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2 SPIROSKONSTANTOGIANNIS

1. INTRODUCTION

In literature (see, for instance,/[1,(2,3]5, 7, 8, 9, 10]), when the basic topological properties
of R or a general metric space are discussed, it is noted that an infinite intersection of open
sets in the space need not be an open set, and similarly, an infinite union of closed sets in the
space need not be a closed set, either, and both are shown by examples. In order to gain some
more insight into the behavior of infinite unions and intersections of sets in a general metric
space, and with an eye to explaining when an infinite intersection of open sets is an open set,
and similarly, when an infinite union of closed sets is a closed set, we examine when a common
interior point of an infinite collection of sets in a general metric space is an interior point of the
intersection of the sets, and we derive a relevant "if and only if" criterion. Using the previous
criterion, we explain when an infinite intersection of open sets is an open set and when an
infinite union of closed sets is a closed set, and we arrive at an "if and only if" criterion for each
case. Next, we examine when a limit point of an infinite union of sets in a general metric space
is a limit point of (at least) one of the sets in the union, deriving again a relevant "if and only
if* criterion, by means of which we provide a sufficient condition for an infinite union of closed
sets to be a closed set. We also give illustrative examples that, for the sake of understanding,
are taken from the familiar metric space of real numbers with the absolute value metric.

In what follows, we assume théad/, d) is a metric spaced, is a nonempty set of indices, and
{G; :i € I} is a collection of subsets @f/, which we denote by.

2. INTERSECTIONS AND INTERIOR POINTS

Letx € M be a common interior point of all sets in the collecti@ni.e., x is an interior
point of GG; for everyi € I. Clearly, x is independent of. Sincex is an interior point of
all sets inG, there existg; > 0 such thatB.,(z) C G, for every: € I, whereB.,(x) is the
open ball about: with radiuse;, in M. For any given € I, we consider the séf;(z) such
that E;(z) = {e; > 0 : B.,(x) C G;}; i.e., the setF;(z) contains every radius; > 0 for
which the open balB,,(z) is contained inG,. Sincex is a common interior point, the set
E;(z) is nonempty and its points are positive real numbers for everyl. Hence, ifE;(x) is
bounded above, then the completenesRamplies that the supremusup E;(x) of E;(x) is
a real number; in particular, a positive real number, whil&ifz) is unbounded above, then
its supremum is positive infinity, and we writep E;(x) = co. In generalsup E;(x) depends
on ¢, since it depends on the particular §&t Next, we assume that there existe [ such
thatsup E;(z) is a real number. An obvious sufficient condition for this to be true is that there
exists: € [ such thatG; is bounded inV/. However, this condition is not necessary, because
if we consider the metric spa¢®, | - |) of real numbers with the absolute value metric and the
collection{(—o0, 1) : n € N}, then0 € (—o0, 1) for everyn € N, and sincg—oo, 1) is an
open set; in particular, an open interval, for everg N, it follows that0 is an interior point of
all sets in the collection, and clearlyp £, (0) = X, which is a real number for every € N,
even though{—oo, 1) is unbounded below; thus, unboundedRin

Next, we consider the séf(z) such thatE(z) = {sup E;(z) < oo : ¢ € [I}; i.e., the
set E(z) contains those suprema that are real numbers. Since there exigisFa(x) that
is a real number, it follows thal'(x) is nonempty. Further, since for everye I, we have
sup E;(z) > 0, it follows that £(x) is bounded below by. Hence, the completeness Bf
implies that the infimuninf E(z) of E(x) is a real number and is non-negativef)as a lower
bound of £(z). In generalinf £(x) depends on the point, but it is independent aof, since it
is taken over every € [ for whichsup E;(z) < oo. We are now ready to prove the following
lemma.
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Lemma 2.1. Letx € M be an interior point ofG; C M for every: € I. The pointz is an
interior point of(",_; G; if and only ifinf E(z) > 0.

Proof. (i) If = is an interior point of ),_; G, then there exists > 0 such thatB.(z) C (,.; G,
whence for everyi € I, we haveB.(z) C G;. Consequently, for every € I, we have
e € E;(x), whencesup E;(z) > e. As aresultg is a lower bound oF'(x), and thusnf £ (x) >
e > 0, whenceinf E(x) > 0.

