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ABSTRACT. The concept of(m, p)-isometric operators on Banach space was extended to(m, q)-
isometric mappings on general metric spaces in [6]. This paper is devoted to define the concept
of ψ(m, q)-isometric, which is the extension ofA(m, p)-isometric operators on Banach spaces
introduced in [10]. LetT, ψ : (E, d) → (E, d) be two mappings.
For some positive integerm andq ∈ (0,∞). T is said to be anψ(m, q)-isometry, if for all
y, z ∈ E, ∑

0≤r≤m

(−1)m−r

(
m

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q = 0.
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1. I NTRODUCTION

A few years ago, the class ofm-isometric operators in both Hilbert and Banach spaces at-
tracted much attention. They have been the object of some intensive studies by many authors in
the papers [1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 17, 22, 23].Also,the theorym-isometry is developed by
J. Agler and T. Stankus (see [1, 2, 3] ) with rich connections to Toeplitz operators. LetQ(y, z)
be a polynomial in two variablesy andz of the form

Q(y, z) =
∑

0≤r≤m

∑
0≤l≤m

βrlz
lyr, βrl ∈ C.

For an operatorT ∈ B(H), the algebra of bounded linear operators on a Hilbert space of
complex infinite dimensionalH into itself,

Q(T, T ∗) =
∑

0≤r≤m

∑
0≤l≤m

βrlT
∗lT r, βrl ∈ C.

T is anm-isometry for some integerm ≥ 1 if

Λm(T ) =
(
zy − 1)m(T ) =

∑
0≤r≤m

(−1)m−r
(
m

r

)
T ∗rT r = 0,

or equivalently

〈Λm(T )y | y〉 =
∑

0≤r≤m

(−1)m−r
(
m

r

)
‖T ry‖2 = 0

for all y ∈ H ([1]). If Λm−1(T ) 6= 0, thenT is said to be a strictm-isometry form ≥ 2.
m-isometric operators are important in the study of some classes of operators as Dirichlet

operators,they are also a natural extension of an isometry (m = 1).

In [4, 8, 14, 17] a generalizations ofm-isometries to Banach spaces are studied.
For some integerm ≥ 1 andp ∈ (0,∞), if

β(p)
m (T, y) :=

∑
0≤r≤m

(−1)m−r
(
m

r

)
‖T ry‖p = 0 (∀ y ∈ X ),

T ∈ B(X ), is called an(m, p)-isometry, (see [4, 14]). In [10], the author introduced the con-
cepts ofA(m, p)-isometries, where, for an operatorA ∈ B(X ), T ∈ B(X ) isA(m, p)-isometric
if

(1.1) β(p)
m (T,A; y) :=

∑
0≤r≤m

(−1)m−r
(
m

r

)
‖AT ry‖p = 0 (∀ y ∈ X ).

Evidently, anI(m, p)-isometry is an(m, p)-isometry.

If β(p)
m (T,A, y) ≤ 0

(
resp. β(p)

m (T,A, y) ≥ 0
)
,∀ y ∈ X , T is said to beA(m, p)-expansive(

resp. A(m, p)-contractive
)
. We refer the interested reader to [11, 15, 20, 21] for complete

details.

Let E andF be metric spaces. A mappingT : E −→ F is said to be an isometry if it satisfies
dF(Ty, Tz) = dE(y, z), for all y, z ∈ E, wheredE(., .)) anddF(., .) denote the metrics in the
spacesE andF, respectively.

For an mapT : E → E, a positive integerm andq ∈ (0,∞) define
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(1.2) Θq
m(T ; y, z) :

∑
0≤r≤m

(−1)r
(
m

r

)
dE

(
Tm−ry, Tm−rz

)q
, y, z ∈ E.

The mapT is said to be(m, q)-contractive
(
respectively,(m, q)-expansive and(m, q)-isometric)

if (−1)mΘq
m(T ; y, z) ≥ 0

(
respectively,(−1)mΘq

m(T ; y, z) ≤ 0 andΘq
m(T ; y, z) = 0

)
for

some positive integerm andq ∈ (0,∞).

Clearly,T is an(m, q)-contractive mapping if∑
0≤r≤m

(−1)m−r
(
m

r

)
dE

(
Tm−ry, Tm−rz

)q ≥ 0, ∀ y, z ∈ E.

T is an(m, q)-expansive mapping if∑
0≤r≤m

(−1)m−r
(
m

r

)
dE

(
Tm−ry, Tm−rz

)q ≤ 0, ∀ y, z ∈ E,

andT is an(m, q)-isometric mapping if and only if∑
0≤r≤m

(−1)r
(
m

r

)
dE

(
Tm−ry, Tm−rz

)q
= 0. ∀ y, z ∈ E.

It is well known that the concept of(m, q)-isometric mappings was introduced and studied by
the authors T. Bermúdez et al. in the paper [6]. However the third named author has introduced
and studied the concepts of(m, q)-expansive and(m, q) contractive mappings in the papers
[18, 19].

Following [16], a mappingT (not necessarily linear) on a normed spaceX is an (m, p)-
isometry (m ≥ 1 integer andp > 0 real) if, for all y, z ∈ X ,

(1.3) β(p)
m (T ; y, z) :=

∑
0≤r≤m

(−1)m−r
(
m

r

)
‖T ry − T rz‖p = 0.

Whenm = 1, (1.3) is equivalent to‖Ty−Tz‖ = ‖y− z‖, ∀ y, z ∈ X , and whenm = 2, (1.3)
is equivalent to

‖T 2y − T 2z‖p − 2‖Ty − Tz‖p + ‖y − z‖p = 0, ∀ y, z ∈ X .
In this paper, we extend the concept ofA(m, p)-isometries on Banach spaces to general

metric spaces. LetT, ψ : (E, d) → (E, d) be two mappings. T is said to beψ(m, q)-isometric
mapping, if for ally, z ∈ E,

(1.4)
∑

0≤r≤m

(−1)m−r
(
m

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q
= 0,

for some positive integerm andq ∈ (0,∞).

