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ABSTRACT. In this paper, some new generalizations of Jensen’s inequality are presented. In
particular, upper and lower bounds for the Jensen gap are given and compared analytically and
numerically to previously published bounds for both the discrete and continuous Jensen’s in-
equality cases. The new bounds compare favorably to previously proposed bounds. A new
method based on a series of locally linear interpolations is given and is the basis for most of
the bounds given in this paper. The wide applicability of this method will be demonstrated.
As by-products of this method, we shall obtain some new Hermite-Hadamard inequalities for
functions which are 3-convex or 3-concave. The new method works to obtain bounds for the
Jensen gap for non-convex functions as well, provided one or two derivatives of the nonlinear
function are continuous. The mean residual life function of applied probability and reliability
theory plays a prominent role in construction of bounds for the Jensen gap. We also present an
exact integral representation for the Jensen gap in the continuous case. We briefly discuss some
inequalities for other types of convexity, such as convexity in the geometric mean, and briefly
discuss applications to reliability theory.
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2 STEVEN G. FROM

1. INTRODUCTION

It is well-known that the discrete Jensen’s inequality states th@atsfa convex function on
[a,b], p; >0,i=1,...,n, Z;’L:M?j = 1,andx; € [a,b],71=1,...,n, then

(1.1) D = szf(xz) — f <ZP1I1> >0.

The most general form of Jensen’s inequality states the?,ifF, 1) is a measure space with
w(Q) =1, f(x) is convex, ang(z) is au-intergrable real-valued function, then

(1.2) DZ/Q(ng)du—f(/diu)ZO.

In this paperg(z) = x, a very important special case. We shall mainly be concerned with the
discrete case and pass to the limit to the possibly continuous case.

Many papers have been written on Jensen’s inequality and its many companion inequalities.
See|[9] and [24], for example. In this paper, we shall obtain new inequalities for the Jensen gap,
D, in (1.1) and|(1.R). These will allow us to obtain new companion inequalities, including new
Hermite-Hadamard type inequalities for 3-convex functions.

We are concerned with obtaining bounds for the Jensergap(1.1). In continuous cases
where there exists a probability density function absolutely continuous with respect to Lebesgue
measuré:(z), then [1.2) becomes, in the continuous case:

(1.3) D :/ f(x)h(z)dx — f (/ x- h(x)d:t) .

We will obtain upper and lower bounds fdp in (1.1) and [(1.B) even iff (z) is not con-
vex/concave, provided has one or two continuous derivatives. We focus first on the discrete
case and present new bounds and compare them analytically and numerically to previously pub-
lished bounds. Later, we obtain, as a limiting case, bound®for the continuous case. We

shall obtain both an exact integral representation and an exact infinite series representation for
the Jensen gap in (1.3) for the special case whehéz) = 0, if 2 & [a, 1], that is, when the
support ofh(z) is [a, b], wherea < b are real numbers. Then it is a simple matter to extend to
the cases wherk — oo ora — —oo. In applied probability and reliability theory areas, the
functiong(x) below is of great importance:

2t 2)h(t)dt .
9@ = “rtydt srst

T

(1.4) g(b) = 0.

The functiong(z) is known as the mean residual life function. We shall see that the Jensen
gap bounds are strongly relatedgtar) as is the exact single integral representatiovdb be
given later in Theorermn 4.3. A new method is given to obtain the inequalities in this paper. This
method is widely applicable to obtain new Jensen type inequalities.

First, let's discuss the finite discrete case. The following bounds on the Jensen ghpve
previously been published. First, let’s discuss some ‘global’ bound® for

Several global bounds for the Jensen gapave been published. Two of the most prominent
are given below.
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Theorem A. (Dragomir [12]). Suppose),; > 0, Z;‘:lpj = 1. If fis a differentiable convex
mapping ona, b|, then

D = > pif(z)—f (szxz)
=1 =1
1 / !
(1.5) < ;0= a)(fb) - f(a) = Dy(a0).
The next theorem was given in [27].
Theorem B. Under the conditions of Theoren] A above,

D = szf(ﬂfz) —f (szifz)

(L6) < 1@+ 50 - 27 (57) = Sylan).

Theorem C. (Theorem 1 of15].) Let f : [a,b] — R be a differentiable convex function on
(a,b). Letz; € (a,b), i =1,2,...,n. Letp; > 0,7 =1,2,...,nandd ’ p; = 1. Let
T = Z?:l Pili. Then

D = S ) - @)

(1.7) > > pilf (@) = f@)] =Y pilwi— 3| |f(@)]| = Los.
=1 i=1

Theorem D. . (Theorems 1 and 2 diL4].) Let f : [a,b] — R be a differentiable convex
function on(a,b), z; € (a,b),p; > 0,i=1,2,...,n,> . p; = 1. Let D andz be as given in
Theoren C above. Then

(1.8) @ D < Zpifif/(xz‘) —T- Zpif/(%') =Up,
i—1 i—1

and

b)) D < Zpixif/(xz’)Jrf((f')l (Zpif'(il?i)>>

- (Zpif'm)) S pif'(w) = f(7) = Upa
1=1 n=1
(1.9) < Up,u,
where(f’)~! is the inverse function of the derivatiyé.

Next, let's present some of the best ‘local’ bounds for Jenselgape shall compare these
to the new bounds to be discussed in later sections.
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Theorem E. (Theorem 1 of2]). Let f : I — R wherel is an interval. Letr; € I,i =
L2,...,n,p > 0,0=12....,nwith>" p, = 1. Let M = max{xy,2s,...,2,}, m =
min{zy, xs, ..., 2z, }. If fis differentiable and’ is strictly increasing, then

(1.10) D= sz-f(:ci) —f (pr) <A,

where
A o= (f%) - f;(m)) ()1 (f%) - ﬁ,fm)> . Mf(nﬁ - Zf(M)
(1.11) —f ((f’)_1 (W)) = Uppp(1)

where( f')~! is the inverse function of’.

Theorem F. (Theorem 11 of2])). Let f : [m, M] — R be a convex function opm, M|, p; > 0,

i=1,2,...,n, > pp=1n>2andz; € m,M],i=1,....,n,withm <z; <z <--- <
T, < M. Then
(1.12)

D = szf(xz) —f <2p2x1>

< max {ppf(m) + (1 = pp) f(M) = f(pym + (1 — pp)M)} = Uppp(2)

1<k<n

where

k
pz:Zpi, k=1,2,...,n.
i=1

Theorem G. (Theorem 1.3 of17])). Let f[a,b] — R be continuous, twice differentiable on
(a,b). Letz; € [a,b], p; > 0,i=1,2,...,nwith > "  p; = 1. Supposen = inf{f"(z) : x €
[a,b]} andM = sup{f"(x) : x € [a, b]} exist. Then

(1.13) D = sz‘f(ffi) —f (ZM%) > % (ZP#? - (szxz) ) = Fy
i=1 i=1 i=1 i=1

and

2
M - 2 - —

The following theorem is a special case of a more general result givenlin [10].
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Theorem H. Let f : [a,b] — R be a differentiable convex function. Let € [a,b], p; > 0,
i=1,...,n,3 7 pj =1 Then

(1.15)

D = szf(l’z) —f <ZpZIZ>
; n Z1;2 " n o\ 1/2
(sz(f/(xz))2> : (szxf - (szxz) ) = Upq .