(i) If inf E(z) > 0, then, sinceR is dense inR, there exists a real numbersuch that
inf F(z) > ¢ > 0. Besidesinf E(z) is a lower bound of/(x), and thussup E;(z) > inf E(x)
for everyi € I for which sup E;(z) is a real number. Clearly, the previous inequality holds
a fortiori for those: € I for which sup E;(x) = oo. Consequentlysup E;(z) > inf E(x)
for everyi € I. Hence, for every € I, we havesup F;(z) > inf E(z) > ¢ > 0, whence
sup F;(x) > e. As a result, for every € I, we have that is not an upper bound af;(z),
and thus there exists € E;(z) such that; > ¢, whenceB.(z) C B.,(x), and since for every
i € I, we haveB,,(z) C G; (as aresult of; € E;(z)), it follows that B.(x) C G; for every
i € I, whenceB.(z) C ,.; Gi. Consequently; is an interior point of),., G;. 1

Corollary 2.2. Letx € M be an interior point ofz; C M for every: € I. The pointr is not
an interior point of(,_; G; if and only ifinf £(z) = 0.

i€l

Proof. As explainedjnf £(z) > 0 for every common interior point of all sets inG. Hence,
the negation of lemmja 3.1 yields the statement of the coroligary.

Example 2.1. Let (R, | - |) be the metric space of real numbers with the absolute value metric

and let the infinite collection of interval§(—1,1 + %] : n € N} of R.We observe that, for
everyn € N, we have(—%, 1) c (—2,1 + 1], whence 0 is an interior point ¢f-<, 1 + 1].
Following our notation, for every. € N, we havesup E,(0) = + < oo, and thusinf E(0) =

inf{% :n € N} = 0. Hence, by corollar2, the poifitis not an interior point of the infinite
intersection ).~ (—+,1 + 1]. Next, we observe that, for everye N, we have

1 1 1.1 1 1 11 1 1 1
Z (24 2. = 4+ ) =(=Z2. 24+ = 1+ =
-Gt )yt G+ =g+ )= 1+]
whence is an interior point of —1, 1 + 1]. Further, for every: € N, we have
1 1 1 1 1 1 13 1 1 1
En_ - i - __71 - = - i n N - = 7 )
sup (4) mln{4 ( n) —i—n 4)} mm{4—|—n 4+n} 4+n

and thusinf E(3) = inf{{ + 1 : n € N} = 1 > 0. Hence, by lemma 2,1, the poiitis an
interior point of the infinite intersectiofy)’” (=1, 1 + 1].

3. INFINITE INTERSECTIONS OF OPEN SETS AND INFINITE UNIONS OF CLOSED SETS

If E(x) is finite, then it contains its infimum, and since the pointgif) are positive real
numbers, so is its infimum; i.einf £(z) > 0. Thus, by lemma 2|1, every common interior
point of all sets in the collectio&v is also an interior point of the intersectifl_, G;. Clearly,
if 1 is finite, then so is(z)J1 As a result, iff is finite, then every common interior point of all
sets in the collections is an interior point of the intersectiqiy,_, G;, too. If, additionally, all
sets inG are open inV/, then every common point is an interior point, and thus it is an interior
point of the intersectiof),_, G, too, which is therefore an open setlih. We have thus arrived
at the known statement that a finite intersection of open sets in a metric space is an open set.

Note, however, that the converse is not necessarily true; it may happeBi(thiats finite and yetl is infinite,
since for every € I, we havesup E;(z) € E(x) if and only if sup E; (z) < co.
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On the other hand, if is infinite and all sets in the collectiad are open inV/, then, again,
every common point of all sets in the collection is an interior point of each of the sets. Besides,
the intersectiorf),.; G; is open inM if and only if every common point of all sets in the
collectionG is an mterlor point of the intersectign,_, G;, and since every common point of
all sets is an interior point of each of the sets, it follows from leimé 2.1 that the intersection
Nic; Gi is open in)M if and only if inf E(x) > 0 for every common point of all sets in the
collectionG.

