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2 SPIROSKONSTANTOGIANNIS

1. I NTRODUCTION

In literature (see, for instance, [1, 2, 3, 5, 7, 8, 9, 10]), when the basic topological properties
of R or a general metric space are discussed, it is noted that an infinite intersection of open
sets in the space need not be an open set, and similarly, an infinite union of closed sets in the
space need not be a closed set, either, and both are shown by examples. In order to gain some
more insight into the behavior of infinite unions and intersections of sets in a general metric
space, and with an eye to explaining when an infinite intersection of open sets is an open set,
and similarly, when an infinite union of closed sets is a closed set, we examine when a common
interior point of an infinite collection of sets in a general metric space is an interior point of the
intersection of the sets, and we derive a relevant "if and only if" criterion. Using the previous
criterion, we explain when an infinite intersection of open sets is an open set and when an
infinite union of closed sets is a closed set, and we arrive at an "if and only if" criterion for each
case. Next, we examine when a limit point of an infinite union of sets in a general metric space
is a limit point of (at least) one of the sets in the union, deriving again a relevant "if and only
if" criterion, by means of which we provide a sufficient condition for an infinite union of closed
sets to be a closed set. We also give illustrative examples that, for the sake of understanding,
are taken from the familiar metric space of real numbers with the absolute value metric.

In what follows, we assume that(M, d) is a metric space,I is a nonempty set of indices, and
{Gi : i ∈ I} is a collection of subsets ofM , which we denote byG.

2. I NTERSECTIONS AND INTERIOR POINTS

Let x ∈ M be a common interior point of all sets in the collectionG; i.e., x is an interior
point of Gi for every i ∈ I. Clearly, x is independent ofi. Sincex is an interior point of
all sets inG, there existsεi > 0 such thatBεi

(x) ⊆ Gi for everyi ∈ I, whereBεi
(x) is the

open ball aboutx with radiusεi, in M . For any giveni ∈ I, we consider the setEi(x) such
that Ei(x) = {εi > 0 : Bεi

(x) ⊆ Gi}; i.e., the setEi(x) contains every radiusεi > 0 for
which the open ballBεi

(x) is contained inGi. Sincex is a common interior point, the set
Ei(x) is nonempty and its points are positive real numbers for everyi ∈ I. Hence, ifEi(x) is
bounded above, then the completeness ofR implies that the supremumsup Ei(x) of Ei(x) is
a real number; in particular, a positive real number, while ifEi(x) is unbounded above, then
its supremum is positive infinity, and we writesup Ei(x) = ∞. In general,sup Ei(x) depends
on i, since it depends on the particular setGi. Next, we assume that there existsi ∈ I such
thatsup Ei(x) is a real number. An obvious sufficient condition for this to be true is that there
existsi ∈ I such thatGi is bounded inM . However, this condition is not necessary, because
if we consider the metric space(R, | · |) of real numbers with the absolute value metric and the
collection{(−∞, 1

n
) : n ∈ N}, then0 ∈ (−∞, 1

n
) for everyn ∈ N, and since(−∞, 1

n
) is an

open set; in particular, an open interval, for everyn ∈ N, it follows that0 is an interior point of
all sets in the collection, and clearly,sup En(0) = 1

n
, which is a real number for everyn ∈ N,

even though(−∞, 1
n
) is unbounded below; thus, unbounded, inR.

Next, we consider the setE(x) such thatE(x) = {sup Ei(x) < ∞ : i ∈ I}; i.e., the
set E(x) contains those suprema that are real numbers. Since there exists asup Ei(x) that
is a real number, it follows thatE(x) is nonempty. Further, since for everyi ∈ I, we have
sup Ei(x) > 0, it follows thatE(x) is bounded below by0. Hence, the completeness ofR
implies that the infimuminf E(x) of E(x) is a real number and is non-negative, as0 is a lower
bound ofE(x). In general,inf E(x) depends on the pointx, but it is independent ofi, since it
is taken over everyi ∈ I for which sup Ei(x) < ∞. We are now ready to prove the following
lemma.
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ON INFINITE UNIONS AND INTERSECTIONS OF SETS IN A METRIC SPACE 3

Lemma 2.1. Let x ∈ M be an interior point ofGi ⊆ M for everyi ∈ I. The pointx is an
interior point of

⋂
i∈I Gi if and only ifinf E(x) > 0.

