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ABSTRACT. In this paper, we present some stability results for both the general Krasnoselskij
and the Kirk’s iteration processes. The method of Berinde [1] is employed but a more general
contractive condition than those of Berinde [1], Harder and Hicks [5], Rhoades [11] and Osilike
[9] is considered.
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1. I NTRODUCTION

Let (E, d) be a complete metric space andT : E → E a selfmap ofE. Let F (T ) = { p ∈
E | Tp = p } be the fixed point set of T. Forx0 ∈ E, let

(1.1) xn+1 = f(T, xn), n = 0, 1, 2, . . .

denote an iteration procedure which yields a sequence of points{xn}∞n=0, for some func-
tion f. Suppose that{xn}∞n=0 converges to a fixed pointp of T and {yn}∞n=0 ⊂ E. Set
εn = d(yn+1, f(T, yn)), n = 0, 1, 2, . . .

Then, the iteration procedure in (1.1) is said to beT -stable or stable with respect toT if and
only if lim

n→∞
εn = 0 implies lim

n→∞
yn = p. For certain contractive definitions, the stability of some

iteration procedures has been studied by several authors. See for example Harder and Hicks [5],
Rhoades [11, 12, 13], Osilike [9], Jachymski [7] and Berinde [1]. Harder and Hicks [5] showed
that function iteration for mappings T satisfying various contractive definitions is T-stable and
similarly for several iteration processes other than function iteration. Later, Rhoades [12, 13]
extended some of the results of Harder and Hicks [5] to an independent contractive definition,
and also proved stability results for some additional iteration procedures. In Rhoades [11] a
more general contractive definition than those of Harder and Hicks [5] and Rhoades [12, 13]
was employed. This was given by:

(1.2) d(Tx, Ty) ≤ cmax

{
d(x, y),

1

2
[d(x, Tx) + d(y, Ty)] , d(x, Ty), d(y, Tx)

}
,

for eachx, y ∈ E and a constantc ∈ [0, 1). Using (1.2), Rhoades [11] proved several stability
results which are generalizations and extensions of most of the results of Harder and Hicks [5]
and Rhoades [13]. Indeed, Rhoades showed that if T satisfies (1.2) then,

(1.3) d(Tx, Ty) ≤ c

1− c
d(x, Tx) + cd(x, y) .

Osilike [9] employed the following contractive definition: there exist constantsa ∈ [0, 1) and
L ≥ 0 such that for eachx, y ∈ E,

(1.4) d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y) .

Using (1.4), he established several stability results which are generalizations of most of the
results of Rhoades [11].

In this paper, we establish some stability results for a more general contractive definition
than those of Rhoades [11], Osilike [9], Harder and Hicks [5] and Berinde [1]. However, in
the proofs of our results, we shall employ the method of Berinde [1] which was also used by
Osilike [10]. For more details and references regarding the fixed point iteration processes and
their stability, we refer to the recent monograph of Berinde [4].

2. PRELIMINARIES

Let {xn}∞n=0 be the sequence generated by the iteration procedure (1.1). Then, the general
Krasnoselskij (Schaefer’s) iteration process is obtained from (1.1) if

f(T, xn) = (1− a)xn + aTxn, n = 0, 1, 2, . . ., a ∈ [0, 1]

while the Kirk’s iteration process is obtained for

f(T, xn) =
k∑

i=0

αiT
ixn, n ≥ 0, αi ≥ 0, α1 > 0 and

k∑
i=0

αi = 1.

AJMAA, Vol. 3, No. 2, Art. 8, pp. 1-7, 2006 AJMAA

http://ajmaa.org


SOME STABILITY RESULTSFOR FIXED POINT ITERATION PROCESSES 3

We shall employ the following contractive definition: there exist a constantb ∈ [0, 1) and a
monotone increasing functionϕ : IR+ → IR+ with ϕ(0) = 0, such that , for eachx, y ∈ E,

(2.1) d(Tx, Ty) ≤ ϕ(d(x, Tx)) + bd(x, y) .

The contractive definition (2.1) is indeed more general in the following sense. Ifϕ(v) =
Lv, L ≥ 0 in (2.1), then we obtain the contractive definition of Osilike [9]. Ifϕ(v) = c

1−c
v in

(2.1), then we have the contractive definition of Rhoades [11]. Again, ifL = 2δ andb = δ in

(1.4), whereδ = max
{

α, β
1−β

, γ
1−γ

}
, 0 ≤ α < 1, 0 ≤ β < 0.5, 0 ≤ γ ≤ 0.5, then we obtain

the Zamfirescu’s contractive definition in Berinde [1], Harder and Hicks [5]. Furthermore, if
ϕ(u) = 0, then (2.1) reduces to

(2.2) d(Tx, Ty) ≤ bd(x, y), b ∈ [0, 1),

which is the Banach’s contraction condition as contained in Harder and Hicks [5], Berinde [1]
and Zeidler [14].

