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2 ABHIJIT BANERJEE

1. I NTRODUCTION DEFINITIONS AND RESULTS

Let f andg be two nonconstant meromorphic functions defined in the open complex plane
C. If for somea ∈ C ∪ {∞}, f andg have the same set ofa-points with same multiplicities
then we say thatf andg share the valuea CM (counting multiplicities). If we do not take the
multiplicities into account,f andg are said to share the valuea IM (ignoring multiplicities).
The notationS(r, f) denotes any quantity satisfyingS(r, f) = 0(T (r, f)) asr −→ ∞, outside
any set of finite linear measure.

We useI to denote any set of infinite linear measure of0 < r < ∞.
G. Broch [1] proved the following theorem.

Theorem 1.1. [1, 5, 10]Letf andg share0, 1,∞ CM. If

lim sup
r−→∞

2N(r, 0; f) + 2N(r,∞; f)−m(r, 1; g)

T (r, f)
< 1(1.1)

r ∈ I

thenf ≡ g or f.g ≡ 1.

N. Terglane [9] proved the following theorem.

Theorem 1.2. [5, 9, 10]Letf andg share1,∞ CM and0 IM. If

N(r, 1; f)−N(r, 1; f) = S(r, f)

and

lim sup
r−→∞

3N(r, 0; f) + 2N(r,∞; f)−m(r, 1; g)

T (r, f)
< 1

r ∈ I

thenf ≡ g or f.g ≡ 1.

E. Mues and M. Reinders [8] proved the following result.

Theorem 1.3. [5, 8] Letf andg share0,∞ IM and1 CM. If

lim sup
r−→∞

3N(r, 0; f) + 3N(r,∞; f)

T (r, f)
< 1

r ∈ I

thenf ≡ g or f.g ≡ 1.

H. X. Yi improved the above results and proved the following two theorems.

Theorem 1.4. [5, 10] Letf andg share1,∞ CM and0 IM. If

lim sup
r−→∞

3N(r, 0; f) + 2N(r,∞; f)−m(r, 1; g)

T (r, f)
< 1(1.2)

r ∈ I

thenf ≡ g or f.g ≡ 1.
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UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE THREE VALUES 3

Theorem 1.5. [5, 10] Letf andg share0,∞ IM and1 CM. If

lim sup
r−→∞

3N(r, 0; f) + 3N(r,∞; f)−m(r, 1; g)

T (r, f)
< 1(1.3)

r ∈ I

thenf ≡ g or f.g ≡ 1.

To state the next results we have to introduce the notion of gradation of sharing known as
weighted sharing.

Definition 1.1. [2, 3] Let k be a nonnegative integer or infinity. Fora ∈ C ∪ {∞} we denote
by Ek(a; f) the set of alla-points off , where ana-point of multiplicity m is countedm times
if m ≤ k andk + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say thatf, g share the valuea
with weightk.

We writef, g share(a, k) to mean thatf, g share the valuea with weightk. Clearly if f, g
share(a, k) thenf, g share(a, p) for all integerp, 0 ≤ p < k. Also we note thatf, g share a
valuea IM or CM if and only if f, g share(a, 0) or (a,∞) respectively.

With the notion of weighted sharing of values improving Theorem 1.4 and Theorem 1.5
Lahiri [5] proved the following two theorems.

Theorem 1.6. [5] Let f andg share(0, 0), (1, 2), (∞,∞). If condition (1.2) holds then either
f ≡ g or f.g ≡ 1.

Theorem 1.7. [5] Let f andg share(0, 0), (1, 2), (∞, 0). If condition (1.3) holds then either
f ≡ g or f.g ≡ 1.

Though the standard definitions and notations are available in [2], we explain some notations
which are used in the paper.

Definition 1.2. [4] We denote byN(r, a; f = 1) the counting function of simplea points off .

Definition 1.3. [3, 4] If s is a positive integer, we denote byN(r, a; f ≥ s) the reduced counting
function of thosea-points off whose multiplicities are not less thans.

