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1. COMPLETE AFFINE -FINSLER -METRIC MANIFOLDS

In some optimization problems [10, 11, 17, 18, 19, 20, 21, 22], one used anaffine-metric
manifoldas a triple(M,Γ, d), whereM is a smooth realn-dimensional manifold with metriz-
able topology induced by the metricd, Γ is an affine symmetric connection onM , andd is a
distance function onM . The connection produces auto-parallel curves used for defining the
convexity of subsets inM and convexity of functions onM . The distanced is used for intro-
ducing topological properties. Generally, one supposes that the topology ofM induced by the
distanced coincides with the manifold topology ofM . Still not go on this way, since the paper
[6] shows, in reasonable conditions on the metricd, that the manifold should be structured as a
Finsler manifold.

In this paper we want to solve some optimization problems based on an affine-Finsler-metric
structure on the basic manifold. Anaffine-Finsler manifoldis a triple(M,Γ, F ), whereM is
a smooth realn-dimensional manifold,Γ is an affine symmetric connection onM , andF is
a Finsler function on the tangent bundleTM . An affine connectionΓhij in M is a non-linear
connectionNh

j = yiΓhij in TM . Such a non-linear connection is calledaffine connection(see
[6], p. 211). Let(M,Γ) be an affine manifold with the property that any two pointsx, y ∈M are
joined by an auto-parallel curve. Then a Finsler structureF induces two metrics: (i) the Finsler
metricdF (x, y) = infγ∈Cx,y `(γ), whereCx,y the set of all curves which joins two pointsx, y,
and (ii) the metricdCAP compatible to the connectionΓ given bydCAP (x, y) = infγ∈CAP `(γ),
whereCAP is the set of finite concatenations of auto-parallels (broken auto-parallels) which
join the pointsx, y ∈M .

We observe that

(1.1) dF (p, q) ≤ dCAP (p, q).

It follows thatdCAP (p, q) is a distance onM and

(1.2) BCAP (p; r) ⊂ BF (p; r).

In the next Sections, we shall use the affine-Finsler-metric manifold

(1.3) (M,Γ, F, dCAP ).

Concatenation of two curves: The curveγ goes fromA toB, while the curveδ goes fromC to
D. If one combines these curves by first going alongγ fromA toB and then alongδ fromC to
D, the resulting curve fromA toC is known as the concatenation ofγ andδ and is denoted by
γ̄ = γ ∪ δ.

Definition 1.1. [?] An affine manifold(M,Γ) is called auto-parallely complete if any auto-
parallelγ(t) starting atp ∈M is defined for all values of the parametert ∈ R.

Theorem 1.1. [1] LetM be a (Hausdorff, connected, smooth) compactm-manifold endowed
with an affine connectionΓ and letp ∈ M . If the holonomy group Holp(Γ) (regarded as a
subgroup of the groupGl(TpM) of all the linear automorphisms of the tangent spaceTpM ) has
compact closure, then(M,Γ) is auto-parallely complete.

Suppose that

(1.4) `(γ) =
k∑
i=1

∫ ti

ti−1

F (x(t), ẋ(t))dt

Theorem 1.2.The solutions of the problem

(1.5) inf
γ∈CAP

`(γ) =

∫ 1

0

F (x(t), ẋ(t))dt
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are concatenations of auto-parallel curves whose tangent vectors satisfy

(1.6)
∂F

∂xl
+

(
λi
∂Γimn
∂xl

− 2λi
∂Γiln
∂xm

+

(
∂2F

∂ẋk∂ẋl
+ 2λiΓ

i
lk

)
Γkmn

)
ẋmẋn

−
(

∂2F

∂xk∂ẋl
+ 2λ̇iΓ

i
lk

)
ẋk + λ̈l = 0.

Proof. Without less the generality, suppose we have
The attached Lagrangian is

(1.7) L = F (x(t), ẋ(t)) + λi(t)
(
ẍi(t) + Γijk(x(t))ẋ

j(t)ẋk(t)
)
.