Observe that ifT, ψ ∈ B(X ), we can write (1.4) as∑
0≤r≤m

(−1)m−r
(
m

r

)∥∥ψ ◦ T ry∥∥q = 0.

The contents of the paper is as follows. In Section one we set up notation and terminology.
Furthermore, we collect some facts aboutm-isometries and(m, p)-isometries. In Section two,
we introduce and study the concept ofψ(m, q)-isometric mappings on general metric spaces.
Several properties for members from this class of mappings are investigated. We prove under
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4 S. A. O. BEINANE, S. H. JAH AND S. A. O. A. MAHMOUD

suitable conditions thatψ(m, q)-isometry must beψ(m − 1, q)-isometry form ≥ 2 (Proposi-
tion 2.4, Theorem 2.8). Recall that ifT is anm-isometric (resp.(m, q)-isometry orA(m, p)-
isometry), then so are all its powerT n; for n ≥ 1 (cf [1, 4, 6]). It turns out that the same
assertion remains true forψ(m, q)-isometry ( Theorem 2.11). Moreover, we prove that ifT is
anψ(m, q) andT is anψ(n, q)-isometry suchTS = ST , ThenTS is anψ(m + n − 1, q)-
isometry (Theorem 2.13). In section three, we prove that a mapM : (E, d) → (E, d) is an
ψ(m, q)-isometry if and only ifT :

(
E, ρ̃

T, ψ

)
→

(
E, ρ̃

T, ψ

′) is an isometry for some distances
ρ̃
T, ψ

andρ̃
T, ψ

′ onE associated toT andψ.

2. M AIN RESULTS

From now in this paper,ψ : E → E is a self mapping on a metric space(E, d).

Definition 2.1. LetT be self mappings on(E, d). T is said to beψ(m, q)-isometry if it satisfies
for all y, z ∈ E

(2.1)
∑

0≤r≤m

(−1)m−r
(
m

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q
= 0,

for some positive integerm and realq ∈ (0,∞).

Remark 2.1. (1) Whenm = 1, Equation (2.1) is equivalent to

d
(
ψ ◦ Ty, ψ ◦ Tz

)
= d

(
ψy, ψz

)
; ; ∀ y, z ∈ E.

(2) Whenm = 2, Equation (2.1) is equivalent to

d
(
ψ ◦ T 2y, ψ ◦ T 2z

)q − 2d
(
ψ ◦ Ty, ψ ◦ Tz)q + d

(
ψy, ψz)q = 0, ∀ y, z ∈ E.

(3) Whenm = 3, Equation (2.1) is equivalent to

d(ψ◦T 3y, ψ◦T 3z
)q−3d

(
ψ◦T 2y, ψ◦T 2z

)q
+3d

(
ψ◦Ty, ψ◦Tz

)q−d(ψy, ψz)q = 0 ∀ y, z ∈ E.

Remark 2.2. If ψ ≡ IE (the identity map), then Definition 2.1 coincides with [6, Definition1.1].

Remark 2.3. (1) It is will known that every(m, q)-isometry is injective map. Moreover, in
general anψ(m, q)-isometry is not necessary injective map.

(2) LetT be a self map on a metric spacesE such isψ(m, q)-isometric. IfT ◦ψ orψ is injective,
thenT is injective.

Let y, z ∈ E such thatTy = Tz. It is obvious thatT ry = T rz for all r ∈ N. Under the
assumption thatT is aψ(m, q)-isometric mapping we get∑

0≤r≤m

(−1)r
(
m

r

)
d(ψ ◦ Tm−ry, ψ ◦ Tm−rz)q = 0,

which means thatd(ψy, ψz) = 0. So thatψy = ψz. Thus,T ◦ ψy = T ◦ ψz. Consequently
y = z under one of the above conditions.

Remark 2.4. The following example shows that there exists a map that isψ(m, q)-isometry but
is not(m, q)-isometry for some positive integerm and realq.

Example 2.1.Consider the metric space(E, d0) whereE = R2 and

d0

(
(y, z), (u, v)

)
= |y − u|+ |z − v|.

DefineT, ψ : R2 −→ R2 as follows:

T (y, z) =
(y + z − 1

2
,
y + z + 1

2

)
andψ(y, z) =

(y + z

2
,
y + z

2

)
.
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A simple computation shows thatd0

(
T (y, z), T (u, v)

)
6= d0

(
(y, z), (u, v)

)
and

d0

(
ψ ◦ T (y, z), ψ ◦ T (u, v)

)
= d0

(
ψ(y, z), ψ(u, v)

)
.

This means thatT is aψ-isometry butT is not isometry.

The following theorem extended [6, Proposition 1.4].

Theorem 2.1.LetT be a self map on a metric space(E, d). If T is a bijectiveψ(m, q)-isometry,
thenT−1 is also anψ(m, q)-isometry.

Proof. As the proof is similar to [6, Proposition 1.4], we omit it.

Set

(2.2) Θm, q(T, ψ; y, z) :=
∑

0≤r≤m

(−1)m−r
(
m

r

)
d(ψ ◦ T ry, ψ ◦ T rz)q, ∀ y, z ∈ E.

Proposition 2.2. For a self mapT on a metric spaceE, m ∈ N, q ∈ (0,∞) andy, z ∈ E, the
following identity holds.

(2.3) Θm, q(T, ψ; y, z) = Θm−1, q(T, ψ; Ty, Tz)−Θm−1, q(T ;ψ, y, z).

