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ABSTRACT. Bi-isotropic materials, characterized by their chiral and non-reciprocal nature, present
unique challenges and opportunities in scientific research, driving the development of cutting-
edge applications. In this paper, we explore the influence of chirality using a newly developed
framework that emphasizes the nonlinear effects arising from the magnetization vector under
a strong electric field. Our research introduces a novel formulation of constitutive relations
and delves into the analysis of solutions for the nonlinear Schrödinger equation, which governs
pulse propagation in nonlinear bi-isotropic media. By employing the Projective Riccati Equation
Method with variable dispersion and nonlinearity, we systematically derive families of solutions
to the nonlinear Schrödinger equation in chiral and non-reciprocal optical fibers. This approach
provides valuable insights into the propagation of light in two polarization modes right circularly
polarized (RCP) and left circularly polarized (LCP) each associated with distinct wave vectors
in nonlinear bi-isotropic environments. The study presents several new exact solutions of optical
solitons within these media.
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1. I NTRODUCTION

The construction of the exact solutions of nonlinear partial differential equations (PDEs) is
one of the most important and essential tasks in nonlinear science. In the past few decades,
many authors had mainly studied solitary wave solutions of nonlinear PDEs by using various
methods, such as the inverse scattering method (see references in [4]), Backlund transformation
[17], Hirota bilinear method [4], the tanh method[4], various extended methods[7], generalized
hyperbolic-function method[6] and generalized Riccati equation expansion method[5] and so
on. In Ref[8], Conte and Musette presented an indirect method to seek some solitary wave
solutions of nonlinear PDEs that can be expressed as a polynomial in two elementary functions
which satisfy a project Riccati system [17]. By use of this method, some solitary wave solutions
of many nonlinear PDEs have been obtained [JBDFTM]. Recently, Yan[6] and Chen-Li[17] fur-
ther developed Conte and Musette’s method by introducing a more general projective Riccati
equations and obtained many exact travelling wave solutions of some nonlinear PDEs.
Constructing exact solutions to nonlinear partial differential equations (PDEs) is a crucial as-
pect of nonlinear science. Over the years, numerous methods have been developed to study
solitary wave solutions, including the inverse scattering method, Bäcklund transformations, Hi-
rota’s bilinear method, the tanh method, and various extensions like the generalized hyperbolic
function and Riccati equation methods. Among these, Conte and Musette introduced an ap-
proach to obtain solitary wave solutions using a projective Riccati system, which was further
refined by Yan and Chen-Li to produce exact traveling wave solutions for various PDEs [4]. In
this work, we expand on the projective Riccati equation method to find soliton-like solutions
for nonlinear PDEs. Specifically, we apply the method to the nonlinear Schrödinger equation
(NLSE) with varying coefficients in optical fibers [17] . NLSE solitons are of particular interest
as they are considered fundamental for next-generation ultrahigh-speed optical communication
systems. The paper is organized as follows: Section 2 outlines the extended projective Riccati
equation method. Section 3 applies this method to the NLSE in optical fibers, yielding four
families of exact soliton-like solutions. Section 4 concludes with a summary and discussion.

2. DESCRIPTION OF THE PROJECTIVE RICCATI EQUATIONS METHOD

Consider a nonlinear PDE in the following form

(2.1) P (u, uz, ut, uzz, utt) = 0

whereu = u(t, z) is an unknown function,P is a polynomial inu = u(t, z) and its partial
derivatives in which the highest order derivatives and nonlinear terms are involved. Let us now
give the main steps of the generalized projective Riccati equations method .
Step 1[17]. We use the following transformation

(2.2) u(t, z) = u(ξ); ξ = z − vt

to reduce (2.1) to the following nonlinear ODE

(2.3) K(u, u′, u′′, ...) = 0

wherev is velocity of the propagation,K is a polynomial ofu(ξ) and its derivativesu′(ξ), u
′′
(ξ),

. . . whereu′ =
du

∂ξ
. We assume that the solution of Equation (2.3) has the form

(2.4) u(t, z) = a0 +
m∑

i=1

σi−1(ξ) [aiτ(ξ) + biσ(ξ)]
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wherea0(t, z), ai(t, z), bi, (i = 1, 2, ...,m, ξ(x, t) are all unknown functions of(t, z), σ(ξ)
andτ(ξ) satisfy (2.1) and (2.2). The parameterm can be found by balancing the highest order
derivative term and the nonlinear terms in (2.5) (m is usually a positive integer). Then substitute
(2.7) into (2.5) and return to determine balance constant m again [17].
Step 2.[17] The principle of the extended Riccati projective equations method is to take full
advantage of the following projective equations:

(2.5) σ′(ξ) = εσ(ξ)τ(ξ); τ ′(ξ) = R + ετ 2(ξ)− µσ(ξ), ε = ±1

(2.6) τ 2(ξ) = −ε

[
R− 2µσ(ξ) +

µ2 − 1

R
σ2(ξ)

]
, R 6= 0

whereR, µ are constants and′ = ∂
∂ξ

. We know that (2.5) and (2.6) have the following solutions:
When:ε = −1

(2.7)

 τ 1(ξ) =
√

Rtan(
√

Rξ)

µ sec(
√

Rξ)+1
; σ1(ξ) = R sec(

√
Rξ)

µ sec(
√

Rξ)+1

τ 2(ξ) =
√

R coth(
√

Rξ)

µ csc(
√

Rξ)+1
; σ2(ξ) = R csc(

√
Rξ)

µ csc(
√

Rξ)+1

When:ε = 1

(2.8)

 τ 3(ξ) =
√

Rtan(
√

Rξ)

µ sec(
√

Rξ)+1
; σ3(ξ) = R sec(

√
Rξ)

µ sec(
√

Rξ)+1

τ 4(ξ) =
√

R cot(
√

Rξ)

µ csc(
√

Rξ)+1
; σ4(ξ) = R csc(

√
Rξ)

µ csc(
√

Rξ)+1

Using these results, we establish the method of extended projective Riccati equations as follows:
Substituting (2.4) along with (2.1) and (2.2) into (2.3), extracting the numerator of the resulting
system, we can obtain a set of algebraic polynomials forτ i(ξ), σj(ξ), (i = 0, 1; j = 0, 1, 2, ...),
setting the coefficients of these termsτ i(ξ)σj(ξ) to zero, we get a system of over determined
PDEs with respect to unknown functionsa0, ai, bi, (i = 1, 2, ..,m), ξ.
Solving the above system by use of symbolic computation system Maple, we would end up with
the explicit expressions forµ, a0, ai, bi, (i = 1, 2, ..,m), andξ or the constraints among them.

3. EXACT FAMILY SOLUTIONS OF NLSE IN THE BI -ISOTROPIC FIBER

3.1. Introduction to Bi-isotropic fiber ( [4]). The nonlinear Schrödinger equation (NLSE)
plays a key role across various wave physics domains. It can be derived as a first-order approx-
imation from the asymptotic expansion of the Korteweg De Vries (KdV) equation for weakly
nonlinear wave packets, providing a description of the wave packet envelope’s evolution. In the
context of bi-isotropic nonlinear media, an electromagnetic approach using newly formulated
constitutive relations allows for the derivation of the NLSE for chiroptic fibers. This first-order
approximation offers valuable insight into the interaction between electromagnetic waves and
bi-isotropic media. Such an understanding opens the door to potential applications in fields
like optics and microwaves, as demonstrated through our study on chiroptical fibers. In this
section, we focus on modeling light pulse propagation in bi-isotropic fibers using the extended
generalized Riccati equation to solve the NLSE.
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4 A. OURAHMOUN, Z.MEZACHE

Theorem 3.1. [17] The bi-isotropic fiber operattin in the third optical fiber is given by the
nonlinear Schrödinger equation

(3.1)
∂

∂z
A(t̃, z) +

(
i
1

2
β2

∂2

∂t̃2

)
A(t̃, z) = iδA(t̃, z)− iρ

∣∣A(t̃, z)
∣∣2 A(t̃, z)

whereβ2 is the chromatic dispersion coefficients associated,α is the attenuation coefficient and
ρ is the fiber nonlinearity related to coefficient.