Consequently, the extremals must satisfy the ODE system

∂L

∂xl
− d

dt

∂L

∂ẋl
+
d2

dt2
∂L

∂ẍl
= 0, ẍi(t) + Γijk(x(t))ẋ

j(t)ẋk(t) = 0.

On the other hand,

∂L

∂xl
=
∂F

∂xl
+ λi

∂Γijk
∂xl

ẋjẋk,
∂L

∂ẋl
=
∂F

∂ẋl
+ 2λi Γ

i
lk ẋ

k,
∂L

∂ẍl
= λl,

d

dt

∂L

∂ẋl
=

∂2F

∂xk∂ẋl
ẋk +

∂2F

∂ẋk∂ẋl
ẍk + 2λ̇iΓ

i
lk ẋ

k + 2λi
∂Γilk
∂xm

ẋmẋk + 2λiΓ
i
lk ẍ

k.

Writing the Euler-Lagrange ODE system and eliminatingẍk, we find the condition on velocities,
in the Theorem.

Let us show that the completeness of the distanced is equivalent to "any auto-parallel curve
γ(t) is defined for all values of the parametert". This statement is similar to Hopf-Rinow
Theorem in Riemannian manifolds theory (see, [5, p. 146]).

If there exists a minimizing auto-parallelγ joining p to q, thendCAP (p, q) = `(γ).

Theorem 1.3.The topology induced bydCAP onM coincides to the original topology onM .

Proof. If r is sufficiently small, the normal ballBr(p) coincides to the metric ball of radiusr,
centered atp. Hence, metric balls contain normal balls, and conversely.

Theorem 1.4.If expp is defined on all ofTpM , then for anyq ∈M , there exists an auto-parallel
γ joining p to q with `(γ) = dCAP (p, q).

Proof. Let dCAP (p, q) = r andBδ(p) a normal ball atp, with Sδ(p) = S the boundary ofBδ(p).
We denote byx0 a point where the continuous functiondCAP (q, x), x ∈ S, attains a minimum.
Thenx0 = expp δv, wherev ∈ TpM, |v| = 1.

Let γ(s) = expp sv be an auto-parallel curve. To show thatγ(r) = q, we consider the
equation

(1.8) dCAP (γ(s), q) = r − s,

and we introduce the set

A = {s ∈ [0, r] |with property that 1.8 is valid}.
The setA is nonempty, since the equation (1.8) is true fors = 0. Furthermore, the setA ⊂ [0, r]
is closed.

Let s0 ∈ A. Let us show that ifs0 < r, then the equality 1.8 is true also fors0 + δ′, whereδ′

is sufficiently small. This impliessupA = r. SinceA is closed, thenr ∈ A, which shows that
γ(r) = q.

AJMAA, Vol. 18 (2021), No. 2, Art. 2, 10 pp. AJMAA

https://ajmaa.org


4 FAIK MAYAH , ALI S RASHEED AND NASEIF J. AL- JAWARI

Theorem 1.5. Let (M,Γ, F, d) be a manifold, whereΓ is an affine connection,F is a Finsler
fundamental function andd is a distance compatible toΓ via F . Let p ∈ M . The following
assertions are equivalent:

(i) any auto-parallel curveγ(t), starting atp, is defined for all values of the parametert;
(ii) expp is defined on all ofTpM ;
(iii) the closed and bounded subsets ofM are compact.
(iv) the metric space(M,d) is complete;

Proof. (iv) ⇒ (i). SupposeM is not auto-parallely complete. Then some normalized (viaF )
auto-parallelγ(s) is defined fors < s0 and is not defined fors0. Let {sn} , with sn < s0

and limn→∞ sn = s0. Given ε > 0, there exists an indexn0 such that: ifn,m > n0, then
|sn − sm| < ε. It follows

d(γ(sn), γ(sm)) ≤ |sn − sm| < ε,

and henceγ(sn) is a Cauchy sequence. Thenlimn→∞ γ(sn) = p0 ∈M , sinceM is complete in
the metricd.