Next, let us suppose thdtis infinite and all sets in the collectiafi are closed inV/. We
will derive a necessary and sufficient condition for the urign, G; to be closed inV/. The
unionlJ,.; G; is closed inM if and only if its complement/\ | J,.; G; in M is open. By De
Morgan’s laws M\ | J,.; Gi = (,c; M\G;. Hencel J,.; G; is closed if and only if),., M\G;
is open. Since for everyc I, the set’; is closed, it follows thaf\/\G; is open. Hence, by the
previous discussioff,),., M\G; is open if and only ifinf £ (x) > 0 for every common point
of all setsM\G;. Therefore/ J,., G; is closed if and only ifinf £(2) > 0 for every common
pointz of all setsM\G,.

Besides, since all sefd \ GG; are open, they contain only interior points, and thus any common
pointx of all these sets is an interior point of each of the sets. Consequaerfith)(z) > 0 for
every common point of all setsM\G;. Next, negating the previous "if and only if* statement
yields that| J,_; G; is not closed if and only if there exists a common pairdf all setsM\G;
such thainf £ (x) = 0.

Example 3.1.Let (R, | - |) be the metric space of real numbers with the absolute value metric
and let the infinite collectiodJ;_,{+} : n € N}. We will examine whether or not the union
UnZy Up_i {3} is closed inR.By De Morgan’s laws, for every € N, we have

mU{L{Mm}—ﬂ< U (o0
=1
For everyk € N, the set(—oo, E) U (k, o0) is open inR, as the union of open sets (intervals).
Hence, for every: € N, the sef),_,(—o0, 1) U (3, 00) is a finite intersection of open sets,
and thus it is open ilR. As a result, for everyz € N, the setR\ |J,_,{z} is open inR.
Consequently for every € N, the setl J;_,{;} is closed inR. BesidesR\;_,{;} =
R\{1,3,..., 2} and, for every» € N, we have that) € R\{1,3,...,=}. Hence, in line with

our notat|on for every, € N, we havesup E,,(0) = 1+ < oo, and thus
1
inf £(0) = inf{—:n € N} =0.
n
We have thus found a poirit € R\ UZ {3} for everyn € N, such thatinf £(0) = 0.
Consequently 7", Ui {3} = Uim {3} = {1, 3.---; isnota closed setiR.

Example 3.2. Let (R, | - |) be the metric space of real numbers with the absolute value metric
and let the infinite collectiod{0} U (UJ,_,{1}) : » € N}. We will examine whether or not the
union(J;>” {0} U (Uy_,{z}) is closed inR.We observe that, for every € N, we have

R\({0} U (Ut = R\ U0} U (3

and by De Morgan'’s laws,

n

RWﬁwu}—ﬂmww{}zﬂ U0, 1)U (5 00).

k=1
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Hence,

n

R\({0} U ( U{ = U0, 1)U (7,00).

For everyk € N, the set(—oo, O) (0, %) U (%, o0) is open inR, as the union of open sets
(intervals). As a result, for every € N, the sef);_,(—oc,0) U (0, 3) U (3, 00) is a finite
intersection of open sets, and thus it is operRin Consequently, for every € N, the set
R\({0} U (U;_:{%})) is open, and thu$0} U (UZ—r{ }) is closed inR. Besides, for every
n € N, we haveR\ ({0} U(U;_,{+})) = R\{1,3, ..., n,O} Hence, given any € R\ ({0} U
(Up_:{3})) for everyn € N, we have that: € R\{1,3,..., 2,0}, whencer < 0 orz > 1
orz € [0,1\{1,3,...,1,0}. If = < 0, then, in line with our notationsup E,(z) = —=x
(independent of), and thus

inf E(z) =inf{—x:n e N} = —z > 0.
Similarly, if z > 1, thensup E,,(z) = = — 1 (independent of), and thus
inf F(z) =inf{fxr —1:neN}=2—-1>0.

e %, 0}, thenz belongs to one of the open intervals with endpoints
0andi, Land-L,..1 andl. We observe that, in the limit — oo, the open interva(0, 1) and
any |nterval of the forrr(n T k ——5), Wherek is a fixed, i.e., independent ef non-negative
integer, become empty. Besides, since R\{1,3,...,+,0} for everyn € N, we have that

z € R\{1,3,..., 1,0} for arbitrarily largen. It is thus clear that cannot belong t@0, 1) or
to any mterval of the forn{—1, ——), either. As a resulty belongs to an open interval of

Finally, if x € [0, 1]\{1

the form (-1 T —) wherem |s a flxed l.e., independent af positive integer. Consequently,
sup E,(z) = min{z — —15, = — z}, which is independent of, and thus
1 1 1 1
inf E(x) = inf{mi - — —1z}: N = mi S
inf F(z) = inf{min{x 1 m z}:n € N} = min{z —1'm x} >0,

as a result ofc € (;15,;-). Hence, in all three cases far we have thainf E(z) > 0.