Proof. This approach enables us to derive exact solutions for nonlinearities in bi-isotropic fibers,
as governed by the constitutive equations for bi-anisotropic effects [4]. As delineated in our
formalism expounded in [7], the constitutive equations governing the bi anisotropic nonlinear
effects are delineated as follows:

(3.2)
−→
D = −→ε

−→
E +

−→
ξ EH

−→
H

(3.3)
−→
B = −→µ

−→
H + gξEH

−→
E

The medium effects are contained in the dyadic:−→ε ,−→µ ,
−→
ξ EH and

−−→gξEH due to anisotropy. The
bi-isotropic medium has a Kerr type nonlinearity characterized by:

(3.4) εg = ε + εKerr

∣∣E2
∣∣

(3.5) ξ2
EH = ξ?

EH + ξKerr
EH

∣∣E2
∣∣

ξ?
EH is the linear bi-isotropy coefficient, and the termξKerr

EH |E2| corrects the bi-isotropic coeffi-
cient with a quantity proportional to the field intensity. The linear bi-isotropy factors are written
as follows:

(3.6) ξEH = γ − jk

γ is the nonlinear non-reciprocity parameter, andk is the nonlinear chirality parameter.γKerr is
the nonlinear non-reciprocity parameter, andkKerr is the nonlinear chirality parameter. There
exist three distinct cases for the biisotropic medium:
1. The chiral medium, which is reciprocal (purely imaginary),k 6= 0 andγ = 0.
2. The Tellegen medium, which is non-reciprocal (purely real),k = 0 andγ 6= 0.
3. The biisotropic medium, characterized by both chirality and non-reciprocity (complex num-
bers), withk 6= 0 andγ 6= 0.
In this study, our focus centers on the third case. A biisotropic fiber refers to an optical fiber
featuring a chiral core enveloped by an optical cladding. The core of the biisotropic fiber pos-
sesses a slightly higher refractive index compared to the sheath.
This variation in refractive index induces total internal reflection of light within the chiral core,
enabling the propagation of light with two distinct modes: a right circular polarized wave (RCP)
and a left circular polarized wave (LCP), each exhibiting different wave vectors.
From Maxwell’s equations, which serve as the cornerstone of electromagnetism and locally
describe the evolution and properties of electric and magnetic fields, we specifically consider
Maxwell’s first equation, known as the Maxwell-Faraday equation [4].
This equation elucidates the phenomenon of electromagnetic induction first discovered by Fara-
day:

(3.7)
−→
∇ ×

−→
E = −∂

−→
B

∂t
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As for the second equation, which is the Maxwell-Ampere equation, and which stems from
Ampere’s theorem, it links the evolution of the electric field as a function of the magnetic field.
It is given by:

(3.8)
−→
∇ ×

−→
H =

∂
−→
D

∂t

What allowed us to deduce the equation of propagation in a Kerr-biisotropic medium our result
is also a generalization:

(3.9)
−→
∇2.

−→
E−(µε−µ0ε0

∣∣ξ2
EH

∣∣)d2−→E
∂t2

−→
∇2.

−→
E−(µε−µ0ε0

∣∣ξ2
EH

∣∣)d2−→E
∂t2

−√µ0ε0 (ξ?
EH − ξEH) .

∂
−→
∇ ×

−→
E

∂t
=

(
µεKerr − µ0ε0ξEH .ξkerr

EH

∣∣∣−→E ∣∣∣2 ∂
−→
∇ ×

−→
E

∂t
+ µσ

∂
−→
E

∂t

)

σ is the absorption coefficient. The electric field in the bi-isotropic fiber can be represented by
wave propagating in thez direction Fig.1 [17]:

Fig.1.The bi-isotropic fiber

(3.10)
−→
E = (−→e x ± i−→e y) Ψ(r, t)e−i(kz−ω0t)

where the wave numbersk+ (RCP) andk− (LCP) can be written as:

(3.11) k+ = k
√

µ0ε0 +
√

µε− γ2µ0ε0

(3.12) k− = −k
√

µ0ε0 +
√

µε− γ2µ0ε0

The conditions of slowly variant envelope are given by:

(3.13)

∣∣∣∣ ∂2

∂z2
Ψ

∣∣∣∣� |2ik|
∣∣∣∣ ∂

∂z
Ψ

∣∣∣∣� |iω0Ψ|

(3.14)

∣∣∣∣ ∂2

∂z2
|Ψ|2 Ψ

∣∣∣∣� ∣∣∣∣iω0
∂

∂t
|Ψ|2 Ψ

∣∣∣∣� ∣∣iω0 |Ψ|2 Ψ
∣∣

(3.15)
A(t, z)

