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ABSTRACT. In this paper, we present some stability results for both the general Krasnoselskij
and the Kirk’s iteration processes. The method of Berinde [1] is employed but a more general
contractive condition than those of Berindé [1], Harder and Hicks [5], Rhoades [11] and Osilike
[9] is considered.
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1. INTRODUCTION

Let (E, d) be a complete metric space afid £ — E a selfmap ofE. Let F(T) = {p €
E | Tp = p } be the fixed point set of T. Far, € F, let

(1.2) T = f(T, x,), n=0,1,2,...

denote an iteration procedure which yields a sequence of pints>,, for some func-
tion f. Suppose thaf{x,}>>, converges to a fixed point of 7" and {y,}>°, C E. Set
€n = dYns1, f(T,yn)), n=0,1,2,...

Then, the iteration procedure in (L.1) is said tolbstable or stable with respect 1oif and
only if lim ¢, = 0 implies lim vy, = p. For certain contractive definitions, the stability of some
iterationn S(Focedures has %egn studied by several authors. See for example Harder and Hicks [5],
Rhoades [11, 12, 13], Osilikel[9], JachymsKi [7] and Berinde [1]. Harder and Hicks [5] showed
that function iteration for mappings T satisfying various contractive definitions is T-stable and
similarly for several iteration processes other than function iteration. Later, Rhoadés|[12, 13]
extended some of the results of Harder and Hicks [5] to an independent contractive definition,
and also proved stability results for some additional iteration procedures. In Rhoades [11] a
more general contractive definition than those of Harder and Hicks [5] and Rhoadées|[12, 13]
was employed. This was given by:

(1.2) d(Txz,Ty) < cmax {d(m, ), % [d(z, Tx) + d(y, Ty)], d(z, Ty), d(y, Tx)} :

for eachz, y € E and a constant € [0,1). Using [1.2), Rhoades [11] proved several stability
results which are generalizations and extensions of most of the results of Harder and Hicks [5]
and Rhoades [13]. Indeed, Rhoades showed that if T satisfi¢s (1.2) then,

(1.3) d(Tz,Ty) < %_Cd(x,Tx) + cd(z,y) .

Osilike [9] employed the following contractive definition: there exist constants|0, 1) and
L > 0 such that for each,y € F,

(1.4) d(Txz,Ty) < Ld(z,Tx) + ad(x,y) .

Using (1.4), he established several stability results which are generalizations of most of the
results of Rhoades [11].

In this paper, we establish some stability results for a more general contractive definition
than those of Rhoades [11], Osilike [9], Harder and Hicks [5] and Berinde [1]. However, in
the proofs of our results, we shall employ the method of Berinde [1] which was also used by
Osilike [10]. For more details and references regarding the fixed point iteration processes and
their stability, we refer to the recent monograph of Berinde [4].

2. PRELIMINARIES

Let {z,}°2, be the sequence generated by the iteration procedute (1.1). Then, the general
Krasnoselskij (Schaefer’s) iteration process is obtained ffom (1.1) if

f(T, z,)=1-a)x,+alTx,, n=0,1,2,..., a€l0,1]

while the Kirk’s iteration process is obtained for

k k
f(T, x,) :ZaiTia:n,nzO,ai >0, >Oand2ai: 1.

=0 =0
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We shall employ the following contractive definition: there exist a congtant|0,1) and a
monotone increasing function: R, — R with ¢(0) = 0, such that , for each,y € F,

(2.1) d(Tz,Ty) < (d(z,Tx)) + bd(z,y) .
The contractive definition (2.1) is indeed more general in the following sensex(vlf =

Lv, L > 0in (2.1), then we obtain the contractive definition of Osilike [9]lfv) = 1% v in

), then we have the contractive definition of Rhoades [11]. Agaih,={ 26 andb = § In
), where) — max{a, 2, 1%/} 0<a<1,0<8<050<~<0.5 then we obtain

the Zamfirescu’s contractive definition in Berindé [1], Harder and Hicks [5]. Furthermore, if
¢(u) = 0, then |2.1) reduces to

(2.2) d(Tx, Ty) < bd(z,y), b€ [0,1),

which is the Banach’s contraction condition as contained in Harder and Hicks [5], Berinde [1]

and Zeidler([14].
We shall employ the following Lemmas in the sequel.