Proof. In view of the identity
(
m
r

)
=

(
m−1
r

)
+

(
m−1
r−1

)
for j = 1, · · · ,m−1, we have the equalities

Θm, q(T, ψ; y, z) =
∑

0≤r≤m

(−1)m−r
(
m

r

)
d
(
ψ ◦ T ry, ◦T rz

)q
= (−1)md

(
ψy, ψz

)q
+

∑
1≤r≤m−1

(−1)m−r
(
m

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q
+d

(
ψ ◦ Tmy, ψ ◦ Tmz

)q
= (−1)md

(
ψy, ψz

)q
+

∑
1≤r≤m−1

(−1)m−r
((m− 1

r

)
+

(
m− 1

r − 1

))
d
(
ψ ◦ T ry, ψ ◦ T rz

)q
+d

(
ψ ◦ Tmy, ψ ◦ Tmz

)q
= −Θm−1, q(T, ψ; y, z) + Θm−1, q(T, ψ; Ty, Tz).

Corollary 2.3. If T is a self map on a metric space(E, d) such is anψ(m, q)-isometry, thenT
is anψ(m+ 1, q)-isometry.

The converse of Corollary 2.3 is not in general true (see [6]).

Proposition 2.4.LetT be a self mapping on a metric space(E, d) such is anψ(m, q)-isometry.
If T satisfies

d
(
ψ ◦ Ty, ψ ◦ Tz

)
≤ d

(
ψy, ψz

)
, ∀ y, z ∈ E,

thenT is anψ(m− 1, q)-isometry.

Proof. SinceT satisfies the conditiond
(
ψ ◦ Ty, ψ ◦ Tz

)
≤ d

(
ψy, ψz

)
, ∀ y, z ∈ E, it follows

that,

d
(
ψ ◦ T n+1y, ψ ◦ T n+1z

)q ≤ d
(
ψ ◦ T ny, ψ ◦ T nz

)q
;∀ y, z ∈ E, and n ∈ N.

This means that

(
d
(
ψ ◦ T ny, ψ ◦ T nz

)q)
n∈N

is deceasing sequence, so convergent.
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Under the assumption thatT is anψ(m, q)-isometry and together (2.3), we get

Θm−1, q(T, ψ; y, z) = Θm−1, q(T, ψ; Ty, Tz) = ... = Θm−1, q(T, ψ; T ny, T nz).

However

Θm−1, q(T, ψ; T ny, T nz) = Θm−2, q(T, ψ; T n+1y, T n+1z)−Θm−2, q(T, ψ; T ny, T nz),

so that

Θm−1, q(T, ψ; T ny, T nz)

= ∑
0≤j≤m−2

(−1)m−j
(
m− 2

j

)[
d
(
ψ ◦ T n+j+1y, ψ ◦ T n+j+1z

)q
−d

(
ψ ◦ T n+jy, ψ ◦ T n+jz

)q]
.

By taking the limitn→∞ in the preceding equality leads to

Θm−1, q(T, ψ; T ny, T nz) → 0.

Consequently,Θm−1, q(T, ψ; y, z) = 0. Therefore,T is anψ(m− 1, q)-isometry.

Corollary 2.5. LetT be a self mapping on a metric space(E, d). If T satisfies

d
(
ψ ◦ Ty, ψ ◦ Tz

)
≤ d

(
ψy, ψz

)
, ∀ y, z ∈ E,

thenT is anψ(m, q)-isometry if and only ifT is anψ-isometry.

Proof. We can derive the result from Proposition 2.4.

Proposition 2.6.LetT be a self mapping on a metric space(E, d). Then the following identities
hold forn ≥ m ≥ 1.

(2.4) Θm, q(T, ψ; y, z) = d
(
ψ ◦ Tmy, ψ ◦ Tmz

)q − ∑
0≤r≤m−1

(
m

r

)
Θr, q(T, ψ; y, z

)
∑

0≤r≤m−1

(
n

r

)
Θr, q(T, ψ; Ty, Tz

)
=

∑
0≤r≤m−1

(
n+ 1

r

)
Θr, q(T, ψ, y, z

)
+

(
n

m− 1

)
Θm, q(T, ψ; y, z

)
,(2.5)

whereΘ0, q(T, ψ; y, z) = d
(
ψy, ψz

)q
.

Proof. We will prove(2.4) by induction onm ≥ 1. One may letm = 1 in (2.4) to see that

Θ1, q(T, ψ; y, z) = d
(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

)q
,

which is obviously true. Suppose that the induction hypothesis holds form. By the induction
hypothesis and(2.3), we obtain

Θm+1, q(T, ψ; y, z) = Θm, q(T, ψ; Ty, Tz)−Θm, q(T, ψ; y, z)

= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1z

)q − ∑
0≤r≤m−1

(
m

r

)
Θr, q(T, ψ; Ty, Tz

)
−d

(
ψ ◦ Tmy, ψ ◦ Tmz

)q
+

∑
0≤r≤m−1

(
m

r

)
Θr, q(T, ψ; y, z)

)
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= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1z

)q − d
(
ψ ◦ Tmy, ψ ◦ Tmz

)q
−

∑
0≤r≤m−1

(
m

r

)
Θr+1, q(T, ψ; y, z)

= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1z

)q −Θm(T, ψ, y, z)−
∑

0≤r≤m−1

(
m

r

)
Θr, q(T, ψ; y, z)

−
∑

0≤r≤m−1

(
m

r

)
Θr+1, q(T, ψ; y, z)

= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1z

)q −Θm, q(T, ψ; y, z)−
∑

0≤r≤m−1

(
m

r

)
Θr, q(T, ψ; y, z)

−
∑

1≤r≤m

(
m

r − 1

)
Θr, q(T, ψ; y, z)

= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1z

)q −Θm, q(T, ψ; y, z)

−Θ0, q(T, ψ; y, z)−
∑

1≤r≤m−1

((
m

r

)
+

(
m

r − 1

))
Θr, q(T, ψ, y, z)

−
(

m

m− 1

)
Θm, q(T, ψ; y, z)

= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1z

)q −Θ0, q(T, ψ, y, z)

−
∑

1≤r≤m−1

(
m+ 1

r

)
Θr, q(T, ψ; y, z)−

(
m+ 1

m

)
Θm, q(T, ψ, y, z)

= d
(
ψ ◦ Tm+1y, ψ ◦ Tm+1

)q − ∑
0≤r≤m

(
m+ 1

r

)
Θr, q(T, ψ; y, z).