We shall employ the following Lemmas in the sequel.

Lemma 2.1. (Berinde [1]): If δ is a real number such that0 ≤ δ < 1 and{εn}∞n=0 is a sequence
of positive numbers such thatlim

n→∞
εn = 0, then for any sequence of positive numbers{un}∞n=0

satisfying

(2.3) un+1 ≤ δun + εn, n = 0, 1, . . . ,

we have
lim

n→∞
un = 0.

Lemma 2.2. Let (E, || · ||) be a normed linear space and letT : E → E be a selfmap of E
satisfying (2.1). Suppose thatϕ : IR+ → IR+ is a subadditive, monotone increasing function
such thatϕ(0) = 0, ϕ(Lu) ≤ Lϕ(u), L ≥ 0. Then,∀ i ∈ N , and∀ x, y ∈ E

(2.4) ||T ix− T iy|| ≤
i∑

j=1

(
i

j

)
bi−jϕj(||x− Tx||) + bi||x− y||.

Proof. We first establish thatϕ subadditive implies that each iterateϕi of ϕ is also subaddi-
tive. Sinceϕ is subadditive, we haveϕ(x + y) ≤ ϕ(x) + ϕ(y) ,∀ x, y ∈ IR+. There-
fore,using subadditivity ofϕ in ϕ2 yieldsϕ2(x + y) = ϕ(ϕ(x + y)) ≤ ϕ(ϕ(x) + ϕ(y)) ≤
ϕ(ϕ(x)) + ϕ(ϕ(y)) = ϕ2(x) + ϕ2(y) , which implies thatϕ2 is subadditive. Similarly, apply-
ing subadditivity ofϕ2 in ϕ3 , we getϕ3(x + y) = ϕ(ϕ2(x + y)) ≤ ϕ(ϕ2(x) + ϕ2(y)) ≤
ϕ(ϕ2(x)) + ϕ(ϕ2(y)) = ϕ3(x) + ϕ3(y) , which implies thatϕ3 is also subadditive. Hence, in
general, eachϕn, n = 1, 2, . . . , is subadditive. The second part of the proof of the Lemma is by
mathematical induction oni. If i = 1, then (2.4) becomes

||Tx− Ty|| ≤
1∑

j=1

(
1

j

)
b1−jϕj(||x− Tx||) + b||x− y|| ,

= ϕ(||x− Tx||) + b||x− y|| .

i.e. (2.4) reduces to (2.1) wheni = 1 and hence the result holds. Assume that (2.4) holds for
i = m, m ∈ IN, i.e.

||Tmx− Tmy|| ≤
m∑

j=1

(
m

j

)
bm−jϕj(||x− Tx)||) + bm||x− y||.
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We then show that the statement is true fori = m + 1;

||Tm+1x− Tm+1y||
= ||Tm(Tx)− Tm(Ty)||

≤
m∑

j=1

(
m

j

)
bm−jϕj(||Tx− T 2x||) + bm||Tx− Ty||

≤
m∑

j=1

(
m

j

)
bm−jϕj(ϕ(||x− Tx||) + b||x− Tx||)

+ bm(ϕ(||x− Tx||) + b||x− y||

≤
m∑

j=1

(
m

j

)
bm−jϕj+1(||x− Tx||) +

m∑
j=1

(
m

j

)
bm+1−jϕj(||x− Tx||)

+ bmϕ(||x− Tx||) + bm+1||x− y||

=

(
m + 1

m + 1

)
ϕm+1(||x− Tx||) +

(
m + 1

m

)
bϕm(||x− Tx||)

+

(
m + 1

m− 1

)
b2ϕm−1(||x− Tx||) + . . . +

(
m + 1

3

)
bm−2ϕ3(||x− Tx||)

+

(
m + 1

2

)
bm−1ϕ2(||x− Tx||) +

(
m + 1

1

)
bmϕ(||x− Tx||) + bm+1||x− y||

=
m+1∑
j=1

(
m + 1

j

)
bm+1−jϕj(||x− Tx||) + bm+1||x− y||.

Remark 2.1. The proof of Lemma 2.1 is contained in [1].

Remark 2.2. Lemma 2.2 above is more general than the Lemma of Osilike [9].

3. M AIN RESULTS

We now prove a stability result for the general Krasnoselskij (Schaefer’s) iteration procedure.

Theorem 3.1.Let(E, || · ||) be a normed linear space andT : E → E a selfmap of E satisfying
(2.1). Suppose that T has a fixed point p. Letϕ : IR+ → IR+ be a monotone increasing
function such thatϕ(0) = 0. Define the sequence{xn} iteratively for arbitrary x0 ∈ E by
xn+1 = f(T, xn) = (1 − a)xn + aTxn, ∀ n ∈ IN wheren ≥ 0, a ∈ [0, 1]. Then, the general
Krasnoselskij (Schaefer’s) iteration procedure above is T-stable.