Definition 1.4. [11, 12] Letf andg be two nonconstant meromorphic functions such thatf
andg share the value1 IM. Let z0 be a1-point of f with multplicity p, a 1-point of g with
multiplicity q. We denote byNL(r, 1; f) the counting function of those1-points off andg

wherep > q, byN
1)
E (r, 1; f) the counting function of those1-points off andg wherep = q = 1

and byN
(2

E (r, 1; f) the counting function of those1-points of f and g wherep = q ≥ 2,
each point in these counting functions is counted only once. In the same way we can define

NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.5. [12] Let f andg be two nonconstant meromorphic functions such thatf andg
share the value1 IM. Let z0 be a1-point off with multplicity p, a1-point ofg with multiplicity
q. We denote byN f>2 (r, 1; g) the reduced counting function of those1-points off andg such
thatp > q = 2. N g>2 (r, 1; f) is defined analogously.

Definition 1.6. Let f andg be two nonconstant meromorphic functions such thatf andg share
the value1 IM. Let z0 be a1-point of f with multplicity p, a 1-point of g with multiplicity q.
We denote byN f>1(r, 1; g)(N g>1(r, 1; f)) the reduced counting function of those1-points of
f andg such thatp > q = 1(q > p = 1).
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Definition 1.7. Let f andg be two nonconstant meromorphic functions such thatf andg share
the value(1, 2). Letz0 be a1-point off with multplicity p, a1-point ofg with multiplicity q. We

denote byN
(3

E (r, 1; g) the counting function of those1-points off andg wherep = q ≥ 3, each

point in this counting function is counted only once. In the same way we can defineN
(3

E (r, 1; g)

Definition 1.8. [3, 5] Let f ,g share a value IM. We denote byN∗(r, a; f, g) the reduced count-
ing function of thosea-points off whose multiplicities differ from the multiplicities of the
correspondinga-points ofg.

ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f), andN∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Definition 1.9. [4] Let a, b ∈ C ∪ {∞}. We denote byN(r, a; f g = b) the counting function
of thosea-points off , counted according to multiplicity, which areb-points ofg.

Definition 1.10. [4] Let a, b ∈ C ∪{∞}. We denote byN(r, a; f g 6= b) the counting function
of thosea-points off , counted according to multiplicity, which are not theb-points ofg.

Now one may ask :
Is it possible in any way to replace the condition (1.3) in Theorem 1.7 by a weaker one so that
the conclusion of the theorem remain same?
In this paper we will provide an answer to the question. However the author does not know
whether the condition (1.2) in Theorem 1.6 can be further relaxed.
In [5] Lahiri raised a problem of further relaxation of the sharing(1, 2) in Theorems 1.6 and
1.7.

Inspired by this problem the present author also investigate the situations when the two func-
tions share the value1 with weight one or zero. We now state the following five theorems which
are our main results. The first theorem is an improvement of Theorem 1.7.

Theorem 1.8.Letf andg share(0, 0), (1, 2), (∞; 0). If

lim sup
r−→∞

3N(r, 0; f) + 3N(r,∞; f)−N
(3

E (r, 1; f)−NL(r, 1; g)−m(r, 1; g)

T (r, f)
< 1(1.4)

r ∈ I

thenf ≡ g or f.g ≡ 1.

Theorem 1.9.Letf andg share(0, 0), (1, 1), (∞;∞). If

lim sup
r−→∞

3N(r, 0; f) + 2N(r,∞; f) + N f>2(r, 1; g)−m(r, 1; g)

T (r, f)
< 1

r ∈ I

thenf ≡ g or f.g ≡ 1.

Theorem 1.10.Letf andg share(0, 0), (1, 0), (∞;∞). If

lim sup
r−→∞

3N(r, 0; f) + 2N(r,∞; f) + N⊗(r, 1; f, g)−m(r, 1; g)

T (r, f)
< 1

r ∈ I

thenf ≡ g or f.g ≡ 1, whereN⊗(r, 1; f, g) = NL(r, 1; f) + N f>1(r, 1; g) + N g>1(r, 1; f).