Let (U, δ) be a totally normal neighborhood ofp0. Choosen1 with the property: ifn,m > n1,
then |sm − sn| < δ andγ(sn), γ(sm) ∈ U . Then there exists a unique auto-parallelα with
the properties: its length is less thanδ, and joins the pointsγ(sn) andγ(sm). It is clear that
α coincides toγ, whereverγ is defined. Sinceexpγ(sn) is a diffeomorphism onBδ(0) and
expγ(sn)(Bδ(0)) ⊃ U , the curveα extendsγ beyonds0.

(i) ⇒ (ii), obvious.
(ii) ⇒ (iii). LetA ⊂ M be closed and bounded. SinceA is bounded,A ⊂ B, whereB is a

ball with centerp in the metricd. By previous Theorem, there exists a ballBr(0) ⊂ TpM , such
thatB ⊂ exppBr(0). Being the continuous image of a compact set,exppBr(0) is compact.
Hence,A is a closed set contained in a compact set, and is therefore compact.

1.1. Finsler metric. The functiony → F (x, y) is called sub-homogeneous of degreep if

F (x, λy) ≤ λpF (x, y).

The functiony → F (x, y) is sub-homogeneous of degreep iff it verifies the Euler inequality
yiFyi ≥ pF .

Suppose the fundamental functionF (x, y) is non-negative, has the value zero only ify = 0,
and is homogeneous of degree one iny. The homogeneity holds in particular for positive factors.
Using Euler PDE, we haveyiFyi = F (we abbreviate usual partial derivatives by subscripts).
Repeated usual partial derivatives give

yjFyiyj = 0, ykFyiyjyk = −Fyiyj , ...

Definegij(x, y) using the usual partial derivatives,

gij(x, y) =
1

2

∂2F 2

∂yi∂yj
=

1

2
(F 2)yiyj = FFyiyj + FyiFyj

and supposegij(x, y) is positive definite (the energy partial functiony → F 2(x, y) is Euclidean
strictly convex; Finsler metric). It follows

yigij = FFyj , yiyjgij = F 2, yi
∂gij
∂yk

= 0, yk
∂gij
∂yk

= 0.

The relations
gij(x, y)p

ipj = FFyiyjpipj +
(
Fyipi

)2

F 2
(
Fyipi

)2
= (gij(x, y)y

ipj)2 ≤ F 2gij(x, y)p
ipj
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implies thatFyiyj(x, y)pipj ≥ 0 (positive semidefinite). In other words, the partial function
y → F (x, y) is Euclidean convex. Hence it satisfies

F (x, y) + Fyi(x, y)(p− y)i ≤ F (x, p).

Adding Euler PDE, we obtainFyi(x, y)pi ≤ F (x, p). Also, the convexity and the homogeneity
of y → F (x, y) lead to triangle inequality

F (x, p+ q) ≤ F (x, p) + F (x, q),

with equality if and only ifp andq are collinear. The last two inequalities permit to prove that
Finsler geodesics minimize locally the distance.

Let gij = gij(x, y) be the local components of Finsler metricg(x, y). Denote

Gj =
1

2
gjh

(
∂2F

∂yh∂xk
yk − ∂F

∂xh

)
, N j

i =
∂Gj

∂yj
, δi =

∂

∂xi
−N j

i

∂

∂yj
.

The Finsler metric determines the Chern connection∇ of components

Ci
jk =

1

2
gih (δkgjh + δjgkh − δhgjk) , i, j, k, h = 1, ..., n.

The fundamental properties of this connection are: (i) is torsion-free, (ii) is almost compatible
with the Finsler metric in the sensegij|k =

∂gij

∂yl N
l
k, (iii) the vector fieldyi ∂

∂xi is h-parallel, i.e.,
yi|k = 0.