2k
· −→ez =

−→
Ψ

The phenomenon of dispersion is included in heuristic form through the relation

(3.16) ∆k =
1

v
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After algebraic manipulations, within the slowly varying amplitude approximation of Maxwell’s
equations, signals’ propagating through bi-isotropic fiber is described using the following equa-
tion:
(3.17)(

∂

∂
A(t, z) +

(
β1

∂

∂t
+ i

1

2
β2

∂2

∂t2
− 1

6
β3

∂3

∂t3

)
A(t, z)

)
= iδA(t, z) + iρ |A(t, z)|2 A(t, z)

When setting the variablẽt = t−β1z, we obtain the nonlinear Schrödinger equation as follows:
(3.18)

∂

∂z
A(t̃, z) +

(
i
1

2
β2

∂2

∂t̃2
− 1

6
β3

∂3

∂t̃3

)
A(t̃, z) =

(
−α

2
+ iδ

)
A(t̃, z)− iρ

∣∣A(t̃, z)
∣∣2 A(t̃, z)

In this step the bi-isotropic fiber is operattin in the third optical windows,whereβ3 = 0 and
neglecting absorptionα = 0 the (3.18) becomes

(3.19)
∂

∂z
A(t̃, z) +

(
i
1

2
β2

∂2

∂t̃2

)
A(t̃, z) = iδA(t̃, z)− iρ

∣∣A(t̃, z)
∣∣2 A(t̃, z)

we obtain our assertion [17].

3.2. Application of the projective Riccati Equations Method in bi-isotropic fiber ([14].
SinceA(t̃, z) is a complex function, we assume that travelling wave transformation is in the
form

(3.20) A(t̃, z) = V (t̃, z) exp(iθ(t̃, z))

whereV±(t̃, z) andθ±(t̃, z) are the amplitude and phase functions respectively.
Substituting the wave transformation (3.17) into (3.19) and separating the real and imaginary
parts, we have

(3.21) − V θz −
1

2
β2(z)(Vetet − vθ2

et )− ρ(z)V 3 = 0

(3.22) Vzβ2(z)(2θzVz + V θzz)− V = 0

whereθz =
dθ

dz
, θzz =

d2θ

dz2
andVz =

dV

dz
, Vet =

dV

dt̃
Considering the homogeneous balance in

(3.21) and (3.22), we assume that (3.23) have the following solutions form

(3.23) V (t̃, z) = a0(z) + a1(z)τ(ξ) + b1(z)σ(ξ); ξ = t̃p(z) + q(z)

(3.24) θ(t, z) = tR(z) + S(z)

wherea0(z), a1(z), b1(z), p(z), q(z), R(z), S(z). are functions ofz to be determined,τ(ξ),
σ(ξ) satisfy (2.1) and (2.2).
Substituting (3.1), (3.2),(3.12) into (3.18), collecting coefficients of monomials ofτ(ξ), σ(ξ)
andt of the resulting system’s numerator, then setting each coefficients to zero, we obtain the
following over-determined PDEs system with respect to differentiable functions :a0(z), a1(z),
b1(z), p(z), q(z), R(z), S(z) with ε = −1,we have

(3.25) R(
∂a1

∂z
+ a1) = 0

(3.26) −Rb1
∂p

∂z
= 0

(3.27) 2b1(−3δa2
1 + δb2

1 + β2p
2µ2 − βp2 + 3δa2

1µ
2) = 0
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(3.28) 2a1(3b
2
1δR + δa2

1µ
2 − δa2

1 + β2p
2µ2 − β2p

2) = 0

(3.29) − 6δa0a
2
1 + 6δa0a

2
1µ

2 + 6δa0b
2
1R− 12δa2

1b1µR− 3βp2b1µR = 0

(3.30) R(
∂a0

∂z
− a0) = 0

(3.31) − b1R(
∂q

∂z
+ βRp) = 0

(3.32) − 2
∂R

∂z
a0R = 0

(3.33) − a0R(−2δa0 − 3δa2
1R + 2

∂S

∂z
+ R2β) = 0

(3.34) − a1R(−4δa2
1µ− µp2β + 12δa0b1) = 0

(3.35) − a1
∂p

∂z
(µ− 1) (µ + 1)) = 0

(3.36) a1µ
∂p

∂z
R = 0

(3.37) − a1 (µ− 1) (µ + 1)