Theorem 1.11.Letf andg share(0, 0), (1, 1), (∞; 0). If

lim sup
r−→∞

3N(r, 0; f) + 3N(r,∞; f) + N f>2(r, 1; g)−m(r, 1; g)

T (r, f)
< 1(1.5)

r ∈ I
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thenf ≡ g or f.g ≡ 1.

Theorem 1.12.Letf andg share(0, 0), (1, 0), (∞; 0). If

lim sup
r−→∞

3N(r, 0; f) + 3N(r,∞; f) + N⊗(r, 1; f, g)−m(r, 1; g)

T (r, f)
< 1(1.6)

r ∈ I

thenf ≡ g or f.g ≡ 1, whereN⊗(r, 1; f, g) = NL(r, 1; f) + N f>1(r, 1; g) + N g>1(r, 1; f).

Example 1.1. Let f = (1 − ez)3, g = 3(ez−1)
e2z . Clearly f ,g share(0, 0), (∞,∞) and (1,∞).

HereNL(r, 1; f) = 0, N f>1(r, 1; g) = 0, N g>1(r, 1; f) = 0. AlsoT (r, f) = 3T (r, ez) + O(1),
T (r, g) = 2T (r, ez) + O(1) andN(r, 0; f) ∼ T (r, ez), N(r,∞; f) = 0, N(r, 1; g) ∼ 2T (r, ez)
but nietherf ≡ g nor fg ≡ 1. So the conditions in Theorem 1.9 and Theorem 1.10 are sharp.

Example 1.2.Letf = 1
(1−ez)3

, g = e2z

3(ez−1)
. Clearlyf ,g share(0,∞), (∞, 0) and(1,∞). Here

N
(3

E (r, 1; f) = 0, NL(r, 1; g) = 0. AgainT (r, f) = 3T (r, ez) + O(1), T (r, g) = 2T (r, ez) +
O(1), N(r, 0; f) = 0, N(r,∞; f) ∼ T (r, ez), N(r, 1; g) ∼ 2T (r, ez) but nietherf ≡ g nor
fg ≡ 1. So the condition (1.4) in Theorem 1.8 is sharp. AlsoNL(r, 1; f) = 0, N f>1(r, 1; g) =
0, N g>1(r, 1; f) = 0. but nietherf ≡ g nor fg ≡ 1. So the conditions (1.5) in Theorem 1.11
and (1.6) in Theorem 1.12 are also sharp.

2. L EMMAS

In this section we present some lemmas which will be needed in the sequel. Henceforth we
shall denote byH the following function

H = (
f

′′

f ′ −
2f

′

f − 1
)− (

g
′′

g′ −
2g

′

g − 1
).

Lemma 2.1. [4] Letf , g share(0, 0).(1, 0), (∞, 0) then
(i) T (r, f) ≤ 3T (r, g) + S(r, f).
(ii) T (r, g) ≤ 3T (r, f) + S(r, g).

Lemma 2.2. [11, 12] If f , g share (1,0) andH 6≡ 0 then

N
1)
E (r, 1; f) ≤ N(r, H) + S(r, f) + S(r, g).

Lemma 2.3. [7] The following holds

N(r, 0; f
′
f 6= 0) ≤ N(r,∞; f) + N(r, 0; f) + S(r, f).

Lemma 2.4. Letf andg be two nonconstant meromorphic functions sharing(1, 0). Then

(i) NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f)−N f>1(r, 1; g)−N g>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

(ii) NL(r, 1; g) + 2NL(r, 1; f) + N
(2

E (r, 1; g)−N g>1(r, 1; f)−N f>1(r, 1; g)

≤ N(r, 1; f)−N(r, 1; f).