2. NEW BOUNDS - DISCRETE CASE

IN

To present new bounds f@?, we shall first need the following lemmas.

Lemma 2.1. Let f(t) be a real-valued function af on [c, d], such thatf(¢) and its first two
derivativesf’(t) and f”(t) are all continuous throughout the interval < ¢ < d. Let L(t)

denote the interpolating polynomial of degree 1 or less passing through the pairits)) and
(d, f(d)). Then for eact in [c, d], there is a numbef(t,) in (¢, d) such that

f"(€(t0))

(2.1) flto) = Lito) + =% (to = ¢)(to = d),
where

(2.2) L(to) = f(e) + (%) (to—c¢), c<d.
Thus, the approximatiofi(ty) ~ L(ty) has linear interpolation error
23) E(ty) = £(ty) ~ Lt0) = Tty oy 1y — a).

Proof. Seel[5], p. 111-113
Lemma 2.2. Let f(¢) be a real-valued function dfon [c, d]. Supposef(t) and its first three
derivativesf’(t), f"(t) and f®(t) are continuous througholit, d].
a)lIf f/(t) > 0and fO(t) > 0, c <t < d, then for each in [c, d], the approximation
error E(t) in the approximatiory (to) ~ L(t,), whereL(t,) is given by[(2.R), satisfies

(@@ - s+ ) - 022D < gy

(2.9 < 1fd) - £l - (@ = )] 2D,

whereE(ty) = f(to) — L(to).
b) If £/(t) > 0 and f®)(t) < 0, then [2.4) holds with the inequality reversed, that is, for

c <d,
)= £10) - = 20D < iy
25) < [(d - f(@) - f(d) + fo) - Lo WD)

(d—c)?
Proof. See[[19], p 364-366
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Now, we are ready to present some main results on bounds for the Jensén igape
discrete case.

Theorem 2.3. Let f(¢) be a real-valued function ofu, b]. Suppose thaf and its first two
derivativesf’ and f” are continuous ofja, b]. Suppose that < z; <z < -+ <z, < b.
Suppose; > 0,i=1,2,...,n,with} ", p; =1, p; > 0,p, > 0. Let

(2.6) Ri=pit+pui+-+pn=> py i=12...n,
j=i
* Pi+1 Pn Zﬁzm pLTL
2.7 T, = 5—Tiy1 + -+ Tp=——F"—, =1,2...,n—-1,
@7 Ry Riy1 Riq
and
o - () (5
(2.8) - (%)xi—l— 1—%)@, i=1,2,...,n.
Then there exist real numbefs, 0o, ...,6, 1 withz; < 0; <zf,t=1,2,...,n — 1 such that
D = > pif(z)—f (ZM%)
i=1 i=1
n—1 .,
0, . .
= I et - a0)
i=1
n—1
f"(0;) Pi\ s 2
(2.9) = D b L= ) i —w).

i=1

Proof. Define A; by

i—1
A = Zpo(l"L) + Rz‘f(iﬁ(i))
L=1

i—1
— ;po(l’L)‘i‘Rif ((%) i + <1—%> 35) L i=1,2,....n,

(2.10)

where any impossible sum is defined to be zero. Then
n n n—1

(2.11) f (sz$z> - Zpif(%) =A - A, = Z(Aj —Aj).
i=1 i=1 j=1

Now simple algebra givesV ™) = z* and
@12) Ay = 1y (5 = [ (B) s+ (1= ) se] ) =121,
J J

If v; = 2}, Aj — Ajy1 = 0. If z; < 27, then the expression in brackets [of (2.12) is the linearly
interpolated value of (7)) on the interval; < ¢ < 3. Lettingc = z;, d = 7, to = 2 in
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Lemmd 2.1, we obtain this value as
L) = 2 g+ (1- 2 1o
J
Thus there exists a real numbggrin (z;, ;) such that
. : "05) .. .
(2.13) F@) — L) = %(W) — 1)@ — ).
Thus, [2.1P) gives

",
Aj—Aj =R (M

) @ ) ) 10,

which is true also when; = z7, sincerV) = z; = x} in this case. Summing overgives,

using (2.1B):
(2.14) f (szﬂ) - Zpif(ﬂci) -y f”<20j) (27 = 2;) (@ = x5) - By

Also, simple algebra gives

and
f O Pl 19 n—1
xz T Rz<xz xl)7 7 y < 9 9
from which we obtain
(2.15) (29 — z)(zF — 2@ = % (1 — %ZZ) (xF —2)*, i=1,2,...,n—1.

Thus, [2.14) gives
D = Zplf(xz)—f<zpz$z>

(2.16) = 2 flléei)pi (1 — %) (xF — z;)?

and Theorer 2|3 is proved.

Remark 2.1. Note thaty; < 2 < ¥ and(x® —z;)(zf —2%) > 0,i = 1,2,...,n—1. Thus,
if f(t) is convex ora, b], then [2.1B) above is nonnegative as required by Jensen’s inequality.

From Theorem 2]3, we obtain the following corollary. The proof is omitted since it follows
immediately from Theorein 2.3.

Corollary 2.4. Under the assumptions of Theorem| 2.3, we have

[

n—1
LJ = _mzpz( ) .Z' _-Tz

=1
) I _xz = J

AJMAA Vol. 13, No. 1, Art. 1, pp. 1-29, 2016 AIJMAA
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where

m; = inf{f"(t):2; <t<zi} and
M; = sup{f’'(t):z <t<ai}, i=1, ,n—1.

2,.
If fis 3-convex ora, b], that is, the third derivativef® (x ) > 0 on[a,b], thenm; = f"(x;)
and M; = f"(x}). If f&)(x) < 0 on[a,b] instead, thenm; = f"(x) and M; = f"(x;),
1=1,...,n

Theoren 2. below improves on the bounds/grbut assumes more conditions prand its
derivatives.

Theorem 2.5.Let f(t) be a real-valued function afon [a, b]. Suppose thaf and its first three
derivativesf’, f” and f*) are continuous offu, b]. Suppose that < z; < zy < --- < x,, < b.
Suppose; > 0,i=1,2,...,nwith>" p;,=1,p, >0,p, > 0.

a) Suppose that”(t) > 0 and f®)(t) > 0,a < t < b. Let D be the difference

D = szf(l‘z) - f (ZPz%) .
i=1 i=1
Then

(2.18) ijpj < > <D< Zvjpj( %) = hy,

wherez}, 27 and R; are given in Theorefn 2.3 above,

Vi = (25 — x3) f'(2) — f () + fl;),

and
(2.19) Wy = f(x}) = flx;) = (2] =) f' (), j=1,2,....,n—1.
b) Suppose”(t) > 0and f®(t) < 0 on[a,b]. Then the reverse inequality holds, that is
(2.20) he <D < hy.

Proof of (a). The proof proceeds in the same way as the proof of Theprgm 2.3. Then, as before,
using the definitions ofi; given in [2.10) above,
(2.21)

A= A= 1 (£9) = [ (B) s+ (1= 2) sap)] ) s =120 im0,
j j
Instead of using Lemnfa 2.1, we use Len|m3 2.2, part (a) withz;, d = z;. Recalling that

L(z@)) = %f(xj) + ( — %) f(z3)), we obtain thatd; — A;,, = 0, if z; = 7. If v; < 27,
then we obtain

W, <(:E(j) —x;) (7] — 33(j))> < f(x(j)) B L<$(j))

(75 — x5)?