Our basic manifold is in fact theprojectivized tangent bundlePTM (each tangent space to
a manifold is taken to be a projective vector space). The fundamental functionF (x, y) defines
the length of aC1 curveγ(t), t ∈ [a, b], namely

`(γ) =

∫ b

a

F (γ(t), γ̇(t))dt

and a functional whoseC2 extremals are called geodesics. In other words, aC2 curveγ : I ⊂
R → M , with constant speed parametrization, is called geodesic if its tangent vector fieldγ̇ is
auto-parallel with respect to∇, i.e.,∇γ̇ γ̇ = 0. Let γ̃(t) = (γ(t), γ̇(t)) be the lift ofγ to PTM .
Then the equations of geodesics are

d2xi

dt2
+
dxj

dt

dxk

dt
Ci
jk|γ̃ = 0.

Since∂g
∂y

part disappears, it rests

d2xi

dt2
+
dxj

dt

dxk

dt

1

2
gih

(
∂gjh
∂xk

+
∂gkh
∂xj

− ∂gjk
∂xh

)
|γ̃ = 0.

Let γ(t) be a Finsler geodesic joining the pointsγ(a) = p, γ(b) = q. The Finsler metricdF
is defined bydF (p, q) = infγ `(γ). We do not use this metric.

2. COINCIDENCE BETWEEN AUTO -PARALLEL CURVES AND FINSLERIAN GEODESICS

The auto-parallel curves ofΓ(x) coincide to Finsler geodesics ofgij(x, y) if and only if

1

2
gih

(
∂gjh
∂xk

+
∂gkh
∂xj

− ∂gjk
∂xh

)
(x, y) = Γijk(x)

or
∂gjh
∂xk

+
∂gkh
∂xj

− ∂gjk
∂xh

= 2gihΓ
i
jk.
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Changingh with j, we find

∂gjh
∂xk

+
∂gkj
∂xh

− ∂ghk
∂xj

= 2gijΓ
i
hk.

Adding the last two PDE relations, we get

∂gjh
∂xk

= gihΓ
i
jk + gijΓ

i
hk,

i.e.,gij(x, y) is parallel with respect toΓijk(x).

2.1. Affine-Hessian metric. SupposeF (x, y) is the fundamental function generating the Finsler
structure on the manifold(M,Γ).

The partial fundamental functiony → F (x, y) and the connectionΓ(x) define the Hessian

(HessΓF
2)ij =

∂2F 2

∂yi∂yj
− Γhij

∂F 2

∂yh
= 2F (HessΓF )ij + 2

∂F

∂yi
∂F

∂yj
.

Suppose the Hessian tensor

hij(x, y) =
1

2
(HessΓF

2)ij

is positive definite. By hypotheses we find

yihij(x, y) = F Fyh

(
δhj − yiΓhij

)
, yiyjhij(x, y) = F 2 − FFyhΓhijy

iyj > 0

It follows that the next relations are true:

hij(x, y)p
ipj = F (HessΓF )ijp

ipj + (Fyipi)2

F 2
(
Fyipi − FyhΓhijy

ipj
)2

=
(
hij(x, y)y

ipj
)2 ≤

(
F 2 − FFyhΓhijy

iyj
)
hij(x, y)p

ipj.

The equality (in the last relations) holds true only if the vectorsp andy are collinear.
Open problem The partial functiony → F (x, y) is affine convex, i.e.,(HessΓF )ijp

ipj ≥ 0
or not?

3. SIGNIFICATIVE EXAMPLE

Let
(
R2

+,Γ, F (x, y) = |y1|+ |y2|
)

be an affine-Finsler manifold, with the tangent manifold
TR2

+ = R2
+ × R2. Suppose

Γ1
12 = Γ1

21 = −1

2

µ1

µ2x2
, Γ2

12 = Γ2
21 = −1

2

µ2

µ1x1
, and otherwiseΓhij = 0.

Then the auto-parallel curves are of the form

xi(t) = λieµ
it, i = 1, 2.

Also, the auto-parallel segmentγ : [0, 1] → R2
+ joining the pointsP = (a1, a2) andQ =

(b1, b2), i.e.,γ(0) = P , γ(1) = Q is given by

γ(t) = ((a1)1−t(b1)t, (a2)1−t(b2)t).