Proof. Let {yn}∞n=0 ⊂ E and defineεn = ||yn+1− (1− a)yn− aTyn||, n ≥ 0. Let lim
n→∞

εn = 0.

Then , we shall prove thatlimn→∞ yn = p using (2.1) and the triangle inequality:

||yn+1 − p|| ≤ ||yn+1 − (1− a)yn − aTyn||+ ||(1− a)yn + aTyn − p||
= εn + ||(1− a)yn + aTyn − [(1− a) + a]p||
≤ (1− a)||yn − p||+ a||Tyn − p||+ εn

= (1− a)||yn − p||+ a||Tp− Tyn||+ εn

≤ (1− a)||yn − p||+ a{ϕ(||p− Tp||) + b||p− yn||}+ εn

= (1− a + ab)||yn − p||+ εn.(3.1)
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Since0 ≤ 1− a + ab < 1, then by using Lemma 2.1 in (3.1), we havelim
n→∞

||yn − p|| = 0,

which implies that,
lim

n→∞
yn = p.

Conversely, letlim
n→∞

yn = p. Then,

εn = ||yn+1 − (1− a)yn − aTyn||
≤ ||yn+1 − p||+ ||p− (1− a)yn − aTyn||
≤ ||yn+1 − p||+ (1− a)||p− yn||+ a||p− Tyn||
= ||yn+1 − p||+ (1− a)||yn − p||+ a||Tp− Tyn||
≤ ||yn+1 − p||+ (1− a)||yn − p||+ a[ϕ(||p− Tp||) + b||p− yn||]
= ||yn+1 − p||+ (1− a + ab)||yn − p|| → 0 as n →∞.

We now prove a stability result for the Kirk’s iteration process.

Theorem 3.2.Let(E, || · ||) is a normed linear space andT : E → E a selfmap ofE satisfying
(2.1). Letk ≥ 1 be a fixed integer,x0 ∈ E, and let

xn+1 = f(T, xn) =
k∑

i=0

αiT
ixn, n ≥ 0, αi ≥ 0, α1 > 0 and

k∑
i=0

αi = 1.

Suppose thatT has a fixed pointp. Let ϕ : IR+ → IR+ be a subadditive, monotone increasing
function such thatϕ(0) = 0, ϕ(Lu) ≤ Lϕ(u), L ≥ 0. Then, the Kirk’s iteration process is
T-stable.
Proof. Let{yn}∞n=0 ⊂ E andεn = ||yn+1 −

∑k
i=0 αiT

iyn||.
Let lim

n→∞
εn = 0. Then, we shall prove thatlimn→∞ yn = p, using Lemma 2.2 and the triangle

inequality:

||yn+1 − p|| ≤ ||yn+1 −
k∑

i=0

αiT
iyn||+ ||

k∑
i=0

αiT
iyn − p||

= εn + ||
k∑

i=0

αiT
iyn −

k∑
i=0

αiT
ip||

≤
k∑

i=0

αi||T iyn − T ip||+ εn

= α0||p− yn||+
k∑

i=1

αi||T ip− T iyn||+ εn

≤
k∑

i=1

αi

{ i∑
j=1

(
i

j

)
bi−jϕj(||p− Tp||) + bi||p− yn||

}
+ εn + α0||yn − p||

=
k∑

i=0

αib
i||yn − p||+ εn,(3.2)

sinceϕj(0) = ϕ(0) = 0.
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Since0 ≤
∑k

i=0 αib
i < 1, then using Lemma 2.1 in (3.2) yields

lim
n→∞

||yn − p|| = 0,

that is,
lim

n→∞
yn = p.

Conversely, letlim
n→∞

yn = p. Then,

εn

= ||yn+1 −
k∑

i=o

αiT iyn||

≤ ||yn+1 − p||+ ||p−
k∑

i=0

αiT
iyn||

≤ ||yn+1 − p||+
k∑

i=0

αi||T ip− T iyn||

= ||yn+1 − p||+ α0||p− yn||+
k∑

i=1

||T ip− T iyn||

≤ ||yn+1 − p||+
k∑

i=1

αi

{∑
j=1

i
(

i

j

)
bi−jϕj(||p− Tp||) + bi||p− yn||

}
+ α0||yn − p||

= ||yn+1 − p||+
[ k∑

i=0

αib
i

]
||yn − p|| → 0 as n →∞,

sinceϕj(0) = 0.
This completes the proof .

Remark 3.1. Theorem 3.1 is a generalization of Theorem 3.1 of Imoru and Olatinwo [6], since
we obtain Picard iteration witha = 1.

Remark 3.2. Theorem 3.2 in this paper is a generalization of Theorem 3 of Osilike [9] which
is itself a generalization of Theorem 3 of Rhoades [11]. Theorem 3 of Rhoades [11] is also a
generalization of both Theorem 4 of Harder and Hicks [5] and Theorem 3 of Rhoades [13].
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