IN
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Multiplying by R;, using [2.11) and summing ovggives, as done in the proof Theorgm|2.3,
Z R;W;
From (1), we obtain, upon cancellation (of; z;)? terms

ZWJpJ( )<D<Zvjp]( %jj).

This completes the proof of part (a§.

(2@ — ;) (x) — z9) _ nl . (29 — ;) (xh — @)
(25 — ;)2 N T (@ a0y

IN
S

The proof of (b) uses Lemnja 2.2, part (b) instead and is omitted.

Remark 2.2. If f(t) < 0on|[a,b] and eitherf® () > 0 on|[a, b] or f®)(t) < 0 on[a, b], then
we may apply Theorein 2.5 tof(¢) instead to get bounds enD, hence orD.

Remark 2.3. The quantitiesh; andh, are nearly Riemann sums for various integrals when
passing from the finite case to the continuous caseras- oo and will be discussed later. At
least one of these bounds for larges usually very good. This will be seen in Theorgm|4.3
later.

Remark 2.4. The bounds given in Theorerps .3 2.5 use a series of local linear interpola-
tions ‘moving forward’ fromzx = z; to x = z,, from left to right. However, a moment’s reflec-

tion reveals that we could also perform the sequence of local linear interpolations in ‘reverse’
order. Letf*(z) = f(a+b—x), wherea = z1,b = z,,,a < = < b. Thenf*(a+b—z) = f(z),
a<z<bandd . pif(x:)=> 1 por1—if*(a+b—z,41_;). Replacing; by p,i1_;, z; by
a+b—x,41_; andf by f*in Theorem$ 2]3 ar{d 2.5 allows us to obtain ‘reverse order’ versions
of Ly, J;, hy andhy. Call theseL?, Uj, hi andhj, respectively. These new ‘reverse order’
bounds sometimes do improve an, U}, hy, hy bounds.

Next, we state the famous Hermite-Hadamard inequality. This will be needed in the proofs
of several new results to be discussed in this paper. In addition, we shall present a refinement
of this inequality later for convex functions which are also 3-convejuob.

Hermite-Hadamard inequality. Let f be a convex function ofw, b], wherea < b. Then
a+b 1 b f(a)+ f(b)
_ < < 2R
(2.22) f( : )_b_a/af(x)dm_ :

Next, we show that the bounds of Theorem) 2.5 are better than Corpllary 2.4 bounds, if we
have the assumptions of Corollary[2.4 met.

Theorem 2.6. Suppose that the assumptions of Thedrefn 2.5 hold.
a) If f/(t) > 0and f®(¢) > 0 on|a,b], then

Ly<hi <D< hy<Uy.
b) If 7(t) > 0and f®(t) < 0onla,b], then
Ly<h,<D<h<U,.

Proof. We shall prove a) only. The proof of b) is very similar and is omitted. From Theorem
[2.5, it remains only to prové; < h; andh, < .J. We shall provei, < U, only; the proof that
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L; < hy is very similar and is omitted. Then

Sy (1B
s ;V]pj (1 Rj)
223) — X5 = ) ) = £+ fa)ns (1= )

By the Mean Value Theorem, there is a numh;eE (0,1) such that

(2.24) o+ A = ) = “ii —xj </ A dt) <$ ‘%) |

But f®)(t) > 0, sof’ is convex orla, b]. By the Hermite-Hadamard inequality appliedfto

(2.25) —x/ 1) dt>f<J+x>:f'<xj—l—%(a:;—xj)).

From (2.24) and5), we get(z; + \j(2) — ;) > f'(z; + 2(a — x;)). Sincef is

increasing)\; > % must hold. Thus,

Fa) = 1(a) 2 (4 500 =) - 05 = )

and [2.2B) gives
w3 [ 7= (0 505 - o) 5 - (1-2)

Applying the Mean Value Theorem again to the expression in brackets, we can find a number
A in (0,1/2) such that

P =1 (ny+ 505 - 2)) = 109 5

2(xj — ;).

Thus,

IN

n—1
1 [y * Pj *
hz Z §f ()‘]>p] (1 — ﬁz) (I‘j — 37]')2

< Y oMp (11— ) (2 —xy)’ =0y,
— 2 R;
whereM; = sup{f”(t) : z; <t < x}}. This completes the proof of aj.

How do the new bounds given in this paper compare to previously published bounds? For
largen, the new bounds are quite good, based upon many numerical comparisons done and not
reported here

Next, let's compare some of the new bounds to the previously proposed bounds discussed in
previous works, both analytically, when it is possible to do so, and numerically. In most cases,
comparisons are somewhat delicate since different bounds have slightly different assumptions,
and have greater degrees of computational complexities so that we are comparing ‘apples and
oranges’. However, such comparisons give some idea about utility and relative merits of bounds.
From the results of numerical comparisons, it is the case that most of the bounds, both old
and new, are the best for some choiceg,0dndz; andn, but the new bounds compare very
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favorably to previously published bounds. Moreover, some of the new bounds are still valid for
non-convex/non-concave choicesfdfr) and lead to some nice applications.

The following theorem states that bounflg andU; are at least as good as the bourids
and Fy discussed [17] and given in Theorém G earlier. It should be mentioned, however, that
the F, and F; bounds do not require continuity ¢f’, whereas the new bounds, andU ; of
Theorenj 2.3 do require it. Hence, the bounds of [17] are slightly more generally applicable.

Theorem 2.7. Suppose that Theorgm R.3 assumptions hold L,etnd U; be the new bounds
of Corollary[2.4. LetF;, and F; be the bounds discussed in Theofe G. Let

D = sz'f(mi) —f (ZZM@) .
i=1 I=1

Then

a)Fr<L;<D
by D< U, <F,.

Proof. We shall prove part a). The proof of part b) is similar and is omitted. The inequality
L; < D was proven in Corollary 2|4. First, replacirigz) by f4(z) = 22 in Theorenj 2.8, we
obtain

n n 2 n—1
Zpix? - (ZP%&) = ij (1 - %) (@} — %‘)2-
i=1 i=1 J=1 !

Then, withm = inf{f"(t) : a <t < b}, m; = inf{f"(t) : z; <t < z}}, we get
n n 2 n—1
_m 2 _m Dj * 2

n—1
S o s

i=1 J
This completes the proof of part &.

From numerical comparisons done, it appears that the following general conclusions are
valid.

(1) The new bounds based dpandh, of Theorenj 2.6 are often the best, but these are not
as widely applicable as the other bounds, both old and new.

(2) The new lower bounds ; and L ;- are not as good akps when the variance of; is
large, unless is large. Then they are significantly better.

(3) Among the upper bound$]; andU;- are usually better thatvp 1, Up 2, Ugpp(1),
Uspp(2), Upg, if the variance of the;; values is not too large. But for large U; and
U,- are substantially better regardless of variance.

(4) For non-convex/non-concave choices fdr:) with f”(z) continuous, only the new
bounds given in Theorein 2.3 and Corollary|2.4 and fhe Fy; bounds of [[17] are
applicable. Of course, in this case, Theofen 2.7 stated that the new bounds are at least
as good.