Proof. (i) If x is an interior point of
⋂

i∈I Gi, then there existsε > 0 such thatBε(x) ⊆
⋂

i∈I Gi,
whence for everyi ∈ I, we haveBε(x) ⊆ Gi. Consequently, for everyi ∈ I, we have
ε ∈ Ei(x), whencesup Ei(x) ≥ ε. As a result,ε is a lower bound ofE(x), and thusinf E(x) ≥
ε > 0, whenceinf E(x) > 0.

(ii) If inf E(x) > 0, then, sinceR is dense inR, there exists a real numberε such that
inf E(x) > ε > 0. Besides,inf E(x) is a lower bound ofE(x), and thussup Ei(x) ≥ inf E(x)
for every i ∈ I for which sup Ei(x) is a real number. Clearly, the previous inequality holds
a fortiori for thosei ∈ I for which sup Ei(x) = ∞. Consequently,sup Ei(x) ≥ inf E(x)
for every i ∈ I. Hence, for everyi ∈ I, we havesup Ei(x) ≥ inf E(x) > ε > 0, whence
sup Ei(x) > ε. As a result, for everyi ∈ I, we have thatε is not an upper bound ofEi(x),
and thus there existsεi ∈ Ei(x) such thatεi > ε, whenceBε(x) ⊆ Bεi

(x), and since for every
i ∈ I, we haveBεi

(x) ⊆ Gi (as a result ofεi ∈ Ei(x)), it follows thatBε(x) ⊆ Gi for every
i ∈ I, whenceBε(x) ⊆

⋂
i∈I Gi. Consequently,x is an interior point of

⋂
i∈I Gi.

Corollary 2.2. Let x ∈ M be an interior point ofGi ⊆ M for everyi ∈ I. The pointx is not
an interior point of

⋂
i∈I Gi if and only ifinf E(x) = 0.

Proof. As explained,inf E(x) ≥ 0 for every common interior pointx of all sets inG. Hence,
the negation of lemma 2.1 yields the statement of the corollary.

Example 2.1. Let (R, | · |) be the metric space of real numbers with the absolute value metric
and let the infinite collection of intervals{(− 1

n
, 1 + 1

n
] : n ∈ N} of R.We observe that, for

everyn ∈ N, we have(− 1
n
, 1

n
) ⊂ (− 1

n
, 1 + 1

n
], whence 0 is an interior point of(− 1

n
, 1 + 1

n
].

Following our notation, for everyn ∈ N, we havesup En(0) = 1
n

< ∞, and thusinf E(0) =

inf{ 1
n

: n ∈ N} = 0. Hence, by corollary 2.2, the point0 is not an interior point of the infinite
intersection

⋂∞
n=1(−

1
n
, 1 + 1

n
]. Next, we observe that, for everyn ∈ N, we have

(
1

4
− (

1

4
+

1

n
),

1

4
+ (

1

4
+

1

n
)) = (− 1

n
,
1

2
+

1

n
) ⊂ (− 1

n
, 1 +

1

n
],

whence1
4

is an interior point of(− 1
n
, 1 + 1

n
]. Further, for everyn ∈ N, we have

sup En(
1

4
) = min{1

4
− (− 1

n
), 1 +

1

n
− 1

4
)} = min{1

4
+

1

n
,
3

4
+

1

n
} =

1

4
+

1

n
,

and thusinf E(1
4
) = inf{1

4
+ 1

n
: n ∈ N} = 1

4
> 0. Hence, by lemma 2.1, the point1

4
is an

interior point of the infinite intersection
⋂∞

n=1(−
1
n
, 1 + 1

n
].