Proof. We prove (i) only because (ii) can be proved similarly. Letz0 be a1- point of f of
multiplicity p a 1-point of g of multiplicity q. We denote byN1(r), N2(r) and N3(r) the
counting functions of those1-points off andg when1 ≤ q < p, 2 ≤ q = p andp < q
respectively where in the first counting function each point is countedq − 1 times and in the
remaining two counting functions each point is countedq − 2 times.
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Sincef , g share(1, 0), we note that a simple1 point of g is either a simple1 point of f or a
1 point off with multiplicity ≥ 2. So we can write

N(r, 1; g)−N(r, 1; g) = N
(2

E (r, 1; f) + NL(r, 1; g)(2.1)

+N1(r) + N2(r) + N3(r).

Also we note that

N1(r) ≥ NL(r, 1; f)−N f>1(r, 1; g),(2.2)

N2(r) ≥ N
(2

E (r, 1; f)−N(r, 1; f, g = 2),(2.3)

N3(r) ≥ NL(r, 1; g)−N g>1(r, 1; f),(2.4)

where byN(r, 1; f, g = 2) we mean the reduced counting functions of1-points off andg with
multiplicities two for each one.

Using (2.2)-(2.4) in (2.1) we deduce that

N(r, 1; g)−N(r, 1; g) ≥ NL(r, 1; f) + 2NL(r, 1; g)(2.5)

+2N
(2

E (r, 1; f)−N(r, 1; f, g = 2)

−N f>1(r, 1; g)−N g>1(r, 1; f).

Now (i) follows from (2.5). This proves the lemma.

Lemma 2.5. [12] If f , g share(1, 1) Then

(i) 2NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f)−N f>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g).

(ii) 2NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; g)−N g>2(r, 1; f)

≤ N(r, 1; f)−N(r, 1; f).

Lemma 2.6. Letf andg be two nonconstant meromorphic functions sharing(1, 2). Then

(i) 2NL(r, 1; f) + 3NL(r, 1; g) + 2N
(3

E (r, 1; f) + N(r, 1; f = 2)

≤ N(r, 1; g)−N(r, 1; g).

(ii) 2NL(r, 1; g) + 3NL(r, 1; f) + 2N
(3

E (r, 1; g)−N(r, 1; g = 2)

≤ N(r, 1; f)−N(r, 1; f).

Proof. We prove (i) only because (ii) can be proved similarly. Letz0 be a1- point of f of
multiplicity p, a 1-point of g of multiplicity q. We denote byN2

1 (r), N2
2 (r) andN2

3 (r) the
counting functions of those1-points off andg when3 ≤ q < p, 3 ≤ q = p and3 ≤ p < q
respectively each point in these counting functions is countedq − 2 times.

Sincef , g share(1, 2), we note that

N(r, 1; g)−N(r, 1; g) = N
(3

E (r, 1; f) + NL(r, 1; f) + NL(r, 1; g)(2.6)

+N(r, 1; f = 2) + N2
1 (r) + N2

2 (r) + N2
3 (r).

Also we note that

N2
1 (r) ≥ NL(r, 1; f),(2.7)

N2
2 (r) ≥ N

(3

E (r, 1; f),(2.8)
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N2
3 (r) ≥ 2NL(r, 1; g),(2.9)

Using (2.7)-(2.9) in (2.6) we deduce that

N(r, 1; g)−N(r, 1; g) ≥ 2NL(r, 1; f) + 3NL(r, 1; g) + 2N
(3

E (r, 1; f) + N(r, 1; f = 2).

This proves the lemma.

Lemma 2.7. [5] Letf , g share(0, 0),(1, 0),(∞, 0)) andH 6≡ 0. Then

N(r, H) ≤ N∗(r, 0; f, g) + N∗(r,∞; f, g) + N∗(r, 1; f, g)

+N0(r, 0; f
′
) + N0(r, 0; g

′
),

whereN0(r, 0; f
′
) is the reduced counting function of those zeros off

′
which are not the zeros

of f(f − 1) andN0(r, 0; g
′
) is similarly defined.