(5) Most of the bounds discussed in this paper are the best or nearly so, for some choices
of p; andz;. Given this fact, how amenable are the bounds, both old and new, for con-
venient applications? It will be seen that the new bounds can be used to refine various
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inequalities, such as the Hermite-Hadamard inequality and to obtain brand new inequali-
ties in probability and reliability theory. We briefly discuss some other applications first,
which are more of a classical nature.

Remark 2.5.If f(z)islog-convex ora, b], then we may apply TheorefnsP.3 2.510f ()
instead off () to obtain bounds o®* = """ | p;Lnf(z;) — Lnf (3., piz;). Then exponen-
tiation will provide bounds on the ratio

Ve
/ (Z?:l piti)

If f(z) = Ln[(£2)"],r > 0,0 < 2 < 1/2, then we obtain new and improved inequalities of
Ky-Fan type. In[[11], upper bounds are given &t . See their Theorem 1, p. 52 and Proposi-

tion 5.6, p. 61. Numerical comparisons of these bounds to the new bounds suggest that the new
bounds derived from Theorem .5 are always better and that the Cofollary 2.4 bountls for

are better if either the variance of threvalues is not too great, or if is large. Theorems 2.3

and 2.5 can be used to obtain new refinements of the classical arithmetic mean-geometric mean
(AM-GM) inequality. These new refinements compare favorably to many previously discussed
bounds for the difference and ratio of arithmetic mean and geometric means. Théorems 2.3
and[2.5 have been applied to obtain many new bounds in information theory sh:em@spy

bounds discussed in Theorem 4.3[of|[11]. These new bounds, in numerical comparisons done
have been found to compare very favorably to other bounds in this case as well.

The new bounds can also be widely applied to obtain bounds for quantities of interest in
information theory. We consider here one such application. Supfosea discrete random
variable with suppor{z,, z,,...,z,} where0 < z; < --- < z,. Letp;, = Prol X = x;),
1=1,2,...,n. Suppose; > 0,7 =1,2,...,n. Then theb-entropy ofX is, using the notation
of Dragomir and Goh (1996):

= pilog, (l) . b>1.
=1 pi
In Dragomir and Goh (1996), the following theorem is given.

Theorem |. (Theorem 4.3 of Dragomir and Goh (1991).)

. < - -
(2.26) 0 < Log,n — Hy(x <+ b[ Zpl 1

Equality holdsifand only ip; = =,i =1, 2,.

If we take f(z) = —Log,z in Theore, part (b), we immediately obtain the following
corollary, which gives both an upper and lower bound for Jrog H,(z).

Corollary 2.8. Suppose that; > 0,7 = 1,2,...,n, Z;‘ 1pi =1L LetP(1 > P(g) > e >
n) denote they; values ordered from Iargest to smallest. het= -—, 7 = 1,2,... n. Let

f( ) = —Log,z. Then

(227) I; < Logbn — Hb(ill') < [U,

where[,, is the value of:, in Theorenj 2.5 withP; replacingp; everywhere in Theorems 2.3
and[2.5 and;; is the value of; with these same replacements.
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Proof. The results is immediate, except we note here that since it was assumed that <

- < z,, and we are choosing;, = pi we must order the, values before we can apply
Theorent 2.p, part (b). This is no problem since entropies are invariant to permutations. Of
course, ifp; = % for all 7, then we obtainf;, = J; = 0. 1

Numerical comparisons of the upper bourig given in Theorem 4.3 of [10] with the new
boundI;; of Corollary[2.4 found that the new upper bouhdis always at least as good &g,
but no proof could be found. However, Corollary|2.4 also provides a very good lower bound
I;,. Here we present a small numerical comparison.

Supposer = 3, P, = .5, P, = .3, P; = .2 Then we také = e here, but the choice of the
baseb > 1 is irrelevant for purposes of comparison. We obtain

Log,n — H.(X) = 0.0690, Uy = 0.1400,
I, = 0.0569, Iy = 0.0881, Ly =0.0379, U; = 0.1400.
The boundl;; improves onUy especially if thep; values are not extremely diverse. The
lower bound/;, is also quite good. A theoretical reason for this will be given later. The
bound is, however, easier to compute than the new boutidss better thart/; when thep;

values are not too diverse. Otherwigg, is better thari/;. (Here, bothUy and U, are the
same.)

3. INTEGRAL REPRESENTATIONS AND BOUNDS

Theoren] 3.]1 below extends the bounds to the continuous case. We present bounds for the
continuous Jensen gdp.

In the continuous case, we assume tHét) in Theorenj 3./1 below is continuous ¢n b],
with H(a) = 0, H(b) = 1. Thus,H (z) is a continous distribution function da, b]. In most, but
not all cases, there will exist a probability density function absolutely continuous with respect to
Lebesgue measurk(z) with H'(z) = h(z) on|a, b], but we do not have to make this assump-
tion in Theorenj 3]1. For this reason, we shall use Riemann-Stieltjes integrals in THeorem 3.1
to obtain a slightly more general result. All integrals below are of Lebesgue-Stieltjes type.
Since we are intergrating with respect to a bounded continuous monotonic function, they can
be considered Riemann-Stieltjes integrals as well. The fungtiohgiven in (3.1) in Theorem
[3.1 is called the mean residual life function and plays a prominent role in applied probability,
reliability theory and statistics. Sele [18], for example. First, we consider the bounded support
case.

Next, we consider the continuous version of Jensen’s gap utilizing Lebesgue/Riemann Stielt-
jes integrals.

Theorem 3.1. Suppose thaf” is continuous orja,b]. Let H(x) be a bounded, continuous
nondecreasing function o, b] with H(a) = 0 and H(b) = 1. Supposé) < H(x) < 1 on
(a,b). Let

[t —2)dH(t)  a<a<b,

(3.1) g(x) = )

lim, ;- g(x) =0, z=0.
Let
(3.2) q(x)=mf{f"(t):x <t <x+gx)},
and
(3.3) (o) = sup{f(t) s < 1 <2+ g(a)).
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Let

(3.4) L= [ a@wrae.

and

(35) 0= 3 [ et ane).

Then

(3.6) L < /abf(x)dH(x) _f (/b de(x)) <u,.

The proof of Theorem 3|1 will utilize Lebesgue-Stieltjes sum approximations. $iiiteis
a bounded nondecreasing function, this is equivalent to Riemann-Stieltjes sum approximations.

Given any partitiorP = {xg,x1,...,x,} Of [a,b] Witha = 2y < 27 < -+ < z,, = b, We
shall let||P|| denote the norm or mesh of the partition. THEP|| = max{x;1; —2; : 0 <
i < n — 1}. We shall apply Theorenjs 2.3 and]2.5 to a partitRmith suitably small enough
|P||. We shall assume;,; — z; = ||P| = Az,i = 0,1,...,n — 1 throughout. Letp; =
H(l'j) — H(‘I’j,1>, j = 172,...,77,. Thenp] 2 O, j = 2,...,” — 1, P11 > 0, Pn > 0 and
>_;—1pj = 1. The Riemann-Stieltjes sums involved with utilize integrand values at z;
j=1,2,...,n. LetR;, zy andz® be given by[(2[7)}(2]8) of Theordm .3 for these choices of
zjandp;,7=1,2,...,n. ThenR; =1 - H(x;),1=1,2,...,n— 1.