Let us define a distanced on the Finsler space
(
R2

+,Γ, F (x, y) = |y1|+ |y2|
)
, compatible to

the affine structureΓ. For that we use the length of an auto-parallel curve between pointsP and
Q,

`(γ) =

∫ 1

0

F (γ(t), γ̇(t)dt =

∫ 1

0

(|ẋ1(t)|+ |ẋ2(t)|)dt = |b1 − a1|+ |b2 − a2|.

Then, naturally, we define
d(P,Q) = |b1 − a1|+ |b2 − a2|.
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It follows easily the closed ball

B(P ;R) : |x1 − a1|+ |x2 − a2| ≤ R,

centered at the pointP = (a1, a2) ∈ R2
+, of radiusR > 0.

In this way, it was created an affine-Finsler-metric manifold(
R2

+,Γ, F (x, y) = |y1|+ |y2|, d
)
.

Proposition 3.1. LetF (x, y) = |y1|+ |y2|.
(i) Any curveγ(t) = (x1(t), x2(t)), t ∈ [0, 1], joining the points(a1, a2), (b1, b2), whose

componentsx1, x2 are monotonic, is a Finsler geodesic.
(ii) The auto-parallels

γ(t) = ((a1)1−t(b1)t, (a2)1−t(b2)t)

are Finsler geodesics.

Proof. Indeed, for an arbitrary piecewiseC1 curveγ(t) = (x1(t), x2(t)), t ∈ [0, 1], joining the
points(a1, a2), (b1, b2), we have

`(γ) =

∫ 1

0

|ẋ1(t)|dt+

∫ 1

0

|ẋ2(t)|dt = V 1
0 x

1 + V 1
0 x

2

≥ |b1 − a1|+ |b2 − a2|,
whereV 1

0 x means the variation of the functionx on the interval[0, 1]. If x is monotonic, then
V 1

0 x = |x(1)− x(0)|.

Example 3.1.Let us consider the function

ϕ : M1 ×M2 → R2,

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) = (ln2(x1) + y
√
x2, y ln(x1)− lnx2).

The partial functionx→ ϕ(x, y) is affine convex. Indeed

u(t) = ϕ1(x(t), y) = ((1− t) ln a1 + t ln a2)2 + y(a1)
1−t
2 (a2)

t
2

v(t) = ϕ2(x(t), y) = y((1− t) ln a1 + t ln a2)− ((1− t) ln b1 + t ln b2)

verifiesu′′(t) > 0 respectivelyv′′(t) ≥ 0.

Our paper is based also on some ideas in: [2] (convex mappings between Riemannian man-
ifolds), [4] (geometric modeling in probability and statistics), [6] (arc length in metric and
Finsler manifolds), [8] (applications of Hahn-Banach principle to moment and optimization
problems), [14] (geodesic connectedness of semi-Riemannian manifolds), [25] (tangent and
cotangent bundles), and see ([23], [24]).

4. THE SEMIVECTORIAL BILEVEL PROBLEM

Let (M1,
1Γ), the leader decision affine manifold, and(M2,

2Γ), the follower decision affine
manifold, be two connected affine manifolds of dimensionm andn, respectively. Moreover,
(M2,

2Γ, d) is supposed to be complete. Let alsof : M1 ×M2 → R be the leader objective
function, and letF = (F1, ..., Fr) : M1 ×M2 → Rr be the follower multiobjective function.

Let x ∈M1, y ∈M2 be the generic points. Theweakly or properly Pareto solution set of the
follower multiobjective optimization problemis represented by the set-valued function

ψ : M1 ⇒ M2, ψ(x) = σ-ARGMINC
y∈M2

F (x, y).

We deal with two semivectorial bilevel problems:

AJMAA, Vol. 18 (2021), No. 2, Art. 2, 10 pp. AJMAA
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(i) Theoptimistic semivectorial bilevel problem

(4.1) min
x∈M1

inf
y∈ψ(x)

f(x, y).

In this case, the follower cooperates with the leader; i.e., for eachx ∈M1, the follower chooses
among all itsσ-Pareto solutions (his best responses) one which is the best for the leader (as-
suming that such a solution exists).