3. I NFINITE INTERSECTIONS OF OPEN SETS AND INFINITE UNIONS OF CLOSED SETS

If E(x) is finite, then it contains its infimum, and since the points ofE(x) are positive real
numbers, so is its infimum; i.e.,inf E(x) > 0. Thus, by lemma 2.1, every common interior
point of all sets in the collectionG is also an interior point of the intersection

⋂
i∈I Gi. Clearly,

if I is finite, then so isE(x).1 As a result, ifI is finite, then every common interior point of all
sets in the collectionG is an interior point of the intersection

⋂
i∈I Gi, too. If, additionally, all

sets inG are open inM , then every common point is an interior point, and thus it is an interior
point of the intersection

⋂
i∈I Gi, too, which is therefore an open set inM . We have thus arrived

at the known statement that a finite intersection of open sets in a metric space is an open set.

Note, however, that the converse is not necessarily true; it may happen thatE(x) is finite and yetI is infinite,
since for everyi ∈ I, we havesupEi(x) ∈ E(x) if and only if supEi(x) < ∞.
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4 SPIROSKONSTANTOGIANNIS

On the other hand, ifI is infinite and all sets in the collectionG are open inM , then, again,
every common point of all sets in the collection is an interior point of each of the sets. Besides,
the intersection

⋂
i∈I Gi is open inM if and only if every common point of all sets in the

collectionG is an interior point of the intersection
⋂

i∈I Gi, and since every common point of
all sets is an interior point of each of the sets, it follows from lemma 2.1 that the intersection⋂

i∈I Gi is open inM if and only if inf E(x) > 0 for every common pointx of all sets in the
collectionG.

Next, let us suppose thatI is infinite and all sets in the collectionG are closed inM . We
will derive a necessary and sufficient condition for the union

⋃
i∈I Gi to be closed inM . The

union
⋃

i∈I Gi is closed inM if and only if its complementM\
⋃

i∈I Gi in M is open. By De
Morgan’s laws,M\

⋃
i∈I Gi =

⋂
i∈I M\Gi. Hence,

⋃
i∈I Gi is closed if and only if

⋂
i∈I M\Gi

is open. Since for everyi ∈ I, the setGi is closed, it follows thatM\Gi is open. Hence, by the
previous discussion,

⋂
i∈I M\Gi is open if and only ifinf E(x) > 0 for every common pointx

of all setsM\Gi. Therefore,
⋃

i∈I Gi is closed if and only ifinf E(x) > 0 for every common
pointx of all setsM\Gi.

Besides, since all setsM\Gi are open, they contain only interior points, and thus any common
point x of all these sets is an interior point of each of the sets. Consequently,inf E(x) ≥ 0 for
every common pointx of all setsM\Gi. Next, negating the previous "if and only if" statement
yields that

⋃
i∈I Gi is not closed if and only if there exists a common pointx of all setsM\Gi

such thatinf E(x) = 0.

Example 3.1. Let (R, | · |) be the metric space of real numbers with the absolute value metric
and let the infinite collection{

⋃n
k=1{

1
k
} : n ∈ N}. We will examine whether or not the union⋃∞

n=1

⋃n
k=1{

1
k
} is closed inR.By De Morgan’s laws, for everyn ∈ N, we have

R\
n⋃

k=1

{1

k
} =

n⋂
k=1

R\{1

k
} =

n⋂
k=1

(−∞,
1

k
) ∪ (

1

k
,∞).

For everyk ∈ N, the set(−∞, 1
k
) ∪ ( 1

k
,∞) is open inR, as the union of open sets (intervals).

Hence, for everyn ∈ N, the set
⋂n

k=1(−∞, 1
k
) ∪ ( 1

k
,∞) is a finite intersection of open sets,

and thus it is open inR. As a result, for everyn ∈ N, the setR\
⋃n

k=1{
1
k
} is open inR.