To prove Theorerp 3/1, we need the following lemmas.

Lemma 3.2. There exists a constaif; > 0 such that
(3.7) 12 (z}) — (zf — )% < K1Az, i = 1,2,...,n.
Proof. Let

B = 1-H(), C — /b(t—xi)d]-](t),

n—1
C; = (Tp11 — ) - (H(vp41) — H(s)).
L=i
Then
T B L L AH ()
Now |t — 21| < Az, L =14,...,n— 1. Thus,
(3.8) lg(x;) — (] —ay)| < Az, i=1,2,...,n—1.

Also, clearly we have

lg(z;) + (2] — ;)] < sup{g(t):a <t <b}+max{z] —xz;, i=1,2,....n—1}

(3.9) < (b—a)+(b—a)=2(b—a).
Multiplication of (3.8) and[(3.9) produces

1% (z;) — (2] — 23)?| <2(b—a)Az, i =1,2,...,n.
Letting K; = 2(b — a), the proof of Lemma 3|2 is complet.
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Lemma 3.3. Under the conditions of Lemma B.2, we have the following. Let

Z; = sup{|f"(t) - "(903)| ap St <mi+ g}, faf <@+ g(n),
Zy = sup{[f"(t) = f'(xi + g(xi)| s wi + g(x:) <t < a7},
ifz; +g(x;) <zl i=1,2,...,n—1.

Then
lsup{f"(t) :x; <t <} —sup{f'(t) :w;i <t <wi+gx)}| < Z;,i=1,2,....,.n—1.
Proof. Consider the case’ < x; + g(x;). Then forz; <t < z; + g(x;), we have

fr(@&) = f@)) + (1) = (=)
< sup{fU(t) ra <t < a4+ (1) — f(2)
< sup{f(t):x; <t <} + 7,
sincez; < x} < z; + g(z;). Since this holds for all with z; <t < z; + g(z;), we obtain
sup{f"(t) :x; <t <a;+g(x)} <sup{f'(t):x; <t <z} + Z.

Since[z;, =] C [z;, z; + g(z;)], subtraction proves the lemma. The proof of the other case is

similar and is omittedy

Proof of Theorerm 3]1First, assume thalf (z) satisfiesH (z) < ’ng:g, a < x < borsome
integerk. We shall then prove the general case.

We shall prove only the upper bound right half pf {3.6) in Theorem. 3.1 The proof of the
other half is very similar and is omitted. Let's show that there exists a positive numilserch
that for everye > 0, we have

(3.10) /abf(:p)dH(x) —f (/abde(x)) < Uy +eM,

wherel; = 3 f q2(z)(g(x))*dH (). Sincef is uniformly continuous o, b}, there is &, >
0 such that ifP = {:cl,xg, ..., Z,} is a partition offa, b] with ‘fab zdH (x) — > 0 piri| < 01,

§ 'f(/abxd]-] ) (me)

Since) ! | p;z; is a Riemann-Stieltjes sum fgff xdH (x), thereis @, > 0 such thaf|P|| < d,
implies ’f: xdH (x) — > 0| pit;

(3.11) ‘f(/ wdH (x ) (Zp;@)

Similarly, there is &3 > 0 such that|P|| < 5 implies

/f JdH (z sz 7

< 07 and thus

€.

(3.12)

< €.
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Takingd, = min(dy, d3), we see that if|P|| < d4, then

[ s~ 5 ([ van)

Now apply Theorem 2|3 to the right-hand side[of (8.13) utilizing Lemm3s 3.2 ahd 3.3 to show
that [3.10) holds. To this end, define

Yii = sup{f’(t):az; <t <uai}
Yo, = sup{f'(t):xi<t<uzi+g(x)},i=12,...,n—1
q2(4) .
Let

n—1
1 2
@:=§;;nm(1 )x—w»,
1n—1
= 3 Yiz
Qz 2; 2,iP
n—1
Qs = =3 va (1-2) (g2
21,:1 ’ R;

1n—1
Qi = 5> Vo))’

Note thaty;; = M; in Corollary[2.4 and, is the upper bound on

D = szf(xz) - f (ZM%)

1—

/\

given there. Then

(3.14) me(ac» —f (pr> <Q.

Now, clearly, we have

(3.15) Q1 — Ui < 1Q1 — Q3] 4+ |Q3 — Q2| + Q2 — Q4| + Qs — Un].
Then

1n71 . .
(3.16) @ = Qal < 5D Il (1 - %) = ) — (g(a))?]

=1
Since| /| is bounded, Lemmla 3.2 shows th@t — Q3| is O(Axz), that is, there is a constant
K, > 0 such that
Q1 — Q3] < KpAx.

By Lemmag 3.2 and 3.3, from the fact that; — Y2,| < Z; and the uniform continuity of”
on [a, b], givene > 0, we may takeAz small enough so that

(3.17) |%—Qﬂ§§wﬂ@@)a<t<ﬂ< - a)?.
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Since@), is a Riemann sum approximation, givene > 0, we may chooséx small enough
so that

(3.18) Qs —Un| <e.

It remains to show that), — Q4| can be made arbitrarily small || = Az — 0. By the
boundedness dff”| on [a, b], there exists a constaif, such that f”(z)| < Ky, a < x < b.
Then

n—1
p;
Q- Qul < 5K Y R,<g<xi>>2-

i=1 "
Clearly, g(x;) < b —x;, 1 = 1,...,n. Also, R; — H(z;), i =1,2,...,n — 1. Let
S(z) = L5, a < w < b. SinceH (z) < k=g, S( ) (k+b— a)(b— x) a<x<b. Let
S(b) = lim,_,- S(z) = 0. ThenS(z) is bounded ofja, b]. Sinced < 9 © < S(z;), there is
a constanf{; such that) < (9(;—))2 < K3. Thus,

n—1
1
|Q2 — Q4] < §K2K3 lef
Now

sz < sz < sz sup (H (z;) — H(xi-1))

1<1,<n

which can be made arbltrarlly small as— oo, by the uniform continuity off(-) on|a, b], and
since} """ | p; = 1. Thus, we may takéP| = Az small enough so that

(3.19) |Q2 — Qu] < €.

Since all four absolute differences [n (3.15) can be made arbitrarily smalkas ||P| — 0,
we can makeQ, — U, | arbitrarily small. So we can chooger small enough so that, from

(315){3-1D), we obtain
Q1 — Uy < KeAx + - (b—a) + 2¢.

ChoosingAz < ¢, then

Q1 — Uil < (K2+ —(b—a)? +2> N
In particular,
(3.20) Q1§U1+(K2+ (b—a))-e.

From the definition of); and Corollary 2.4, andl (3.20), we obtain ftwr small enough,

[ r@an) s ([ ano))

< ZPif(%) - f (ZP&%) <@ <U + Me,

i—1 i=1

whereM = Ky + 1(b—a)® + 2.
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Thus, [3.1P) holds for at > 0 and H (x) with H(z) < #2=2 for some integek. Now
suppose the general case féfzx). Let

Hl’ +u
Hy(z) = ()b_ak, a<x<b, k=123,.
1+ 5%
Then
k+z—a
H <x<bh =1.2,3,....
k(x>_k+b_a7 GO~ >0, 7737

Thus, the conclusion of Theor¢m B.1 is valid fé¢(x) in place ofH (). Nowlimy_.., Hy(z) =
H(z),a <z <b, |Hy(x)] <1l,a <z <b k>1 Letgyx), gax(z), L1 andU,  be the
values ofg(z), ¢2(x), L, andU; given in Theoren 3|1 wittH,,(x) replacingH (x) throughout,
respectively. Then

(3.21) /abf(l“)de(if) —f (/abfﬂ ' de(f)) < Uy,

where

Ui = 5 [ aale)lade) o).