Lemma 2.1. (Berinde [1]): If § is areal number such thét< § < 1 and{e, }>° , is a sequence
of positive numbers such thaim ¢, = 0, then for any sequence of positive numbfars}>

satisfying

(2.3) Upi1 < OUp +€,, n=0,1,...,
we have
lim u, = 0.
Lemma 2.2. Let (£, || - ||) be a normed linear space and [ét: £ — FE be a selfmap of E

satisfying [(2.]l). Suppose that: R, — R; is a subadditive, monotone increasing function
such thatp(0) = 0, ¢(Lu) < Lp(u), L > 0. ThenVi € N,andVz, y € E

. 4 AN :
(2.4) HTx—TWH§§:<)HJWOM—TMD+MM—yH
j=1

Proof. We first establish thap subadditive implies that each iteraté of ¢ is also subaddi-
tive. Sinceyp is subadditive, we havep(x + y) < ¢(x) + ¢(y),V z, y € Ry. There-
fore,using subadditivity of in ¢? yields ¢*(z + y) = o(o(z + y)) < o(p(z) + (y)) <
o(e(2)) + plply)) = *(z) + ¥*(y) , which implies thaty? is subadditive. Similarly, apply-
ing subadditivity ofp? in ¢* , we getp®(z + y) = o(P*(z + y)) < p(¥?(x) + ¢*(y)) <
o(*(x)) + o(¢*(y)) = ©*(x) + ¢3(y) , which implies thaty? is also subadditive. Hence, in
general, each™ n = 1,2,...,is subadditive. The second part of the proof of the Lemma is by
mathematical induction on If i = 1, then [2.4) becomes

1

N,
Tz —Tyl| < E:Q)H]WOM—TﬂD+HM—MM

j=1
= @(llz = Tz[]) + bllz -yl -

i.e. (2.4) reduces t¢ (3.1) when= 1 and hence the result holds. Assume that|(2.4) holds for
t=m, m € N,ie.

m m o m
rumx—rwus§j(j)wﬂwmx—Tmm+b|m—mw

j=1
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We then show that the statement is trueifer m + 1;

HTm+1x _ TerlyH

_[(Te) - T (T
;(])bm—j (1T — Tl + ™| T — Ty
Z( )b"” (ol — Tall) + bl — T

=1
+ 0" (p((lw = Tl]) + bllx — vl

IA

IN

< Z( )bm] (| |x — Tz|]) —i—Z(m)bmH 19 (||lx — T||)
— \ j —~\J
J J
4 (|l — Tall) + 57z — g
_ m+1 m+1 m_l_l m
- <m+1)w (e =7l + (" )bw (I~ Tal)
m+1Y 1 m+ 2 3
me =T e T
T e (T 3 D)ol ~ 1)
m-+1Y\,,,_ m-+1Y\,,, m
N G i Txu>+( Tt = el + e )

m+1

= Z( ; )b 993 (|[a = Tatl|) + 6™ | — .

i=1
I

Remark 2.1. The proof of Lemma 2]1 is contained [n [1].

Remark 2.2. Lemmd 2.2 above is more general than the Lemma of Osilike [9].

3. MAIN RESULTS
We now prove a stability result for the general Krasnoselskij (Schaefer’s) iteration procedure.

Theorem 3.1.Let(E, ||-||) be a normed linear space afld: £ — E a selfmap of E satisfying
(2.7). Suppose that T has a fixed point p. et R, — R, be a monotone increasing
function such thato(0) = 0. Define the sequencr, } iteratively for arbitrary zo € E by
Tpe1 = f(T, x,) = (1 —a)x, + aTx,, Vn € Nwheren > 0, a € [0,1]. Then, the general
Krasnoselskij (Schaefer’s) iteration procedure above is T-stable.

Proof. Let {y,} ", C F and define,, = ||y,+1 — (1 — a)y, — aT'y,||, n > 0. Let lim ¢, = 0.