Consequently, for everyn ∈ N, the set
⋃n

k=1{
1
k
} is closed inR. Besides,R\

⋃n
k=1{

1
k
} =

R\{1, 1
2
, . . . , 1

n
} and, for everyn ∈ N, we have that0 ∈ R\{1, 1

2
, . . . , 1

n
}. Hence, in line with

our notation, for everyn ∈ N, we havesup En(0) = 1
n

< ∞, and thus

inf E(0) = inf{ 1

n
: n ∈ N} = 0.

We have thus found a point0 ∈ R\
⋃n

k=1{
1
k
} for every n ∈ N, such thatinf E(0) = 0.

Consequently,
⋃∞

n=1

⋃n
k=1{

1
k
} =

⋃∞
k=1{

1
k
} = {1, 1

2
, . . .} is not a closed set inR.

Example 3.2. Let (R, | · |) be the metric space of real numbers with the absolute value metric
and let the infinite collection{{0} ∪ (

⋃n
k=1{

1
k
}) : n ∈ N}. We will examine whether or not the

union
⋃∞

n=1{0} ∪ (
⋃n

k=1{
1
k
}) is closed inR.We observe that, for everyn ∈ N, we have

R\({0} ∪ (
n⋃

k=1

{1

k
})) = R\

n⋃
k=1

{0} ∪ {1

k
},

and by De Morgan’s laws,

R\
n⋃

k=1

{0} ∪ {1

k
} =

n⋂
k=1

R\({0} ∪ {1

k
}) =

n⋂
k=1

(−∞, 0) ∪ (0,
1

k
) ∪ (

1

k
,∞).
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Hence,

R\({0} ∪ (
n⋃

k=1

{1

k
})) =

n⋂
k=1

(−∞, 0) ∪ (0,
1

k
) ∪ (

1

k
,∞).

For everyk ∈ N, the set(−∞, 0) ∪ (0, 1
k
) ∪ ( 1

k
,∞) is open inR, as the union of open sets

(intervals). As a result, for everyn ∈ N, the set
⋂n

k=1(−∞, 0) ∪ (0, 1
k
) ∪ ( 1

k
,∞) is a finite

intersection of open sets, and thus it is open inR. Consequently, for everyn ∈ N, the set
R\({0} ∪ (

⋃n
k=1{

1
k
})) is open, and thus{0} ∪ (

⋃n
k=1{

1
k
}) is closed inR. Besides, for every

n ∈ N, we haveR\({0}∪ (
⋃n

k=1{
1
k
})) = R\{1, 1

2
, . . . , 1

n
, 0}. Hence, given anyx ∈ R\({0}∪

(
⋃n

k=1{
1
k
})) for everyn ∈ N, we have thatx ∈ R\{1, 1

2
, . . . , 1

n
, 0}, whencex < 0 or x > 1

or x ∈ [0, 1]\{1, 1
2
, . . . , 1

n
, 0}. If x < 0, then, in line with our notation,sup En(x) = −x

(independent ofn), and thus

inf E(x) = inf{−x : n ∈ N} = −x > 0.

Similarly, if x > 1, thensup En(x) = x− 1 (independent ofn), and thus

inf E(x) = inf{x− 1 : n ∈ N} = x− 1 > 0.

Finally, if x ∈ [0, 1]\{1, 1
2
, . . . , 1

n
, 0}, thenx belongs to one of the open intervals with endpoints

0 and 1
n
, 1

n
and 1

n−1
,...,1

2
and1. We observe that, in the limitn →∞, the open interval(0, 1

n
) and

any interval of the form( 1
n−k

, 1
n−k−1

), wherek is a fixed, i.e., independent ofn, non-negative
integer, become empty. Besides, sincex ∈ R\{1, 1