[Pt — ) dHy (1)
1— Hk((L') ’

@r(x) = sup{f’'(t):z <t<az+g(zr)},

Clearly, |g2 1 (x)| < sup{|f"(t)] : a <t < b}. Also, |gi(z)] <b—a,a <z <b, k> 1. Also,
limy_o0 @24 (2) = g2(x). In addition,

gr(x) a<z<b, gb)=0, and

b b (b—
tin [ i) = [ sinto) s i = E [ o

b
(3.22) = / f(x)dH (z)

Similarly, by the continuity off,

lim f (/abdek(x)) = lim f (/aba:dH(x) _ %(b;i)ébi; a2)>

(3.23) = f </:de($)> :

and

klggogk( o limg 0 <f (t—x)df‘.i_]—;(i)t—x <k+b a>dt>

= g(x), a<z<b.

AJMAA Vol. 13, No. 1, Art. 1, pp. 1-29, 2016 AJMAA


http://ajmaa.org

GENERALIZATIONS OF JENSEN S INEQUALITY 19

This holds forx = b, also. Also, by the Dominated Convergence Theorem,

lm Uy = nm1( / o (o) () dH () + / k@) (aul2)? de)

k—oo k—oo 2 ./{Z—l—b—a

b
= 5 | gl dn@ = 0.

(3.24)
and the proof of Theorem 3.1 is complege.

Remark 3.1. In a few results to come later, we shall need to assume the existence of a density
functionh(z) = H'(x) on|a, b]. This will be needed in some applications to be discussed next.
In this case, the mean residual life function is

[Nt @)t o
= e ST

(3.25) gb) = 0.

4. EXACT INTEGRAL REPRESENTATIONS AND APPLICATIONS

Next, we present various applications of some theorems in S¢¢tion 3. They are improvements
on the classical Hermite-Hadamard inequality. Many such papers have been published and they
are too numerous to cite. However, see [1], [3]/[22] and [23].

Theorenj 4.1 below is a refinement of the Hermite-Hadamard inequality for convex functions
which are also 3-convex dn, b], and is an application of Theorgm [3.1.

Theorem 4.1. Let f be a convex function ofa, b]. Suppose thaf is also 3-convex offu, b],
that is, the third derivativef® () > 0 on[a, b]. Then

a)
(4.1) OSNlSﬁ/abf(x)dﬂf—f(a;b)gNg
where
i () )
and
e () (29
and
b)
(4.4) [ v g () SO0,

thatis, N, + f (%£?) is at least as good an upper-bound 887/ W is for ;1 [* f(x)dz.
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Proof of (a). We apply Theorel to obtaiN; from L, in Theore. Theh(z) = ;1
a<x<b, g(x) = 2 andg (z) = f"(z), sincef® > 0. Then

/f Vo — f (a+b)
zL1=2/aq1( 2)h() e () @

Integrating by parts twice, we obtain

L, - _(bg_a)f/(a)+2(bl—a) /b<b;x) (@)
(4.5) = s P - (5 @ [ ]

Applying the Hermite-Hadamard inequality to the integralinj(4.5), we obtain:

b iy - (50 oo ()]

- 5 -y 5 (5]

- Nl-

This proves the first non-trivial left half of (4.1). To prove the other half involvivig we pro-
ceed similarly with a few modifications. Using(z) = f”(z+g(z)) = f” (45%), Theorenj 3]
gives

1

o= o / 02(z) - h(z) - (gla))?de

1 [, (x40 1 b—a\’
o[ () () e

Making the substitution, = IT”’ and again integrating by parts twice, we obtain

o= [ 0w

—a

~ —(b—a), (a+D 1 b ,
- f( ! )—b_a/G;bQ(u—b)f(u)du
—(b— b b b
(4.6) - (4 “)f'(“; )—f(a; )+2/a2+bf(u)du
Applying the Hermite-Hadamard inequality {ﬂﬂ}’, b] to the integral in6), we obtain:
—(b—a), (a+b a+b 1 a+b
i U (1) (50) 1 (5 (25) )

~ —(b—a), (a+Db a+b 1
- SOy () - () o
= N2 .

This complets the proof
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Proof of (b). Now simple algebra gives

s (242) < L0110

2 2
f(a§b>—fw>s(b;“)f(“§b),

which is equivalent to
- a) ,(a+b
< :

But f is convex, sof’(t) < f’ %) a<t< “+b . So
b

w452 (:2)

holds and the proof of (b) is completg.

if and only if

Remark 4.1. Upper bound[(4]6) is a better upper bound thénand is exact for quadratic
choices off(z). Similarly, (4.5) is a better lower bound thayj and is also exact for qua-
dratic choices forf(z). Using [4.5) and (4]6), we could, if desired, get even better refinements
by applying the Theorein 4.3 to the integrals|in [4.5) (4.6) and ‘iterating’ to the limit on
successive intervals half as large at each iteration. Of course, this would give much longer
expressions for bounds and involve evaluatiorf @ind ' at more and more points [, b].

Theorenj 4./ required convexity gfin the form of f”(z) > 0 on|[a, b]. But, as pointed out
in Fink and Pales (2007), we may often replace this condition by less restrictive assumptions
on f(z). In any case, the next theorem, Theofen) 4.2, gives a Hermite-Hadamard type of bound
requiring only 3-convexity or 3-concavity dn, b|, and not convexity of itself.

Theorem 4.2. Suppose ) (z) is continuous or{ua b].
a) If f(x)is 3-convex offa, b], that is, £ (x) > 0 on[a, b], then

an BB < () () (o ()
and
oo B L () (052) (0 () -re)

b) If f(z) is 3-concave offu, b], then inequalities] (4]7) and (4.8) hold with the inequality
signs reversed.

Proof. We shall prove only (4]7) part (a). The proof pf (4.8) of part (a) follows upon considering
the functionf*(xz) = f(a+b — :):) and noting thaff*(x) is 3-convex, iff(z) is 3-concave and
vice-versa. Alsoj;’f( de = f [*(z)dz and f (4£2) = f* (%£2). Part (b) follows from part

(@) using— f(z) instead off (x) in part (a) To prove (a), apply Theor.l with{z) = =2,

a <z < b Theng(z) = 5%, a < = < b. Sincef is 3-convex,f” is nondecreasing in its

argument. Clearlyg(z))? = b‘T‘”)2 IS nonincreasing ir. Then Theorel gives
b
d b 1

—a
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An application of the Chebychev-Gruss inequality gives:
fabf(x)dx a+b L[ (z+b b—a\> 1
b—a = f( 2 )+§/af( 2 )( 2 ) o™
a+b 1 b T+b 1
G5 ) s (L (5 5)
' /(b—:}:
a 2 b—a
a+b b a+b
- (57)+ (%) o (457))

The proof of [4.7) in part (a) is completg.