Therefore, the union

oy u U{ b = {0} u( UU{ 1 = {0} U ( U{ D=1t

n=1 n=1 k=1
is a closed set ||R.

C«OlH

4. UNIONS AND LIMIT POINTS

Definition 4.1. A pointz € M is said to be a limit point ok’ C M if for everye > 0, the open
ball B.(z) contains a point o other thanz; i.e., B.(z) N (X\{z}) # 02

Theorem 4.1. A pointx € M is a limit point of X C M if and only if there exists a sequence
(x,) In X\{z} that converges ta.

The proof of the previous sequential criterion is given in standard real analysis textbooks (see,
for instancel[2, p. 104]), for the metric space of real numbers with the absolute value metric,
and it is straightforwardly generalized to any metric space. It is worth noting that in proving

The definitio is logically equivalent to the definition given by Cantor in 1872 [6], but for subsets of real
numbers, since the concept of metric space was not known at thattime [11]. However, several authors prefer to use
the term cluster point instead of limit point for a point that satisfies the defifitign 4.1, and they define limit points
imposing the weaker condition that the open &l(z) should contain (at least) one point &f.
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the direct part of the theorem, the Axiom of Choice must be invoked in order to construct the
sequencér,,) (see, for instancel, [4]).

Next, in order to derive a necessary and sufficient condition for a limit point of an infinite
union to be a limit point of (at least) one of the sets in the union, we will use the following,
simple auxiliary lemma.

Lemma 4.2. Let X be a set, letz,,) be a sequence of points &f, and letP(n) be a property
(a predicate) inn € N. Infinitely many terms ofz,) have the property”(n)B if and only if
there exists a subsequencegef) whose terms have the prope(n).

Proof. (i) Let infinitely many terms of z,,) have the property’(n). As a result, there exists a
termx,, of (z,,) that has the propert(n). Further, there exists, € N such that., > n, and
such that the terma,,, has the property’(n); otherwise, at most, terms of(x,,), thus finitely
many terms of x,,), have the property’(n), which is a contradiction. Next, we assume that,
given anyk € N, the termz,,, of (z,,) has the property’(n). As aresult, there exists,;; € N
such thatu,,, > n, and such that the term,, ,, of (z,,) has the property’(n); otherwise, at
mostn, terms of(z,), thus finitely many terms ofz,,), have the property’(n), which is a
contradiction. Consequently, by induction bre N, there exists a strictly increasing sequence
(ny) of natural numbers such that the tery) of (x,,) has the property’(n). Therefore, there
exists a subsequence,, ) of (z,,) whose terms have the propeif(n).

(i) Let there exist a subsequenge,, ) of (z,,) whose terms have the propefyn). Then, as
a result ofk being any natural number, infinitely many termgef) have the property’(n). 1

We are now ready to prove the following lemma.

Lemma 4.3. Letz € M be a limit point ofl J,., G;. There existg € I such thatx is a limit
point of G, if and only if there exists a sequenesg,) in (U,.; G:)\{z} that converges ta and
G, contains infinitely many terms @t,,).

Proof. Letz € M be a limit point of J,_, G;.