2
, . . . , 1

n
, 0} for everyn ∈ N, we have that

x ∈ R\{1, 1
2
, . . . , 1

n
, 0} for arbitrarily largen. It is thus clear thatx cannot belong to(0, 1

n
) or

to any interval of the form( 1
n−k

, 1
n−k−1

), either. As a result,x belongs to an open interval of
the form( 1

m+1
, 1

m
), wherem is a fixed, i.e., independent ofn, positive integer. Consequently,

sup En(x) = min{x− 1
m+1

, 1
m
− x}, which is independent ofn, and thus

inf E(x) = inf{min{x− 1

m + 1
,

1

m
− x} : n ∈ N} = min{x− 1

m + 1
,

1

m
− x} > 0,

as a result ofx ∈ ( 1
m+1

, 1
m

). Hence, in all three cases forx, we have thatinf E(x) > 0.
Therefore, the union

∞⋃
n=1

{0} ∪ (
n⋃

k=1

{1

k
}) = {0} ∪ (

∞⋃
n=1

n⋃
k=1

{1

k
}) = {0} ∪ (

∞⋃
k=1

{1

k
}) = {0, 1, 1

2
,
1

3
, . . .}

is a closed set inR.

4. UNIONS AND LIMIT POINTS

Definition 4.1. A point x ∈ M is said to be a limit point ofX ⊆ M if for everyε > 0, the open
ball Bε(x) contains a point ofX other thanx; i.e.,Bε(x) ∩ (X\{x}) 6= ∅.2

Theorem 4.1. A pointx ∈ M is a limit point ofX ⊆ M if and only if there exists a sequence
(xn) in X\{x} that converges tox.

The proof of the previous sequential criterion is given in standard real analysis textbooks (see,
for instance [2, p. 104]), for the metric space of real numbers with the absolute value metric,
and it is straightforwardly generalized to any metric space. It is worth noting that in proving

The definition 4.1 is logically equivalent to the definition given by Cantor in 1872 [6], but for subsets of real
numbers, since the concept of metric space was not known at that time [11]. However, several authors prefer to use
the term cluster point instead of limit point for a point that satisfies the definition 4.1, and they define limit points
imposing the weaker condition that the open ballBε(x) should contain (at least) one point ofX.
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6 SPIROSKONSTANTOGIANNIS

the direct part of the theorem, the Axiom of Choice must be invoked in order to construct the
sequence(xn) (see, for instance, [4]).

Next, in order to derive a necessary and sufficient condition for a limit point of an infinite
union to be a limit point of (at least) one of the sets in the union, we will use the following,
simple auxiliary lemma.

Lemma 4.2. LetX be a set, let(xn) be a sequence of points ofX, and letP (n) be a property
(a predicate) inn ∈ N. Infinitely many terms of(xn) have the propertyP (n)3 if and only if
there exists a subsequence of(xn) whose terms have the propertyP (n).

Proof. (i) Let infinitely many terms of(xn) have the propertyP (n). As a result, there exists a
termxn1 of (xn) that has the propertyP (n). Further, there existsn2 ∈ N such thatn2 > n1 and
such that the termxn2 has the propertyP (n); otherwise, at mostn1 terms of(xn), thus finitely
many terms of(xn), have the propertyP (n), which is a contradiction. Next, we assume that,
given anyk ∈ N, the termxnk

of (xn) has the propertyP (n). As a result, there existsnk+1 ∈ N
such thatnk+1 > nk and such that the termxnk+1

of (xn) has the propertyP (n); otherwise, at
mostnk terms of(xn), thus finitely many terms of(xn), have the propertyP (n), which is a
contradiction. Consequently, by induction onk ∈ N, there exists a strictly increasing sequence
(nk) of natural numbers such that the termxnk

of (xn) has the propertyP (n). Therefore, there
exists a subsequence(xnk

) of (xn) whose terms have the propertyP (n).
(ii) Let there exist a subsequence(xnk

) of (xn) whose terms have the propertyP (n). Then, as
a result ofk being any natural number, infinitely many terms of(xn) have the propertyP (n).

We are now ready to prove the following lemma.

Lemma 4.3. Let x ∈ M be a limit point of
⋃

i∈I Gi. There existsj ∈ I such thatx is a limit
point ofGj if and only if there exists a sequence(xn) in (

⋃
i∈I Gi)\{x} that converges tox and

Gj contains infinitely many terms of(xn).