Lemma 2.8. Letf , g share(1, 2). Then

N(r, 0; f) + N(r,∞; f)−N
(3

E (r, 1; f)−NL(r, 1; g)

≥ 1

2
N(r, 0; f) +

1

2
N(r,∞; f) +

1

2
N0(r, 0; f

′
) + S(r, f),

whereN0(r, 0; f
′
) is the counting function of those zeros off

′
which are not the zeros off(f −

1).

Proof. Using Lemma 2.3 we get

N
(3

E (r, 1; f) + NL(r, 1; g) = N
(3

E (r, 1; g) + NL(r, 1; g)

≤ N(r, 1; g ≥ 3)

= N(r, 1; f ≥ 3)

≤ 1

2
N(r, 0; f

′
f = 1)

≤ 1

2
N(r, 0; f

′
f 6= 0)− 1

2
N0(r, 0; f

′
)

≤ 1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N0(r, 0; f

′
) + S(r, f).

So

N(r, 0; f) + N(r,∞; f)−N
(3

E (r, 1; f)−NL(r, 1; g)

≥ 1

2
N(r, 0; f) +

1

2
N(r,∞; f) +

1

2
N0(r, 0; f

′
) + S(r, f),

This proves the lemma.

Lemma 2.9. Letf , g share(0, 0),(1, 0),(∞, k), 0 ≤ k ≤ ∞ andH 6≡ 0. Then

T (r, f) ≤ 3N(r, 0; f) + 2N(r,∞; f) + N(r,∞; f ≥ k + 1) + NL(r, 1; f)

+N f>1(r, 1; g) + N g>1(r, 1; f)−m(r, 1; g) + S(r, f).

Proof. By the second fundamental theorem we get

T (r, f) + T (r, g) ≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g)(2.10)

+N(r,∞; g) + N(r, 1; f) + N(r, 1; g)

−N0(r, 0; f
′
)−N0(r, 0; g

′
) + S(r, f) + S(r, g).
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Since f and g share(0, 0) and (∞, k), N∗(r,∞; f, g) ≤ N(r, 0; f) and N(r,∞; f, g) ≤
N(r,∞; f ≥ k + 1). By Lemmas 2.1, 2.2, 2.4 and 2.7 we get

N(r, 1; f) + N(r, 1; g)(2.11)

= N
1)
E (r, 1; f) + NL(r, 1; f) + NL(r, 1; g)

+N
(2

E (r, 1; f) + N(r, 1; g)

≤ N
1)
E (r, 1; f) + N(r, 1; g) + N f>1(r, 1; g)

+N g>1(r, 1; f)−NL(r, 1; g)

≤ N(r, 0; f) + N(r,∞; f ≥ k + 1) + N∗(r, 1; f, g)

+T (r, g)−m(r, 1; g) + O(1) + N f>1(r, 1; g)

+N g>1(r, 1; f)−NL(r, 1; g) + N0(r, 0; f
′
)

+N0(r, 0; g
′
) + S(r, f) + S(r, g)

≤ N(r, 0; f) + N(r,∞; f ≥ k + 1) + T (r, g)

−m(r, 1; g) + NL(r, 1; f) + N f>1(r, 1; g)

+N g>1(r, 1; f) + N0(r, 0; f
′
) + N0(r, 0; g

′
) + S(r, f)

Using (2.11) in (2.10) and noting thatN(r, 0; f) = N(r, 0; g) andN(r,∞; f) = N(r,∞; g) we
obtain the conclusion of the lemma. This proves the lemma.

Lemma 2.10.Letf , g share(0, 0),(1, 1),(∞, k), 0 ≤ k ≤ ∞ andH 6≡ 0. Then

T (r, f) ≤ 3N(r, 0; f) + 2N(r,∞; f) + N(r,∞; f ≥ k + 1) + N f>2(r, 1; g)

−m(r, 1; g) + S(r, f).

Proof. We omit the proof since using Lemmas 2.1, 2.2, 2.5 and 2.7 the proof of the lemma can
be carried out in the line of Lemma 2.9.