Then , we shall prove théim,, ... y, = p using [2.1) and the triangle inequality:
Yn+1 = Pl < [Ynt1 — (L = a)yn — aTynl| + [|(1 — @)yn + aTyn — pl|
=€+ ||(1 — a)yn + aTy, — [(1 — a) + a]p]|
< (I =a)llyn =l + a[| Ty, — pl| + &
(1= a)llyn — pll + al[Tp = Ty|| + €n
(1 = a)llyn — pl| + afe(llp = Tpl]) + bllp — yal[} + €n
(1 —a+ ab)||ly, — p|| + €n.

IN

(3.1)

AJMAA Vol. 3, No. 2, Art. 8, pp. 1-7, 2006 AJMAA


http://ajmaa.org

SOME STABILITY RESULTSFOR FIXED POINT ITERATION PROCESSES 5

Since0 < 1 —a + ab < 1, then by using Lemn‘@.l i.l), we halien ||y, — p|| =0,
which implies that,

lim y, = p.

Conversely, letlim y,, = p. Then,

€n = |[Yn+1 — (1 — @)y, — aT'y,||
< |Yyns1 = ol +llp = (1 = a)yn — aTy||
< Yns1 = pll + (1 = a)|[p — yull + allp — Tynl|
= |Yn+1 = pll + (1 = a)|[yn — pl| + al|Tp — Ty,||
< yn+1 = pll + (1 = a)llyn — pl| + ale(llp — Tpl]) + bllp — yall]
= [|yn+1 — pll + (1 —a+ab)|[y, — pl| = 0asn — oo.
1

We now prove a stability result for the Kirk’s iteration process.

Theorem 3.2.Let(E, ||-]|) is a normed linear space afll: £ — E a selfmap o2 satisfying
(2.7). Letk > 1 be a fixed integer;, € E, and let
k k
Tpr1 = f(T,x,) = ZaiTixn, n>0, a; >0, a; > 0and Zai =1
=0 i=0

Suppose that’ has a fixed poinp. Lety : R, — R, be a subadditive, monotone increasing
function such thatp(0) = 0, ¢(Lu) < Le(u), L > 0. Then, the Kirk’s iteration process is

T-stable.

Proof. Let{y,}:2, C Fande, = |[yn11 — Sor_y Tyl

Let lim ¢, = 0. Then, we shall prove thaim,, .., ¥, = p, using Lemmﬁz and the triangle

n—oo

inequality:

k k
ot = Il < llgnsr = S Tyl + 11> @ Ty, — pl]

=0 1=0

k k
=€, + || Z Ty, — Z o T'p|
i=0 i=0

k
< al|Thyn — T'pl| + €,
=0
k

= aollp = yall + D ail|T'p — T'ynl| + €s

i=1
k

Do

i=1
k

i

AN .
{Z (j)b” Yo' (llp —Tpll) +b Hp—ynll} + €n + ol[yn — P

j=1

IA

(3.2)

aib'|lyn — pl| + €n,
i=0

sincep’ (0) = p(0) = 0.
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Sincel < Zf:o a;b* < 1, then using Lemm.l i.2) yields
Tim {|yn —pl| =0,
that is,
lim y, = p.
Conversely, Iegi_{go Yyn = p. Then, o

€n

k
= |lgnr1— ) a'T'y|

k
< Nynr = pll +lp = ZaiTiynH
=0
k
< Ny = pll + > il |[T'p = Tyl
=0
k
= |lgnr1 = pll + aollp = gal | + D 17" = Tyl
=1

k . .
S AN ;
< ||yn+1—p||+§jai{§j (j)b w<||p—Tp||>+b||p—yn||}+ao||yn—p||
=1

j=1

k

= e =i+ | St =il — 0 s — o,
1=0

sincey’ (0) = 0.

This completes the proofs

Remark 3.1. Theorenj 31 is a generalization of Theorem 3.1 of Imoru and Olatinwo [6], since
we obtain Picard iteration with = 1.

Remark 3.2. Theorenj 3.2 in this paper is a generalization of Theorem 3 of Osilike [9] which
is itself a generalization of Theorem 3 of Rhoades [11]. Theorem 3 of Rhaades [11] is also a
generalization of both Theorem 4 of Harder and Hi¢ks [5] and Theorem 3 of Rhoades [13].
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