Proof. Let x ∈ M be a limit point of
⋃

i∈I Gi.
(i) Let there existj ∈ I such thatx is a limit point ofGj. Sincex is a limit point of

⋃
i∈I Gi,

it follows from the sequential criterion 4.1 that there exists a sequence(yn) in (
⋃

i∈I Gi)\{x}
that converges tox. Similarly, sincex is a limit point of Gj, there exists a sequence(zn) in
Gj\{x} that converges tox, too. Next, let(xn) be the sequence defined byx2n−1 = yn and
x2n = zn, for everyn ∈ N. Thus, the subsequence(x2n−1) of (xn) is in (

⋃
i∈I Gi)\{x} and the

subsequence(x2n) of (xn) is in Gj\{x} ⊆ (
⋃

i∈I Gi)\{x}; hence,(xn) is in (
⋃

i∈I Gi)\{x}.
Further,(x2n−1) converges tox, as a result of(yn) converging tox, and(x2n) also converges
to x, as a result of(zn) converging tox, too. As a result,(xn) converges tox. Also, for every
n ∈ N, we havex2n = zn ∈ Gj\{x} ⊆ Gj; hence,Gj contains infinitely many terms of(xn).
Therefore, there exists a sequence(xn) in (

⋃
i∈I Gi)\{x} that converges tox andGj contains

infinitely many terms of(xn).
(ii) Let there exist a sequence(xn) in (

⋃
i∈I Gi)\{x} that converges tox and letGj contain

infinitely many terms of(xn). SinceGj contains infinitely many terms of(xn), infinitely many
terms of(xn) have the propertyP (n) = "the nth term of (xn) belongs toGj", and thus by
lemma 4.2, there exists a subsequence of(xn) that is inGj. Further, since the terms of(xn)
are different fromx, so are the terms of the said subsequence. Consequently, there exists a
subsequence of(xn) that is inGj\{x}. Moreover, the said subsequence converges tox, as a
result of(xn) itself converging tox. Finally, since any subsequence of a sequence is a sequence
in its own right, it follows that there exists a sequence inGj\{x} that converges tox, and thus
by the sequential criterion 4.1, the pointx is a limit point ofGj.

"Infinitely many terms of(xn) have the propertyP (n)" means that the predicateP (n) is satisfied, i.e., it is true,
for infinitely many points of the domainN of (xn).
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The negation of lemma 4.3 yields the following corollary.

Corollary 4.4. Letx ∈ M be a limit point of
⋃

i∈I Gi. The pointx is not a limit point of any of
the sets in the union

⋃
i∈I Gi if and only if for every sequence in(

⋃
i∈I Gi)\{x} that converges

to x, every set in the union
⋃

i∈I Gi contains only finitely many terms of the sequence.

If I is finite, then so is the union
⋃

i∈I Gi, which is also nonempty, as a result ofI being
nonempty. Hence, ifx ∈ M is a limit point of the union

⋃
i∈I Gi, then, by the sequential

criterion 4.1, there exists a sequence in(
⋃

i∈I Gi)\{x} that converges tox, and since there
exist finitely many sets in the union, at least one of the sets contains infinitely many terms
of the sequence; otherwise, each of the finitely many sets in the union contains finitely many
terms of the sequence, and thus the sequence has finitely many terms, which is a contradiction.
Consequently, by lemma 4.3, the pointx is also a limit point of some set in the union. However,
if I is infinite, then it may happen that for every sequence in(

⋃
i∈I Gi)\{x} that converges tox,

each of the infinitely many sets in the union contains only finitely, and some of them possibly
zero, terms of the sequence, and thus by the corollary 4.4, the pointx is not a limit point of any
of the sets in the union

⋃
i∈I Gi. Indeed, referring to example 3.1, we observe that the infinite

union
⋃∞

n=1

⋃n
k=1{

1
k
} of the sets

⋃n
k=1{

1
k
}, wheren ∈ N, is written as

∞⋃
n=1

n⋃
k=1

{1

k
} =

∞⋃
k=1

{1

k
} = (

∞⋃
k=1

{1

k
})\{0} = (

∞⋃
n=1

n⋃
k=1

{1

k
})\{0},

and the sequence(xm) = ( 1
m

) is in
⋃∞

k=1{
1
k
} = (

⋃∞
n=1

⋃n
k=1{

1
k
})\{0} and converges to0. As

a result, the point0 is a limit point of the infinite union of the sets
⋃n

k=1{
1
k
}, wheren ∈ N.