Lemma 2.11.Letf , g share(0, 0),(1, 2),(∞, 0) andH 6≡ 0. Then

T (r, f) ≤ 3N(r, 0; f) + 3N(r,∞; f)−N
(3

E (r, 1; f)

−NL(r, 1; g)−m(r, 1; g) + S(r, f).

Proof. By the second fundamental theorem we get

T (r, f) + T (r, g) ≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g)(2.12)

+N(r,∞; g) + N(r, 1; f) + N(r, 1; g)

−N0(r, 0; f
′
)−N0(r, 0; g

′
) + S(r, f) + S(r, g).
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Sincef , g share(1, 2) impliesN
1)
E (r, 1; f) = N(r, 1; f = 1), by Lemmas 2.1, 2.2, 2.6 and 2.7

we see that

N(r, 1; f) + N(r, 1; g)(2.13)

= N(r, 1; f = 1) + N(r, 1; f = 2) + N
(3

E (r, 1; f)

+NL(r, 1; f) + NL(r, 1; g) + N(r, 1; g)

≤ N(r, 1; f = 1) + N(r, 1; f = 2) + N
(3

E (r, 1; f)

+NL(r, 1; f) + NL(r, 1; g) + N(r, 1; g)− 2NL(r, 1; f)

−3NL(r, 1; g)− 2N
(3

E (r, 1; f)−N(r, 1; f = 2)

≤ N(r, 0; f) + N(r,∞; f) + N∗(r, 1; f, g) + T (r, g)

−m(r, 1; g) + O(1)−NL(r, 1; f)− 2NL(r, 1; g)

−N
(3

E (r, 1; f) + N0(r, 0; f
′
) + N0(r, 0; g

′
)

+S(r, f) + S(r, g)

≤ N(r, 0; f) + N(r,∞; f) + T (r, g)−m(r, 1; g)

−N
(3

E (r, 1; f)−NL(r, 1; g) + N0(r, 0; f
′
)

+N0(r, 0; g
′
) + S(r, f)

From (2.12) and (2.13) the lemma follows. This proves the lemma.

Lemma 2.12. [10] If f , g share(0, 0),(1, 0),(∞, 0) andH ≡ 0. Thenf ,g share(0,∞),(1,∞),
(∞,∞).

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.8.SupposeH 6≡ 0. Then from Lemma 2.11 and condition (1.4) we get a
contradiction. SoH ≡ 0. Hence by Lemma 2.12f andg share(0,∞), (1,∞), (∞,∞). Now
Lemma 2.8 and condition (1.4) implies condition (1.1) of Theorem 1.1. So by Theorem 1.1 the
theorem follows. This proves the theorem.

Proof of Theorem 1.11.Sincef , g share(∞; 0) N(r,∞; f ≥ k + 1) = N(r,∞; f). Suppose
H 6≡ 0. Then from Lemma 2.10 and condition (1.5) we get a contradiction. SoH ≡ 0. Now
the theorem follows from Lemma 2.12 and Theorem 1.1. This proves the theorem.

Proof of Theorem 1.12.Sincef , g share(∞; 0) N(r,∞; f ≥ k + 1) = N(r,∞; f). Suppose
H 6≡ 0. Then from Lemma 2.9 and condition (1.6) we obtain a contradiction. SoH ≡ 0
and the theorem follows from Lemma 2.12 and Theorem 1.1. This completes the proof of the
theorem.

Proof of Theorem 1.9.SupposeH 6≡ 0. Sincef , g share(∞;∞) we obtain from Lemma 2.10
for k = ∞

T (r, f) ≤ 3N(r, 0; f) + 2N(r,∞; f) + N f>2(r, 1; g)−m(r, 1; g) + S(r, f)

which leads to a contradiction. SoH ≡ 0. Now the theorem follows from Lemma 2.12 and
Theorem 1.1. This proves the theorem.

Proof of Theorem 1.10.Using Lemma 2.9 fork = ∞ and proceeding in the same way as in the
proof of Theorem 1.9 we can prove the theorem. This proves the theorem.
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