞∑

j=1

f (j)(x)

j!
(g(x))j ,

assuming that the interval of convergence centered atx has radius of convergence greater than
g(x). (This would be true, for example, iff is a polynomial or exponential function.) Similarly,

(4.26) f ′(x + g(x)) =
∞∑

j=1

f (j)(x)

(j − 1)!
(g(x))j−1 .
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From (4.24)–(4.26) above, we obtain

(4.27) D =
∞∑

j=2

∫ b

a

(
j − 1

j!

)
· f (j)(x) · (g(x))jh(x)dx .

Equation (4.27) gives a nice and convenient representation of the Jensen gapD in terms of the
mean residual life functiong(x) for purposes of obtaining numerous new inequalities in reliabil-
ity theory. It can also be used to obtain many more new inequalities of Hermite-Hadamard type.
Note that (4.27) is a finite series for polynomial choices off(x) and is an easily manageable
infinite series for exponential functions, two very important special choices in applied proba-
bility and reliability theory, since moments about the origin and moment probability generating
functions are important in these areas.

In [18], the concept of mean residual life (MRL) function and decreasing mean residual life
(DMRL) is discussed. The theoretical aspects, importance, and wide range of applications of
these are surveyed and discussed. In [4], the increasing failure rate (IFR), increasing failure
rate average (IFRA) and new better than used in expectation (NBUE) nonparametric classes of
life distributions are discussed. See the above two references for definitions of these subclasses,
the IFR is the smallest, with IFR→ IFRA → NBUE. Also, IFR→ DMRL → NBUE. It is
also well known that ifX is a lifetime random variable and is a member of any of the above
four subclasses, then thenth moments about the origin ofX, µ′n = E(Xn) =

∫∞
0

xnh(x)dx,
n = 0, 1, 2, . . ., satisfy the inequality

(4.28) µ′n ≤ (n!) · µn ,

whereµ = µ′1 = E(X). This bound is sharp, since the exponential distribution withh(x) =
λe−λx, x > 0, λ > 0, is a member of all four subclasses. See [4], p. 116, for example.

First, let’s give another proof of (4.28) for the NBUE class. In the sequel, letf(x) = xn,
n = 1, 2, 3, . . .. We assume without loss of generality, thata = 0, b = ∞ below, since we may
takeg(x) = 0 for x > b, if b is finite.

Theorem 4.5.Suppose a random variableX is NBUE, that is,g(x) ≤ µ on [0,∞). Then (4.28)
holds, that is,µ′n ≤ (n!)µn.

Proof. The result is trivially true forn = 1. We shall use mathematical induction. Supposing
thatµ′n ≤ n!µn holds for some positive integern, (4.27) gives

µ′n+1 = E(Xn+1) =
n+1∑
j=2

∫ ∞

0

(
j − 1

j!

)
f (j)(x)(g(x))jh(x)dx + µn+1

≤
n+1∑
j=2

∫ ∞

0

j − 1

j!

(n + 1)!

(n + 1− j)!
xn+1−jµjh(x)dx + µn+1 .

But by the induction hypothesis,µ′n+1−j ≤ (n + 1− j)!µn+1−j, so

µ′n+1 ≤
n+1∑
j=2

(
j − 1

j!

)
µj (n + 1)!

(n + 1− j)!
· (n + 1− j)!µn+1−j + µn+1

= (n + 1)!µn+1

n+1∑
j=2

j − 1

j!
= (n + 1)!µn+1

(
1− 1

(n + 1)!

)
+ µn+1

= (n + 1)!µn+1 .

This completes the proof.
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Inequality (4.28) gives bounds onµ′n in terms of onlyµ. If the variance ofX or, equivalently,
µ′2 is available as well, then it is clear that we can improve on these bounds, using representation
(4.27) in a recursive fashion. In a future paper, we shall discuss the details. Also, lower bounds
for D can be obtained as well.

The above theorem can be generalized to a more general class than the NBUE. If there exists a
constantM with g(x) ≤ M on [a, b), whereM ≥ µ, then it is easily shown thatµ′n ≤ n!Mn+1.

Remark 4.4. Either representation (4.27) or Theorem 3.1 given earlier quickly yields the result

(4.29) σ2 = Var(X) =

∫ b

a

(g(x))2dH(x) =

∫ b

a

(g(x))2h(x)dx ,

if h(x) exists, whereσ2 denotes the variance ofX. If this representation of the variance as the
mean of the squared MRL function is already known, it is unknown by this author. In any case,
representation (4.27) is of much more general use. Using (4.27), it can be shown, for example,
that if X is NBUE, thenE(X3) ≤ 6µσ2, which is an improvement on (4.28) forn = 3, since
σ ≤ µ holds in the NBUE case. Bounds forE(Xn) for n ≥ 4 can also be obtained in a recursive
manner using (4.27) in conjunction with the Chebychev-Gruss inequality which also improve
on (4.28). We omit the details here.

More inequalities of type similar to those in [6], [7] and [8] can be obtained, if the equation
for h(x) is completely known, to obtain bounds on moment-generating functions and moments,
in particular.

Finally, we discuss the extensions of results given in this paper to other kinds of convexity.
In Niculescu [21], the following definition is given.

Definition. Let I, J be subintervals of(0,∞). Suppose thatt1, t2 ∈ I andp ∈ (0, 1). Let
f : I → J . Thenf is multiplicatively convex onI, if

(4.30) f(tp1t
1−p
2 ) ≤ f(t1)

pf(t2)
1−p .

This is a type of convexity according to the geometric mean, instead of the arithmetic mean.
From (4.29), it follows that ifti ∈ I, pi ∈ (0, 1) with

∑n
i=1 pi = 1, then, iff is multiplicatively

convex onI, then

(4.31) f

(
n∏

i=1

tpi

i

)
≤

n∏
i=1

f(ti)
pi .

As discussed in [21], iff : I → (0,∞) is a multiplicatively convex function and if we define
F by F = log ◦f ◦ exp : log(I) → R, where ‘◦’ denotes functional composition, thenF is a
convex function. We can rewrite (4.31) in terms ofF as:

F

(
n∑

i=1

piLogti

)
≤

n∑
i=1

piF (Logti) .,

Let DGM denote the ‘Jensen gap’

DGM =
n∏

i=1

f(ti)
pi − f

(
n∏

i=1

tpi

i

)

=
n∑

i=1

piF (xi)− F

(
n∑

i=1

pixi

)
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wherexi = Logti, i = 1, 2, . . . , n. Assumingx1 ≤ x2 ≤ · · · ≤ xn, we can apply Theorems 2.3
and 2.5 and corollaries to obtain bounds onDGM . We may also apply Theorems 3.1 and 4.3 to
the continuous analogue ofDGM as well, except we would substituteF (x) for f(x) throughout.
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