(i) Let there exisy € I such thatr is a limit point of G;. Sincex is a limit point of| J,_, G,
it follows from the sequential criteridn 4.1 that there exists a sequengen (U,.; Gi)\{z}
that converges ta. Similarly, sincez is a limit point of G;, there exists a sequencs,) in
G, \{z} that converges ta, too. Next, let(x,) be the sequence defined by,_, = y, and
Ton = zn, fOr everyn € N. Thus, the subsequente;,,_;) of (x,) isin (| ,.; Gi)\{z} and the
subsequencér,,) of (z,) isin G;\{z} C (U,c; Gi)\{z}; hence,(z,) is in ({J,c; Gi)\{=}.
Further,(z4,_1) converges ta;, as a result ofy,,) converging tar, and(z,) also converges
to x, as a result ofz, ) converging tar, too. As a result(z,,) converges ta:. Also, for every
n € N, we haver,, = z, € G;\{z} C G;; henceG; contains infinitely many terms df,, ).
Therefore, there exists a sequerieg) in (|, ; Gi)\{z} that converges ta andG; contains
infinitely many terms of x,,).

(ii) Let there exist a sequende,,) in (U,.; G;)\{«} that converges ta and letG; contain
infinitely many terms of z,,). SinceG; contains infinitely many terms df:,, ), infinitely many
terms of(z,,) have the property’(n) = "the nth term of (z,,) belongs toG;", and thus by
lemma[ 4.2, there exists a subsequencérg] that is inG;. Further, since the terms ¢f;,)
are different fromz, so are the terms of the said subsequence. Consequently, there exists a
subsequence dfr,,) that is inG,;\{z}. Moreover, the said subsequence converges &s a
result of(z,,) itself converging tac. Finally, since any subsequence of a sequence is a sequence
in its own right, it follows that there exists a sequencé&in{z} that converges te, and thus
by the sequential criterign 4.1, the points a limit point of G;. 1

el

icl

"Infinitely many terms of z,,) have the property’(n)" means that the predicat®(n) is satisfied, i.e., itis true,
for infinitely many points of the domailV of (z,,).
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The negation of lemma 4.3 yields the following corollary.

Corollary 4.4. Letx € M be alimit point ofl J,_, G;. The pointz is not a limit point of any of
the sets in the unioly,_, G; if and only if for every sequence itJ,.; G;)\{z} that converges
to z, every set in the uniop),_; G; contains only finitely many terms of the sequence.

If I is finite, then so is the uniol),_, G;, which is also nonempty, as a result bbeing
nonempty. Hence, i € M is a limit point of the union J,.; G;, then, by the sequential
criterion[4.1, there exists a sequence(iy,.; Gi)\{xz} that converges ta, and since there
exist finitely many sets in the union, at least one of the sets contains infinitely many terms
of the sequence; otherwise, each of the finitely many sets in the union contains finitely many
terms of the sequence, and thus the sequence has finitely many terms, which is a contradiction.
Consequently, by lemnja 4.3, the pairis also a limit point of some set in the union. However,
if 7is infinite, then it may happen that for every sequendg jp., G;)\{z} that converges to,
each of the infinitely many sets in the union contains only finitely, and some of them possibly
zero, terms of the sequence, and thus by the cordllafy 4.4, thespisimiot a limit point of any
of the sets in the uniol,., G;. Indeed, referring to example 8.1, we observe that the infinite

union{J>”, Uy_,{+} of the setd J,_, {+}, wheren € N, is written as

J UG = Ut =g = J U ho,
n=1k=1 k=1 k=1 n=1k=1

and the sequende,,,) = (=) isin U, {3} = (U2, Uiz {3 })\{0} and converges to. As

a result, the poin® is a limit point of the infinite union of the setd;_,{;}, wheren € N.
Further, given any sequen¢g,,) in (U;~, U;_,{+})\{0} that converges t6, we observe that

any of the set§J;_,{+} in the union contains at mostterms of(y,,); thus, it contains finitely
many terms ofy,,). Hence, by corollary 4]4, the poifitis not a limit point of any of the sets

in the union.

In conclusion, a limit point of a nonempty and finite union is also a limit point of at least one
of the sets in the union, but a limit point of an infinite union may not be a limit point of any of
the sets in the union.

On the other hand, it € M is a limit point of G;, for somej € I, then, by the sequential
criterion[4.], there exists a sequencedn\{z} that converges ta;, and sinceG;\{z} C
(Uier Gi)\{=}, it follows that there exists a sequence(iy,.; G;)\{z} that converges ta,
whencer is a limit point of( J,., G;. Hence, a limit point of a set in the unigy,_; G; is also
a limit point of the union itself, regardless of whether the union is finite (and nonempty) or
infinite.