Hence, the desired conclusion follows.

To prove (2.5), we have by (2.3) that

∑
1≤r≤m

(
n

r − 1

)
Θr, q(T, ψ; y, z)

=
∑

1≤r≤m

(
n

r − 1

)(
Θr−1, q(T, ψ; Ty, Tz)−Θr−1, q(T, ψ; y, z)

)
=

∑
0≤r≤m−1

(
n

r

)
Θr, q(T, ψ; Ty, Tz)−

∑
0≤r≤m−1

(
n

r

)
Θr, q(T, ψ; y, z).

From this, we deduce that

∑
0≤r≤m−1

(
n

r

)
Θr, q(T, ψ; Ty, Tz) =

∑
1≤r≤m

(
n

r − 1

)
Θr, q(T, ψ; y, z) +

∑
0≤r≤m−1

(
n

r

)
Θr, q(T, ψ; y, z)
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=

(
n

m− 1

)
Θm, q(T, ψ; y, z) +

∑
1≤r≤m−1

((
n

r − 1

)
+

(
n

r

))
Θr, q(T, ψ; y, z)

= +Θ0, q(T, ψ; y, z)

=
∑

0≤r≤m−1

(
n+ 1

r

)
Θr, q(T, ψ; y, z) +

(
n

m− 1

)
Θm, q(T, ψ; y, z).

The proof is so completed.

Theorem 2.7.LetT is a self mapping on a metric space(E, d). The following properties hold.

(1)

(2.6) d
(
ψ ◦ T ny, ψ ◦ T nz)q =

∑
0≤r≤m

(
n

r

)
Θr, q(T, ψ; y, z), ∀ y, z ∈ E.

(2) T is anψ(m, q)-isometry if and only if

(2.7) d
(
ψ ◦ T ny, ψ ◦ T nz)q =

∑
0≤r≤m−1

(
n

r

)
Θr, q(T, ψ; y, z), ∀ y, z ∈ E.

(3) If T is anψ(m, q)-isometry, then

(2.8) Θm−1, q(T, ψ; y, z) = lim
n→∞

1(
n

m−1

)d(ψ ◦ T ny, ψ ◦ T nz)q, ∀ y, z ∈ E.

In particular Θm−1, q(T, ψ, y, z) ≥ 0, y, z ∈ E.

Proof. We proceed by the induction to prove (2.6). It is easy to see that (2.6) is true forn = 1.
Now assume that (2.6) holds forn and prove it forn+1. By (2.2) and the induction hypothesis,

d
(
ψ ◦ T n+1y, ψ ◦ T n+1z

)q
=

Θn+1, q(T, ψ; y, z)−
∑

0≤j≤n

(−1)n+1−j
(
n+ 1

j

)
d
(
ψ ◦ T jy, ψ ◦ T jz

)q
= Θn+1, q(T, ψ; y, z)−

∑
0≤j≤n

(−1)n+1−j
(
n+ 1

j

) ∑
0≤r≤j

(
j

r

)
Θr, q(T, ψ; y, z)

= Θn+1, q(T, ψ; y, z)−
∑

0≤r≤n

Θr, q(T, ψ; y, z)
∑
r≤j≤n

(−1)n+1−j
(
n+ 1

j

)(
j

r

)
= Θn+1, q(T, ψ; y, z)−

∑
0≤r≤n

(
n+ 1

r

)
Θr, q(T, ψ; y, z)

( ∑
r≤j≤n

(−1)n+1−j
(
n+ 1− j

j − r

)
︸ ︷︷ ︸

=−1

)

=
∑

0≤r≤n+1

(
n+ 1

r

)
Θr, q(T, ψ, y, z).

Thus (2.6) holds for(n+ 1).

(2) If T is anψ(m, q)-isometric mapping, thenΘr, q(T, ψ; y, z) = 0 for all r ≥ m. Hence we
drive (2.7) from (2.6). On the other hand, if (2.7) holds for alln ≥ 1. ThenΘr, q(T, ψ; y, z) = 0
for r ≥ m by (2.6), soT is anψ(m, q)-isometry.
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(3) One first has to observe that, by (2.7) ifT is anψ(m, q)-isometry, then

d
(
ψ ◦ T ny, ψ ◦ T nz

)q
=

∑
0≤j≤m−2

(
n

j

)
Θj, q(T, ψ; y, z) +

(
n

m− 1

)
Θm−1, q(T, ψ; y, z).

Dividing both sides by
(

n
m−1

)
, we get

1(
n

m−1

)d(ψ ◦ T ny, ψ ◦ T nz)q =
∑

0≤j≤m−2

(
n
j

)(
n

m−1

)Θj, q(T, ψ, y, z) + Θm−1, q(T, ψ, y, z).

Since

(
n
j

)(
n

m−1

) −→ 0 for 0 ≤ j ≤ m− 2, by takingn→∞ we get the statement(3).

It was observed that for an even integerm, every invertiblem-isometric operator is also an
(m − 1)-isometric operator. See [1, Proposition 1.23] and [9, Proposition A ]. The following
theorem shows that this property is also satisfied by the class ofψ(m, q)-isometry.