(ii) The pessimistic semivectorial bilevel problem

(4.2) min
x∈M1

sup
y∈ψ(x)

f(x, y).

In this case, there is no cooperation between the leader and the follower, and the leader expects
the worst scenario; i.e., for eachx ∈ M1, the follower may choose among all itsσ-Pareto
solutions (his best responses) one which is unfavorable for the leader (in this case we prefer to
use "sup" instead of "max").(see [3], [22], [27]).

Example 4.1.Consider the bilevel programming problem

(4.3) min
x

[−y + x2 : −0.5 ≤ x ≤ 0.5, y ∈ ψ(x)],

whereψ(x) = Argminy [yx2 : −1 6 y 6 1]. Sinceψ(x) = −1 for x 6= 0 andψ(0) = [−1, 1],
the unique optimistic optimal solution of the bilevel problem is(x, y) = (0, 1). The optimistic
optimal function value is−1.

Now assume that the followers problem is perturbed

ψα(x) = Argmin
y

(yx2 + αy2 : −1 6 y 6 1),

for smallα > 0. Then,

yα(x) =

{
−1 if x2 > 2α

−x2/2α if x2 ≤ 2α.

Replacing this function into Leaders objective function gives

F (x, yα(x)) =

{
x2 + 1 if x2 > 2α

x2 + x2/2α if x2 ≤ 2α.

This function must be minimized on[−0.5, 0.5]. The unique optimal solution of this problem is
xα = 0, for all α > 0, with f(0, yα(0)) = 0. For α → 0, the Leaders objective function value
tends to0, which is not the optimistic optimal objective function value in the original problem.

Example 4.2.Consider the bilevel programming problem

(4.4) min
x

[(x− y)2 + x2 : −20 ≤ x ≤ 20, y ∈ ψ(x)],

where
ψ(x) = Argmin

y
[xy : −x− 1 6 y 6 −x+ 1]

or

ψ(x) =

 [−1, 1] if x = 0
−x− 1 if x > 0
−x+ 1 if x < 0.

LetF (x, y) = (x− y)2 + x2. Then the optimal solution of the Lower level problem into this
function 4.4 where the solution is uniquely determined, we get

F (x, y(x)) =

 [0, 1] if x = 0
(−2x− 1)2 + x2 if x > 0
(−2x+ 1)2 + x2 if x < 0.
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on the regions where the functions are defined. Taking infimum, for y tending to zero, we find
limx→0 F (x, y(x)) = 1.

This can be used to confirm that(x◦, y◦) = (0, 0), is the unique optimistic optimal solution of
the problem in this example. Now, if the leader is not exactly enough in choosing his solution,
then the real outcome of the problem has an objective function value above1 which is for away
from the optimistic optimal value zero.

5. OPTIMAL CONTROL PROBLEM

In this section we discuss an optimal control problem, for this let the functionF (., .) be as
defined in Section 1 of this paper, but with takeẋ(.) = u(.), whereu(.) here is a piecewise con-
tinuous control function, thus with the performance index (or cost function) defined in equation
1.4, we have an optimal control problem, see [26]. Therefore by using the method of dynamic
programming [26, Ch.IV], we can obtain an optimal control of our problem. This method deals
with study the properties of the value function, this function of initial state defined as a minimum
value of the performance index of the problem i.e., when the value function is differentiable and
satisfies the partial differential equation of dynamic programming [26, Th.4.1], then we have an
optimal control for the control problem.

6. CONCLUSION

Class of Finsler metric affine manifolds on bilevel semivectorial with optimization problems
is constructed. Study the bilevel optimization on affine manifolds is the main purpose of this
paper. So, we solve some optimization problems based on an affine-Finsler-metric structure
on the basic manifold and the semivectorial Bilevel problem as well. Bile del optimization is
special kind of optimization where one problem is embedded within another.
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[19] C. UDRIŞTE, Sufficient decreasing on Riemannian manifolds,Balkan J. Geom. Appl., 1, (1996),
pp. 111-123.
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