From the previous discussion, it is clear that the derived set of a union contains the union of
the derived sets of the sets in the union. Furthermore, if the union is finite, then the previous
inclusion is equality.

We will conclude this section by proving the following sufficient condition, which follows
from lemmg 4.3 and the property of a set to be closed if and only if it contains its limit points.

Lemma 4.5. LetG; be closed inV/, for every: € I. If for every limit pointr € M of the union
U,c; G, there exists a sequenge, ) in (|, ; G;)\{=} that converges ta and;j < I such that
G; contains infinitely many terms ¢f,,), thenl J,_, G; is closed inM.

Proof. Given any limit point: of the union J,_; G;, if there exists a sequen¢e, ) in (U,.; Gi)\{z}
converging tar and some set/; containing infinitely many terms df,,), then, by Iemm3,
the pointz is a limit point of G;. Also, by assumption(s; is closed; thus, it contains its limit
points. As aresuly € G; C |, Gi; i.e.,x € |J,; Gi. Hence, the uniotJ,.; G; contains its
limit points, and thus it is closed if/. &

iel

AJMAA Vol. 20(2023), No. 2, Art. 13, 8 pp. AIMAA


https://ajmaa.org

8 SPIROSKONSTANTOGIANNIS

Lemmd 4.5 is not a necessary condition, though. As shown in example 3.2, in the metric space

of real numbers with the absolute value metric, the{$étu (LJ;_,{;}) is closed, for every
n € N, and so is the uniop);” , {0}U(J;_,{+})- Further, the sequen¢e,,) = (=) converges
tooandisin(l>” {0} U (Ui_{3}))\{0}. As aresultp is a limit point of the previous union.
Further, given any sequeng¢g,,) that converges to and is in(J;~, {0} U (U;_,{+}))\{0},
any of the sets in the unidn);” {0} U (U;_,{;}) contains at most terms of(y,,) (as0 is
not a term of(y,,,)); thus, it contains finitely many terms 604,,,). Hence, there does not exist a
sequence iflJ,~ ,{0}U(U;_,{+}))\{0} that converges td and a set in the union that contains
infinitely many terms of the sequence.

REFERENCES

[1] R. B. ASH, Real Variables with Basic Metric Space Topolp@over Publications, New York,
(2009).

[2] R. G. BARTLE and D. R. SHERBERTntroduction to Real Analysjslohn Wiley & Sons, Inc.,
New Jersey, (2011).

[3] D. GOPAL and A. DESHMUKH and A. S. RANADIVE and S. YADAAN Introduction to Metric
SpacesTaylor & Francis Group, LLC, Oxfordshire, (2021).

[4] K. HRBACEK and T. JECHJntroduction to Set TheoryMarcel Dekker, Inc., New York, (1999).
[5] R. MAGNUS, Metric Spaces: A Companion to AnalysBpringer, Berlin/Heidelberg, (2022).

[6] G. H. MOORE, The emergence of open sets, closed sets, and limit points in analysis and

topology, Hist. Math, 35 (2008), No. 3, pp. 22085241, Pnline: https://www.
scliencedirect.com/science/article/pii/S0315086008000050 .

[7] M. A. PONS, Real Analysis for the Undergraduate, With an Invitation to Functional Analysis
Springer, Berlin/Heidelberg, (2014).

[8] C.C. PUGH,Real Mathematical Analysi$pringer, Berlin/Heidelberg, (2015).

[9] W. RUDIN, Principles of Mathematical AnalysiMcGraw-Hill, Inc., New York, (1976).
[10] M. O SEARCOID,Metric SpacesSpringer, Berlin/Heidelberg, (2007).
[11] E. S. SUHUBI,Functional AnalysisSpringer, Berlin/Heidelberg, (2003).

AJMAA Vol. 20(2023), No. 2, Art. 13, 8 pp. AIMAA


https://www.sciencedirect.com/science/article/pii/S0315086008000050
https://www.sciencedirect.com/science/article/pii/S0315086008000050
https://ajmaa.org

	1. Introduction
	2. Intersections and interior points
	3. Infinite intersections of open sets and infinite unions of closed sets
	4. Unions and limit points
	References