Theorem 2.8. LetT : (E, d) → (E, d) be a map such is an invertibleψ(m, q)-isometry. Ifm
is even, thenT is anψ(m− 1, q)-isometry.

Proof. SinceT andT−1 are anψ(m, q)-isometries, it follows in view of the statement(3) of
Theorem 2.7 that∑

0≤r≤m−1

(−1)m−1−r
(
m− 1

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q ≥ 0, ∀ y, z ∈ E

and ∑
0≤r≤m−1

(−1)m−1−r
(
m− 1

r

)
d
(
ψ ◦ T−ry, ψ ◦ T−rz

)q ≥ 0, ∀ y, z ∈ E.

Then one has

∑
0≤r≤m−1

(−1)m−1−r
(
m− 1

r

)
d
(
ψ ◦ T−ry, ψ ◦ T−rz

)q ≥ 0, ∀ y, z

=⇒
∑

0≤r≤m−1

(−1)m−1−r
(

m− 1

m− 1− r

)
d
(
ψ ◦ Tm−1−ry, ψ ◦ Tm−1−rz

)q ≥ 0

=⇒
∑

0≤r≤m−1

(−1)r
(
m− 1

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q ≥ 0, ∀ y, z

=⇒ −
∑

0≤r≤m−1

(−1)m−1−r
(
m− 1

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q ≥ 0 (sincem is even integer)

=⇒
∑

0≤r≤m−1

(−1)m−1−r
(
m− 1

r

)
d
(
ψ ◦ T ry. ψ ◦ T rz

)q ≤ 0, ∀ y, z.

Hence we have∑
0≤r≤m−1

(−1)m−1−r
(
m− 1

r

)
d
(
ψ ◦ T ry. ψ ◦ T rz

)q
= 0, ∀ y, z ∈ E.

Consequently,T is anψ(m− 1, q)-isometry. So the proof is complete.
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Lemma 2.9. ([12]) Letm be a non negative integer. Then the following identities hold.

(2.9)
∑

0≤r≤m

(−1)m−r
(
m

r

)
rj = 0

for j = 0, 1, · · · ,m− 1 and

(2.10)
∑

0≤r≤m

(−1)m−r
(
m

r

)
rm = m!.

Forn, r ∈ N we setn(r) :=
(
n
r

)
r!.

Proposition 2.10. Let T : (E, d) → (E, d) be a map. ThenT is anψ(m, q)-isometry if and
only if

(2.11) d
(
ψ ◦T ny, ψ ◦T nz

)q
=

∑
0≤j≤m−1

( ∑
j≤r≤m−1

(−1)r−j
n(r)

r!

(
r

j

))
d
(
ψ ◦T jy, ψ ◦T jz

)q
,

for all n ∈ N andy, z ∈ E.

Proof. Firstly, assume thatT is anψ(m, q)-isometric mapping. From (2.6), it follows that

d
(
ψ ◦ T ny, ψ ◦ T nz

)q
=

∑
0≤j≤m−1

n(j)

j!
Θj, q(T, ψ; y, z).

In view of (2.2), we have

d
(
ψ ◦ T ny, ψ ◦ T nz

)q
=∑

0≤j≤m−1

n(j)

j!

∑
0≤r≤j

(−1)j−r
(
j

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q
=

∑
0≤j≤m−1

n(j)

j!
(−1)j

(
j

0

)
d
(
ψy, ψz

)q
+

∑
1≤j≤m−1

n(j)

j!
(−1)j−1

(
j

1

)
d
(
ψ ◦ Ty, ψ ◦ Tz

)q
+

· · ·+
∑

m−1≤j≤m−1

n(j)

j!
(−1)j−m+1

(
j

m− 1

)
d
(
ψ ◦ Tm−1y, ψ ◦ Tm−1z

)q
=

∑
0≤j≤m−1

( ∑
j≤r≤m−1

(−1)r−j
n(r)

r!

(
r

j

))
d
(
ψ ◦ T jy, ψ ◦ T jz

)q
.

Conversely, assume that(2.11) holds, then we obtain thatn 7−→ d
(
ψ ◦ T ny, ψ ◦ T nz

)q
is a

polynomial inn of degree≤ m− 1;

d
(
ψ ◦ T jy, ψ ◦ T jz

)q
= p0 + p1n+ · · ·+ pm−1n

m−1

wherepr =
∑

0≤j≤r

βjd
(
ψ ◦T jy, ψ ◦T jz

)q
for βj ∈ R. Applying (2.9) of Lemma 2.9, we obtain

that ∑
0≤r≤m

(−1)m−r
(
m

r

)
d
(
ψ ◦ T ry, ψ ◦ T rz

)q
= 0.

HenceT is anψ(m, q)-isometric mapping.

The following result shows that a power of anψ(m, q)-isometry is again anψ(m, q)-isometry.

AJMAA, Vol. 17 (2020), No. 2, Art. 20, 18 pp. AJMAA

https://ajmaa.org


ψ(m, q)-ISOMETRIC MAPPINGS ON METRIC SPACES 11

Theorem 2.11.LetT : (E, d) → (E, d) be a map such is anψ(m, q)-isometry. ThenT n is an
ψ(m, q)-isometry for each positive integern.

Proof. Assume thatT is anψ(m, q) isometry. From (2.6), it follows that

d
(
ψ ◦ T nry, ψ ◦ T nrz

)q
=

∑
0≤j≤m−1

(nr)(j)

j!
Θj, q(T, ψ; y, z).

By (2.2), it holds

Θm, q(T
n, ψ, y, z) =

∑
0≤r≤m

(−1)m−r
(
m

r

)
d
(
ψ ◦ T nry, ψ ◦ T nrz

)q
=

∑
0≤r≤m

(−1)m−r
(
m

r

)( ∑
0≤j≤m−1

(nr)(j)

j!
Θj, q(T, ψ, y, z)

)
=

∑
0≤j≤m−1

1

j!