(
∂q

∂z
+ βRp

)
= 0

(3.38) R

(
a1µ

∂q

∂z
+

∂b1

∂z
+ βRpa1µ− b1α

)
= 0

(3.39) −R

(
−6Rδa2

1b1 −Rβp2b1 + βR2b1 + 12µa2a0δ − 6δa2
0b1 + 2

∂S

∂z
b1

)
= 0

(3.40) − 2a1
∂R

∂z
R = 0

(3.41) − 2
∂R

∂z
b1R = 0

Wherea0, b0 denotea0(z) andb0(z), solving the algebraic system with the help of Mathematica,
we get the following cases.
Case 1

µ = a0, vR(z) = C1, b1 = b1, p = C3, δ = δ

β =
4δb21R

C2
3

, a1 = ±
√
−Rb1, α = ∂b1

∂z
. 1
b1

q =
−4C1R

R
δb21Rdz+C6C3

C3
, S(z) =

−R2
R

δb21dz−2R
R

δb21dz+C5C2
3

C2
3

The familly exact solutions of (3.19)

(3.42) A(t̃, z)11 = cRexp

[∫
α(z)dz)

] [
∓i tanh

(√
Rξ + sec

√
Rξ
)]

exp [i(C1t + S(z))]

(3.43) A(t̃, z)12 = cRexp

[∫
α(z)dz)

] [
∓i coth

(√
Rξ + csc

√
Rξ
)]

exp [i(C1t + S(z))]
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Case2
µ = a0 = b1 = 0, R(z) = C1, a1 = a1, S(z) = 1

2
.
−R2

R
δa2

1dzC2
2R+

R
δa2

1dzC2
1+2C3C2

2

C2
2

δ = δ, q =
C1

R
δa2

1dz+C4C2

C2
, β = − δa2

1

C2
2
, p(z) = C2, α = ∂a1

∂z
. 1
a1

The familly exact solutions of (3.19)
(3.44)

A(t̃, z)21 = c
√

Rexp

[∫
α(z)dz)

]
tanh

⌊√
R (C2t− C1C2)

∫
β(z)dz

]
. exp (i [C1t + S(z))])

(3.45)

A(t̃, z)22 = c
√

Rexp

[∫
α(z)dz)

]
coth

⌊√
R (C2t− C1C2)

∫
β(z)dz

]
. exp (i [C1t + S(z))])

Case3
µ = ∓1, a0 = b1 = 0, δ = δ, S(z) =

R
δa2

1dzC2R+2
R

δa2dzC2
1+C3C2

2

C2
2

R(z) = C1, β = −4a2
1δ

C2
2

, a1 = a1, p = C2, q =
4C1

R
δa2

1dz+C2C4

C2
, α = ∂a1

∂z
. 1
a1

The familly exact solutions of (3.19)

(3.46) A(t̃, z)31 =
c
√

R tanh
[√

R
(
C2t− C1C2

∫
β(z)dz + C4

)]
± csc

[√
R
(
C2t− C1C2

∫
β(z)dz + C4

)
+ 1
] exp [i (C1t + S(z))]

(3.47) A(t̃, z)32 =
c
√

R coth
[√

R
(
C2t− C1C2

∫
β(z)dz + C4

)]
± csc

[√
R
(
C2t− C1C2

∫
β(z)dz + C4

)
+ 1
] exp [i (C1t + S(z))]

4. CONCLUSION

This study introduces a novel formulation of constitutive relations linked to magnetic effects,
aiming to provide a deeper understanding of the physical nature of bi-isotropic effects and
to extend existing macroscopic models. We derived the nonlinear Schrödinger equation for
a bi-isotropic medium, incorporating a nonlinear magnetization term. Utilizing the extended
Projective Riccati Equations Method [17], we effectively identified a family of solutions for
the nonlinear Schrödinger equation in bi-isotropic optical fibers Theorem. (3.1). This powerful
technique, based on perturbation expansion in terms of a dimensionless parameter, is applicable
to both weak and strong nonlinearities. Additionally, the method accommodates variations in
dispersion and nonlinearity, making it versatile for modeling diverse optical fibers [4]. Overall,
this method offers valuable insights into the dynamics of nonlinear optical systems and holds
significant potential for various applications in the field of nonlinear optics [5].
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