Next, let's consider boundsquf(x)h(x)dx—f <fabx - h(:c)dx) = D. From Theore5,
we obtained in[(2.18)

hi = SWJPJ‘ (1 - %]]) < ipif(ﬂ?z') —f (ipm>
< ZVJPJ ( ) = hy

or its reversal[(2.20). We shall now show that the bobnis a ‘best possible’ bound as— oo
when considering; = H(z) — H(x;_1). Even if f/ and f® are not of one sign, it will be
proven thath, approache® asn — oo, so that the integral or continuous analoguefowill
be an exact representation. Thuysbehaves like a Riemann sum fbr. We have the following
theorem.

IA

N

Theorem 4.3. Suppose’ and h are continuous offu, b]. Let

(4.9) ai(z) = f(z +g(x)) — f(x) — g(x) f'(2)
and
(4.10) az(z) = g(z)f'(z + g(x)) — flz + g(z)) + f(2).
Then

a)

(4.11) D= / F(@)h(z)dz — f (/abxh(:p)dx) = /ab as(z)h(z)dx = Hy .

b) If £©)(x) is continuous ofa, b], f”(z) > 0 and f®(z) > 0 on|a, b], then

(4.12) H, = / 1(z)h(x)de < D = / x)dr = H,.
c) If f® () is continuous ofa, b], f”(z) > 0 on|a,b] and £ (x) < 0 onla, b], then
(4.13) H,=D < H,.

d) Under the assumptions of part bfy; is a better lower bound fob than isL; given in
Theorenm 311, that id,; < H;.

e) Under the assumptions of part dY; is a better upper bound fab than isU; given in
Theorenp 311, that id/; > H;.

AJMAA Vol. 13, No. 1, Art. 1, pp. 1-29, 2016 AIJMAA


http://ajmaa.org

GENERALIZATIONS OF JENSEN S INEQUALITY 23

b
Proof of (a). Recall thaty(z) = W

for differentiating an integral, we obtain

, upon differentiation ofj(x) using Leibnitz’s rule

(4.14) g (x) = —= -1,

whereH (z) = [* h(t)dt. Thus

hy :!/axwmm¢w—/<m>fu+g<» Fo + (@) + f(2)h(z)de

= bg()f(wrg v)dr — [ flz+g())h(z)de + [ f(z
J [ [

Making the substitutions = w(z) = = + g(x) and using[(4.14) to obtain’(z), we obtain

hy = / I (w dx—/ flx+g(z (x)dx—l—/abf(x)h(:c)dx

Integrating by parts, and using(b) = 0, H(a) = 1, we obtain

b =~ @)+ [ Fwinei— [ )
(4.15) +/ab f(x)h(z)dx

upon application 04) above. Sineéa) = a + g(a) = ff zh(x)dz, we obtain

(4.16) hy = —f (/bx - h(m)dw) + /abf(x)h(x)dx

since the expression in parenthese$ in (4.15) equals zero. hasD and part (a) is proven.
Parts (b) and (c) explain why the bouhglis so good for larger when bounding ", p; f (x;)—
f (3o, pixz;) and has been verified in many numerical comparisons dpne.

Proof of (b). Since the proof of the left half of (4.1.2) is very similar to the proof of Thedrer 3.1
given earlier, we merely sketch its proof. Now choosing the same partition idfas used for
Theoren 3.1, we have

n—1

ZVVJPJ ZWJ

where from|(2.1P).
Wj = f(x}) — f(x;) — (0 — 25) [ () = f(2; + g(x;) — flx5) — f(2)f (25),
sincexr; ~ r; + g(z;) was shown in Lemm@ 2 earlier. Alsp;’—, LW p] can be shown to be

O(Az). Now 37—, ! W,p; is a Riemann sum fob = fa as(x)h(x)dx. Slmllarly, for a sketch
of a proof for part (c)

The proofs of parts (d) and (e) are similar to the proof of Thedrein 3.1, part (a) given earlier
and are omitteds
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Remark 4.2. The results given on bounds for the Jensen’s gap in the continuous case on an
interval [a, b] are easily extended to certain types of improper integrals. For many applications

in applied probability, the choice = 0, b = oo is very important. For example, if = 0 and

b = oo, Theorem$ 3]1 ar{d 4.3 are valid in this case provided the improper integrals exist, and
f" is continuous o0, co).

For purposes of comparison, let's determine the values,pf/; in Theoreny 3.]l and{;
and H, in Theoren 3]l and compare them to the lower bound given in Welkér [28] for the
case wheref(z) = e*/? andh(z) = e~*, x > 0. As discussed in Rema.2, Theor 3.1
is valid for improper integrals as well since convergence of all integrals holds. These choices
for f(x) andh(z) were also used in_[28]. There, the author obtaifed- 2.00 and Walker’s
lower bound onD was given ad.920. The new lower bounds of (usinga = 0, b = oo In
Theorems 3]1 an{d 4.3, per Remark 4.2), ye= 1.899 and H; = 1.946. Thus,H; improves
on the lower bound of Walker [28], but; does not. However, Theorefns|3.1 4.3 provide
upper bounds as well. They atg = 2.062 and H, = 2.000. Per Theorem 4|3, part (b},
is exact in this case. The computer algebra package ‘MAPLE’ easily computed all necessary
integrals. The bounds of Walker [28] assunmfds) has a power series representation of the
form f(S) = > yw,S" for 0 < S < R, whereR > 0, and assumeg(z) is convex. The new
boundsZ; andU; make no convexity assumption and require only continuity’tfr). The
H, and H, bounds do, however, require convexity and either 3-convexity or 3-concavity. The
bounds of Walkeri[28] are given in terms of an arbitrary probability measu(é,er), so it is
valid, in particular, in the discrete and continuous cases; one does not need separate formulas for
these two cases, unlike the bounds of Thedrein 4.3 given in this paper. However, the new bounds
presented in this paper can handle cases that previously proposed bounds can not. Moreover,
they lead to extensions of various well-known results, such as Levinson’s inequalities and other
types of convexity, such as convexity in the geometric and harmonic mean. They also have
applications to applied probability and reliability theory some of which was discussed in [21].
Next, we demonstrate how Theorém]4.2 can be used, along with Théorem 4.3 to get more
inequalities of Hermite-Hadamard type for 3-convex/concave functions. Note that convexity of
f is not required, just convexity of'.

Theorem 4.4.Let f® be continuous ofu, b]. If f&(z) > 00on|a,b], then

ff;‘iwidx_f(a%b) .y (a—;b) +f(a+43b) pboe (f,(b)_f,(ang»

2 . (3a+0b 2, (3a-+5b b—a ([, (3a+5b ,(3a+0b
em g (00) - (7)) - ()

If 3)(x) < 0on[a,b], then the reverse inequality holds.