( ∑
0≤r≤m

(−1)m−r
(
m

r

)
(nr)(j)

)
︸ ︷︷ ︸

=0
(
by Lemma 2.9

)
Θj, q(T, ψ, y, z)

= 0.

HenceT n is anψ(m, q)-isometry as desired.

Lemma 2.12. LetT be a self map on a metric space(E, d) is anψ(m, q)-isometry. Then the
following identities hold forn ≥ m andy, z ∈ E,

(2.12)
∑

0≤r≤n

(−1)r
(
n

r

)
rid

(
ψ ◦ T n−ry, ψ ◦ T n−rz

)q
= 0

for i = 0, 1, · · · , n−m.

Proof. SinceT is anψ(m, q)-isometry, it is known thatT is anψ(n, q)-isometry for eachn ≥
m. Thus, fori = 0, (2.12) is immediate. Assume thati ≥ 1 and prove(2.12) by induction
on n. The result is true forn = m (by Proposition 2.10). Suppose that(2.12) is true for
i ∈ {1, 2, · · · , n−m} and prove it fori ∈ {1, 2, · · · , n−m+ 1}. By the induction hypothesis,
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we obtain ∑
0≤r≤n+1

(−1)r
(
n+ 1

r

)
rid

(
ψ ◦ T n−r+1y, ψ ◦ T n−r+1z

)q
=

∑
1≤r≤n+1

(−1)r
(
n+ 1

r

)
rid

(
ψ ◦ T n−r+1y, ψ ◦ T n−r+1z

)q
=

∑
0≤r≤n

(−1)r+1

(
n+ 1

r + 1

)
(r + 1)id

(
ψ ◦ T n−ry, ψ ◦ T n−rz

)q
= −(n+ 1)

∑
0≤r≤n

(−1)r
n!

r!(n− r)!
(r + 1)i−1d

(
ψ ◦ T n−ry, ψ ◦ T n−rz

)q
= −(n+ 1)

∑
0≤r≤n

(−1)r
(
n

r

)( ∑
0≤j≤i−1

(
i− 1

j

)
rj

)
d
(
ψ ◦ T n−ry, ψ ◦ T n−rz

)q
= −(n+ 1)

∑
0≤j≤i−1

(
i− 1

j

)( ∑
0≤r≤n

(−1)r
(
n

r

)
rjd

(
ψ ◦ T n−ry, ψ ◦ T n−rz

)q)
= 0.

Theorem 2.13.Let T andS be self mappings on a metric space(E, d) such thatT ◦ S =
S ◦ T . Assume thatT is anψ(m, q) isometry andS is anψ(n, q)-isometry, thenT ◦ S is an
ψ(m+ n− 1, q)-isometry..

Proof. We need to prove thatΘm+n−1, q(T ◦ S, ψ; y, z) = 0 for y, z ∈ E.

In fact, under the assumption thatT ◦ S = S ◦ T , we have

Θm+n−1, q(T ◦ S, ψ; y, z) =∑
0≤r≤m+n−1

(−1)r
(
m+ n− 1

r

)
d
(
ψ ◦ (T ◦ S)m+n−1−ry, ψ ◦ (T ◦ S)m+n−1−rz

)q
=

∑
0≤r≤m+n−1

(−1)r
(
m+ n− 1

r

)
d
(
ψ ◦ Tm+n−1−r ◦ Sm+n−1−ry, ψ ◦ Tm+n−1−rSm+n−1−rz

)q
.

On the other hand sinceT is anψ(m, q)-isometry, it follows by Proposition 2.10 that

d
(
ψ ◦ Tm+n−1−rSm+n−1−ry, ψ ◦ Tm+n−1−rSm+n−1−rz

)q
=∑

0≤l≤m−1

( ∑
l≤p≤m−1

(−1)p−l
1

p!
(m+ n− 1− r(p)

(
p

l

))
d
(
ψ ◦ T lSm+n−ry, ψ ◦ T lSm+n−1−rz

)q
.

By observing that(m+ n− 1− r)(p) =
∑

0≤α≤p

bαr
α, we obtain that

Θm+n−1, q(T ◦ S, ψ; y, z) =∑
0≤r≤m+n−1

∑
l≤p≤m−1

∑
0≤α≤p

bα(−1)r
(
m+ n− 1

r

)
rαd

(
ψ ◦ Sm+n−1−rT ly, ψ ◦ Sm+n−1−rT lz

)q
.
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In order to prove thatΘm+n−1, q(TS, ψ, y, z) = 0 it suffices to prove that forl ∈ {0, 1, · · · ,m−
1} we have∑

0≤r≤m+n−1

∑
0≤α≤p

bα(−1)r+p−l
(
m+ n− 1

r

)
rαd

(
ψ ◦ Sm+n−1−rT ly, ψ ◦ Sm+n−1−rT lz

)q
= 0.

In view of the fact thatS is anψ(n, q)-isometry, it follows by Lemma 2.12 that∑
0≤r≤m+n−1

(−1)r
(
m+ n− 1

r

)
rαd

(
ψ ◦ Sm+n−1−rT ly, ψ ◦ Sm+n−1−rT lz

)q
= 0

for α ∈ {0, 1, · · · ,m− 1}. ThereforeT ◦ S is anψ(m+ n− 1, q)-isometry.

Corollary 2.14. LetT andW be self mappings on a metric space(E, d) such thatT ◦W = W ◦
T . If T is anψ(m, q)-isometry andW -is anψ(n, q)-isometry, thenT p◦W v is anψ(m+n−1, q)-
isometry for all positive integersp andv.

Proof. The proof is an consequence of Theorem 2.11 and Theorem 2.13.