Further, given any sequence(ym) in (
⋃∞

n=1

⋃n
k=1{

1
k
})\{0} that converges to0, we observe that

any of the sets
⋃n

k=1{
1
k
} in the union contains at mostn terms of(ym); thus, it contains finitely

many terms of(ym). Hence, by corollary 4.4, the point0 is not a limit point of any of the sets
in the union.

In conclusion, a limit point of a nonempty and finite union is also a limit point of at least one
of the sets in the union, but a limit point of an infinite union may not be a limit point of any of
the sets in the union.

On the other hand, ifx ∈ M is a limit point ofGj, for somej ∈ I, then, by the sequential
criterion 4.1, there exists a sequence inGj\{x} that converges tox, and sinceGj\{x} ⊆
(
⋃

i∈I Gi)\{x}, it follows that there exists a sequence in(
⋃

i∈I Gi)\{x} that converges tox,
whencex is a limit point of

⋃
i∈I Gi. Hence, a limit point of a set in the union

⋃
i∈I Gi is also

a limit point of the union itself, regardless of whether the union is finite (and nonempty) or
infinite.

From the previous discussion, it is clear that the derived set of a union contains the union of
the derived sets of the sets in the union. Furthermore, if the union is finite, then the previous
inclusion is equality.

We will conclude this section by proving the following sufficient condition, which follows
from lemma 4.3 and the property of a set to be closed if and only if it contains its limit points.

Lemma 4.5. LetGi be closed inM , for everyi ∈ I. If for every limit pointx ∈ M of the union⋃
i∈I Gi, there exists a sequence(xn) in (

⋃
i∈I Gi)\{x} that converges tox andj ∈ I such that

Gj contains infinitely many terms of(xn), then
⋃

i∈I Gi is closed inM .

Proof. Given any limit pointx of the union
⋃

i∈I Gi, if there exists a sequence(xn) in (
⋃

i∈I Gi)\{x}
converging tox and some setGj containing infinitely many terms of(xn), then, by lemma 4.3,
the pointx is a limit point ofGj. Also, by assumption,Gj is closed; thus, it contains its limit
points. As a result,x ∈ Gj ⊆

⋃
i∈I Gi; i.e.,x ∈

⋃
i∈I Gi. Hence, the union

⋃
i∈I Gi contains its

limit points, and thus it is closed inM .
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Lemma 4.5 is not a necessary condition, though. As shown in example 3.2, in the metric space
of real numbers with the absolute value metric, the set{0} ∪ (

⋃n
k=1{

1
k
}) is closed, for every

n ∈ N, and so is the union
⋃∞

n=1{0}∪(
⋃n

k=1{
1
k
}). Further, the sequence(xm) = ( 1

m
) converges

to 0 and is in(
⋃∞

n=1{0}∪ (
⋃n

k=1{
1
k
}))\{0}. As a result,0 is a limit point of the previous union.

Further, given any sequence(ym) that converges to0 and is in(
⋃∞

n=1{0} ∪ (
⋃n

k=1{
1
k
}))\{0},

any of the sets in the union
⋃∞

n=1{0} ∪ (
⋃n

k=1{
1
k
}) contains at mostn terms of(ym) (as0 is

not a term of(ym)); thus, it contains finitely many terms of(ym). Hence, there does not exist a
sequence in(

⋃∞
n=1{0}∪(

⋃n
k=1{

1
k
}))\{0} that converges to0 and a set in the union that contains

infinitely many terms of the sequence.
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