1

Proof. We shall prove only the 3-convexity case. Theo@ 4.3, part (a) giveshith= —
andg(z) = b’Tz, a<z<b
(4.18)

Elete (43 L[ () o () o]

Now

b+x

f(b;x) — f(z) :/m C Pt
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Sincef’ is convex, the Hermite-Hadamard inequality applied'tgives

(4.19) f (b;w> @) s f (b+43x) | (b;x) |

Then [4.18) and (4.19) and integration by parts gives
o LI (b (et LT O L1705 ()0
—a _p

b—=x

Also,

Jop ey (55 de 2, (3a+b\ 2 [P [b+3z
(421) b—a = —gf + g/a f A dx .
Applying Theoren] 42, part (a) to the functiofig(z) = f (252) and fo(z) = f (2£2) in
(4.20), we obtain, sincg, and f, are 3-convex,

o L (52). (2) o (42)

and

b (b+3a 3a + 5b b—a 3a + 5b 3a+b
. > ! —f .
From (4.21)+(4.23), we obtain upon addition and subtraction, the desired mesult.

Remark 4.3. Numerical investigations suggegt (4.17) improves[on| (4.7) in Theprem 4.2, but
no proof has been found. Also, the bounds given in Thedrefn 4.4 are quite gog) lis
3-convex, then we may apply the above theorerfita) = f(a+ b — z) instead in the obvious

way to obtain a lower bound foﬁfﬁ% — [ (%£2), (or an upper bound for this differencefif
is 3-concave). Many more such inequalities of Hermite-Hadamard type can be obtained using
the methods given in this paper and will be discussed in a forthcoming paper.

Next, let's consider some applications to reliability theory and applied probaiblity. First, let’s
obtain more convenient representations of the Jenseﬁ)gagff f(x)h(z)dz—f (f h(z )dx)

in the form of (possibly) infinite series. Assume for the moment fH{ad is real analytic on
some open set containing, b). In reliability theory,0 < a < b < oo, so we assume this here
also. Then by Theorein 4.3, part (a), with the extension to a possibly improper integral with
g(x) < oo on|a,b), we obtain

(4.24) D= / (@ + 9(@) — F(z + g(@) + F(2)] - h(z)dz .

Sincef has a Taylor series expansioniatve may write

(4.25) flz+gla )+ Z f :

assuming that the interval of convergence centeredrats radius of convergence greater than
g(x). (This would be true, for example, jfis a polynomial or exponential function.) Similarly,

o () (g |
(4.26 Platgle) =3 - htaty .
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From (4.24)4(4.26) above, we obtain

(4.27) D= Z/ ( . ) F9 () - (g(2)) h(x)dz .

Equation [(4.2]7) gives a nice and convenient representation of the Jensénigagrms of the

mean residual life function(x) for purposes of obtaining numerous new inequalities in reliabil-

ity theory. It can also be used to obtain many more new inequalities of Hermite-Hadamard type.
Note that [(4.2]7) is a finite series for polynomial choicesf¢f) and is an easily manageable
infinite series for exponential functions, two very important special choices in applied proba-
bility and reliability theory, since moments about the origin and moment probability generating
functions are important in these areas.

In [18], the concept of mean residual life (MRL) function and decreasing mean residual life
(DMRL) is discussed. The theoretical aspects, importance, and wide range of applications of
these are surveyed and discussed.| In [4], the increasing failure rate (IFR), increasing failure
rate average (IFRA) and new better than used in expectation (NBUE) nonparametric classes of
life distributions are discussed. See the above two references for definitions of these subclasses,
the IFR is the smallest, with IFR- IFRA — NBUE. Also, IFR— DMRL — NBUE. It is
also well known that ifX is a lifetime random variable and is a member of any of the above
four subclasses, then thé" moments about the origin of, n,, = E(X") = [~
n=0,1,2,..., satisfy the inequality

(4.28) Ho < (n1) - p"

wherey = 1) = E(X). This bound is sharp, since the exponential distribution with) =

Xe ™ x>0, A > 0, is amember of all four subclasses. See [4], p. 116, for example.
First, let's give another proof of (4.p8) for the NBUE class. In the sequelf(let = 2",

n=1,2,3,.... We assume without loss of generality, that 0, b = oo below, since we may

takeg(x) = 0 for = > b, if b is finite.

Theorem 4.5. Suppose a random variable is NBUE, thatisg(z) < zon|0, c0). Then|(4.2B)
holds, that isy, < (n!)u™.

Proof. The result is trivially true fom = 1. We shall use mathematical induction. Supposing
thaty,, < n!ly™ holds for some positive integer, (4.27) gives

o = B = Z e (55) @ aoyna)ds +

3 n+1/ ]_1 (n+1)! W )+
e xX)ax
<> CESE=I t p

But by the induction hypothesig,, |, ; < (n+1—j)!u""77, so

n+1 .
-1 - (n—l—l)!
' < E J i c(n 1 — )" 4

j=2
n—i—lj_1 1

= (n+ )"y — = (n+ 1" (1 — —) + p
jz; g! (n+1)!

— (n+1)|pjn+1

This completes the prooi
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Inequality [4.28) gives bounds g1 in terms of onlyy. If the variance ofX or, equivalently,
5 is available as well, then it is clear that we can improve on these bounds, using representation
(4.27) in a recursive fashion. In a future paper, we shall discuss the details. Also, lower bounds
for D can be obtained as well.

The above theorem can be generalized to a more general class than the NBUE. If there exists a
constantV/ with g(z) < M on|a, b), whereM > u, then itis easily shown that, < n!Mm™+1,

Remark 4.4. Either representation (4.27) or Theorem| 3.1 given earlier quickly yields the result

(4.29) o? = Var(X) = / (9(x))?dH (z) = / (9(2))*hiz)d.

if h(z) exists, wherer? denotes the variance of. If this representation of the variance as the
mean of the squared MRL function is already known, it is unknown by this author. In any case,
representatiorj (4.27) is of much more general use. Uping|(4.27), it can be shown, for example,
that if X is NBUE, thenE(X?) < 6u0?, which is an improvement o (4.28) fer= 3, since

o < wpholds inthe NBUE case. Bounds fai( X ") for n > 4 can also be obtained in a recursive
manner using (4.27) in conjunction with the Chebychev-Gruss inequality which also improve
on (4.28). We omit the details here.

More inequalities of type similar to those in [6], [7] and [8] can be obtained, if the equation
for h(z) is completely known, to obtain bounds on moment-generating functions and moments,
in particular.

Finally, we discuss the extensions of results given in this paper to other kinds of convexity.
In Niculescu [21], the following definition is given.

Definition. Let I, J be subintervals of0, c0). Suppose that;,t, € I andp € (0,1). Let
f: I — J. Thenf is multiplicatively convex on, if

(4.30) FEP) < ft)Pf(t2) P

This is a type of convexity according to the geometric mean, instead of the arithmetic mean.
From (4.29), it follows that it; € I, p; € (0,1) with }~" | p; = 1, then, if f is multiplicatively
convex on/, then

(4.31) f (Htff) < [Ty

As discussed in [21], iff : I — (0,00) is a multiplicatively convex function and if we define
F by F =logofoexp :log(I) — R, where o’ denotes functional composition, thénis a
convex function. We can rewritg (4]31) in termsfofas:

)a (i piLOth) < iPiF@Ogti)
i=1 i=1

Let Dg,s denote the ‘Jensen gap’

Dey = Hf(tz')pi —f (Hﬁ)

=1
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wherez; = Logt;, ¢t = 1,2,...,n. Assumingz; < z, < --- <z, we can apply Theorems 2.3
and 2.5 and corollaries to obtain boundsoga,,. We may also apply Theores B.1 4.31t0
the continuous analogue 6f;,, as well, except we would substitutg x) for f(x) throughout.
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