Lemma 2.15. ([13, Lemma 3.15]) If (aj)j≥0 is a sequence of complex numbers andv, u,m, l
are positive integers satisfying

(2.13)
∑

0≤r≤m

(−1)r
(
m

r

)
avr+j = 0

and

(2.14)
∑

0≤r≤l

(−1)r
(
l

r

)
aur+j = 0

for all j ≥ 0, then

(2.15)
∑

0≤r≤p

(−1)r
(
p

r

)
ahr = 0,

whereh = gcd(v, u) andp = min(m, l).

Theorem 2.16.LetT be a self map on a metric space(E, d) such thatT r is anψ(m, q)-isometry
andTm is anψ(l, q)-isometry, thenT h is aψ(p, q)-isometry, whereh is the greatest common
divisor ofr andm, andp is the minimum ofm andl.

Proof. Fix t, z ∈ E and denoteaj = d
(
ψ ◦ T jy, ψ ◦ T jz

)q
for j = 1, 2, · · · . As T r is an

ψ(m, q)-isometry the sequence(aj)j≥0 verifies the recursive equation∑
0≤r≤m

(−1)m−r
(
m

r

)
arr+j = 0, for all j ≥ 0.

Analogously, asT s is anψ(l, q)-isometry the sequence(aj)j≥0 verifies the recursive equation∑
0≤r≤l

(−1)l−r
(
l

r

)
arm+j = 0, for all j ≥ 0.

Applying Lemma 2.15 we obtain that∑
0≤r≤p

(−1)p−r
(
p

r

)
ahr = 0,

whereh is the greatest common divisor ofr andm, andp is the minimum ofm andl. Conse-
quently,T h is anψ(p, q)-isometry.
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The following corollary is direct consequence of preceding theorem.

Corollary 2.17. Let T : (E, d) → (E, d) be a map and letv, u,m, l be positive integers. The
following properties hold.

(1) If T is an ψ(m, q)-isometry such thatT u is an ψ(1, q)-isometry , thenT is an ψ(1, q)-
isometry .

(2) If T v andT v+1 areψ(m, q)-isometries, then so isT .

(3) If T v is anψ(m, q)-isometry andT v+1 is anψ(l, q)-isometry
withm < l, thenT is anψ(m, q)-isometry.

Lemma 2.18. LetT be a self map on a metric spaceE such isψ(2, p)-isometric, then for all
integerr ≥ 2 andy, z ∈ E, the following identity holds.

d
(
ψ ◦ T ry, ψ ◦ T rz

)q − d
(
ψ ◦ T r−1y, ψ ◦ T r−1z

)q
= d

(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

)q
.

Proof. By by induction onr. The identity is obviously true forr = 2, sinceT is anψ(2, p)-
isometric mapping. Now assume that the identity is true forr ≥ 2 i.e.;

d
(
ψ◦T ry, ψ◦T rz

)q−d(ψ◦T r−1y, ψ◦T r−1z
)q

= d
(
ψ◦Ty, ψ◦Tz

)q−d(ψy, ψz)q, ∀ y, z ∈ E.

Consequently, we obtain the following equality

d
(
ψ ◦ T r+1y, ψ ◦ T r+1z

)q − d
(
ψ ◦ T ry, ψ ◦ T rz

)q
= d

(
ψ ◦ T 2y, ψ ◦ T 2z

)q − d
(
ψ ◦ Ty, ψ ◦ Tz

)q
= d

(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

)q
.

Lemma 2.19. Let T be a self map on a metric space(E, d) wish isψ(2, q)-isometric map,
then the following statements are true.

(1) d
(
ψ◦T nt, ψ◦T nz

)q
= n.d

(
ψ◦Ty, ψ◦Tz

)q−(n−1)d
(
ψy, ψz

)q
, y, z ∈ E, n = 0, 1, 2, · · ·

(2) d
(
ψ ◦ Ty, ψ ◦ Tz

)q ≥ n− 1

n
d
(
ψy, ψz

)q
, n ≥ 1, y, z ∈ E.

(3) d
(
ψ ◦ Ty, ψ ◦ Tz

)q ≥ d
(
ψy, ψz

)q
for all y, z ∈ E.

(4) d
(
ψ ◦ Ty, ψ ◦ Tz

)
≤ 2

1
q d

(
ψy, ψz

)
∀ y, z ∈ R(T ) (the range ofT ).

Proof. )(1) SinceT is ψ(2, q)-isometric map it follows from Lemma 2.18 that

d
(
ψ ◦ T r+1y, ψ ◦ T r+1z

)q − d
(
ψ ◦ T ry, ψ ◦ T rz

)q
= d

(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

)q
.

This means that

d
(
ψ ◦ T ny, ψ ◦ T nz

)q
= d

(
ψ ◦ Ty, ψ ◦ Tz

)q
+

∑
1≤r≤n−1

(
d
(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

))q

= d
(
ψ ◦ Ty, ψ ◦ Tz

)q
+ (n− 1)

(
d
(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

)q)
+

= n d
(
ψ ◦ Ty, ψ ◦ Tz

)q
+ (1− n)d

(
ψy, ψz

)q
.

(2) Sinced
(
ψ ◦ T ny, ψ ◦ T nz

)q ≥ 0 for all y, z ∈ E, we get
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d
(
ψ ◦ Ty, ψ ◦ Tz

)q ≥ n− 1

n
d
(
ψy, ψz

)q
.

(3) By takingn −→∞ in (2) yields(3).

(4) The fact thatT is ψ(2, p)-isometric gives

d
(
ψ ◦ T 2y, ψ ◦ T 2z

)q
= 2d

(
ψ ◦ Ty, ψ ◦ Tz

)q − d
(
ψy, ψz

)q ≤ 2d
(
ψ ◦ Ty, ψ ◦ Tz

)q
.

This means that,

d
(
ψ ◦ T 2y, ψ ◦ T 2z

)
≤ 2

1
q d

(
ψ ◦ Ty, ψ ◦ Tz

)
.

3. DISTANCES ASSOCIATED TO ψ(m, q)-ISOMETRIES

In this section we introduce some distances related toψ(m, q)-isometries. Our inspiration
cames from the papers [4, 6, 19].

let T be anψ(m, q)-isometry, we setρ
T,ψ

(y, z) =

(
Θm−1, q(T, ψ; y, z)

) 1
q

for y, z ∈ E,m ≥ 1

andq ≥ 1.

Proposition 3.1. If T is anψ(m, q)-isometry, then

(3.1) ρ
T, ψ

(y, z) = q
√

(m− 1)! lim
n−→∞

d
(
ψ ◦ T ny, ψ ◦ T nz

)
q
√
n(m−1)

.

Moreoverρ
T,ψ

is a semi-distance onE.

Proof. Under the assumption thatT is anψ(m, q)-isometry, we have from the statement(2) of
Theorem 2.7

d
(
ψ ◦ T ny, ψ ◦ T nz

)q
=

∑
0≤r≤m−1

(
n

r

)
Θm−1, q(T, ψ; y, z).

Note that the mapn 7→
(
n
r

)
is polynomial inn of degreer and Θr, q(T, ψ; y, z) = 0 for

r > m− 1. Therefore

Θm−1, q(T, ψ; y, z) = lim
n−→∞

d
(
ψ ◦ T ny, ψ ◦ T nz

)q(
n

m−1

) = (m− 1)! lim
n−→∞

d
(
ψ ◦ T ny, ψ ◦ T nz

)q
n(m−1)

.

This means that

(3.2) ρ
T, ψ

(y, z) = q
√

(m− 1)! lim
n−→∞

d
(
ψ ◦ T ny, ψ ◦ T nz

)
q
√
n(m−1)

.

To show thatρ
T, ψ

is a semi-metric, firstly, we observe thatρ
T, ψ

(y, z) ≥ 0, by the statement
(3) of Theorem 2.7. Clearlyρ

T, ψ
(y, y) = 0 andρ

T, ψ
(y, z) = ρ

T, ψ
(z, y) ∀ y, z ∈ E.
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Next to prove the triangle inequality, we have fory, z, z ∈ E,

ρ
T, ψ

(y, z) = Θm−1, q(T, ψ; y, z)
1
q

= q
√

(m− 1)! lim
n−→∞

d
(
ψ ◦ T ny, ψ ◦ T nz

)
q
√
n(m−1)

≤ q
√

(m− 1)! lim
n−→∞

d
(
ψ ◦ T ny, ψ ◦ T nz

)
q
√
n(m−1)

+ q
√

(m− 1)! lim
n−→∞

d
(
ψ ◦ T nz, ψ ◦ T nz

)
q
√
n(m−1)

= ρ
T, ψ

(y, z) + ρ
T, ψ

(z, z).

Remark 3.1. In view of Proposition 2.2, ifT is anψ(m, q)-isometry, then

Θm−1, q(T, ψ; y, z) = Θm−1, q(T, ψ; Ty, Tz).

This means thatρ
T, ψ

(y, z) = ρ
T, ψ

(Ty, Tz) and therefore

T : (E, ρ
T, ψ

) −→ (E, ρ
T, ψ

),

is an isometry.

By observing that

Θm, q(T, ψ; y, z) =∑
0≤r≤m

(−1)r
(
m

r

)
d
(
ψ ◦ Tm−ry, ψ ◦ Tm−rz

)q
=

∑
0 ≤ r ≤ m
r (even)

(
m

r

)
d
(
ψ ◦ Tm−ry, ψ ◦ Tm−rz

)q

−
∑

0 ≤ r ≤ m
r (odd)

(
m

r

)
d
(
ψ ◦ Tm−ry, ψ ◦ Tm−rz

)q

=
∑

0 ≤ r ≤ m
r (even)

(
m

r

)
d
(
ψ ◦ Tm−ry, ψ ◦ Tm−rz

)q

−
∑

0 ≤ r ≤ m
r (odd)

(
m

r

)
d
(
ψ ◦ Tm−r−1Ty, ψ ◦ Tm−r−1Tz

)q

= ρ̃
T, ψ

(y, z)− ρ̃
T, ψ

′(Ty, Tz).

Lemma 3.2. If ψ is a injective self map onE, then(E, ρ̃
T, ψ

) and (E, ρ̃
T, ψ

′) are both metric
space.

Theorem 3.3. Let T : (E, d) → (E, d) be a map andq ≥ 1. If ψ is injective, then following
statements are equivalent.
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(1) T : (E, d) → (E, d) is anψ(m, q)-isometry

(2) T :
(
E, ρ̃

T, ψ

)
→

(
E, ρ̃

T, ψ

′) is an isometry.

Proof. In view of Proposition 2.2 it follows that,

T is anψ(m, q)-isometry

⇔
∑

0 ≤ r ≤ m
r (even)

(
m

r

)
d
(
ψ ◦ Tm−ry, ψ ◦ Tm−rz

)q

=
∑

0 ≤ r ≤ m
r (odd)

(
m

r

)
d
(
ψ ◦ Tm−r−1Ty, ψ ◦ Tm−r−1Tz

)q
, ∀ y, z ∈ E,

⇔ ρ̃
T, ψ

(y, z)= ρ̃
T, ψ

′(Ty, Tz), ∀ y, z ∈ E
⇔ T is an isometry.

4. CONCLUSION

In this study, some properties ofm-isometries of Hilbert and Banach spaces operators are
characterized form-isometries for mappings on general metric spaces.
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