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2 C. PARK AND TH.M. RASSIAS

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam [32] con-
cerning the stability of group homomorphisms: Let (G1, ∗) be a group and let (G2, �, d) be a
metric group with the metric d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that if a
mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1? If the answer is affirmative, we would say that the equation of homomorphism
H(x ∗ y) = H(x) � H(y) is stable. The concept of stability for a functional equation arises
when we replace the functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is: "How do the solutions of the
inequality differ from those of the given functional equation?"

Hyers [7] gave the first affirmative answer to the question of Ulam for Banach spaces. Let X
and Y be Banach spaces. Assume that f : X → Y satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive mapping T : X → Y such
that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X.
Th.M. Rassias [27] provided a generalization of Hyers’ Theorem which allows the Cauchy

difference to be unbounded.

Theorem 1.1 (Th.M. Rassias). Let f : E → E ′ be a mapping from a normed vector space E
into a Banach space E ′ subject to the inequality

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L is
R-linear.

The inequality (1.1) has been influential in the development of what is now known as the
generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Be-
ginning around the year 1980, the topic of approximate homomorphisms, or the stability of
the equation of homomorphisms, has been studied by a number of mathematicians. Găvruta
[6], following Th.M. Rassias’ approach for the stability of the linear mapping between Banach
spaces obtained a generalization of Th.M. Rassias’ Theorem. The stability problems of several
functional equations have been extensively investigated by a number of authors and there are
many interesting results concerning this problem (see [3], [4], [9], [10], [11], [13] – [25], [28]
– [30]).

We recall two fundamental results in fixed point theory.
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STABILITY OF THE CAUCHY FUNCTIONAL EQUATION 3

Theorem 1.2 ([1, 2, 26]). Let (X, d) be a complete metric space and let J : X → X be strictly
contractive, i.e.,

d(Jx, Jy) ≤ Ld(x, y), ∀x, y ∈ X
for some Lipschitz constant L < 1. Then

(1) the mapping J has a unique fixed point x∗ = Jx∗;
(2) the fixed point x∗ is globally attractive, i.e.,

lim
n→∞

Jnx = x∗

for any starting point x ∈ X;
(3) one has the following estimation inequalities:

d(Jnx, x∗) ≤ Lnd(x, x∗),

d(Jnx, x∗) ≤ 1

1− L
d(Jnx, Jn+1x),

d(x, x∗) ≤ 1

1− L
d(x, Jx)

for all nonnegative integers n and all x ∈ X .

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 1.3 ([5]). Let (X, d) be a complete generalized metric space and let J : X → X be
a strictly contractive mapping with a Lipschitz constant L < 1. Then for each given element
x ∈ X , either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

This paper is organized as follows: In Section 2, using the fixed point method, we prove
the generalized Hyers-Ulam stability of homomorphisms in Banach algebras for the Cauchy
functional equation.

In Section 3, using the fixed point method, we prove the generalized Hyers-Ulam stability of
derivations on Banach algebras for the Cauchy functional equation.

Throughout this section, assume that A is a complex Banach algebra with norm ‖ · ‖A and
that B is a complex Banach algebra with norm ‖ · ‖B.

2. STABILITY OF HOMOMORPHISMS IN BANACH ALGEBRAS

For a given mapping f : A→ B, we define

Dµf(x, y) := µf(x+ y)− f(µx)− f(µy)

for all µ ∈ T1 := {ν ∈ C : |ν| = 1} and all x, y ∈ A.
Note that a C-linear mapping H : A → B is called a homomorphism in Banach algebras if

H satisfies H(xy) = H(x)H(y) for all x, y ∈ A.
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4 C. PARK AND TH.M. RASSIAS

We prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras for
the functional equation Dµf(x, y) = 0.

Theorem 2.1. Let f : A→ B be a mapping for which there exists a function ϕ : A2 → [0,∞)
such that

lim
j→∞

2−jϕ(2jx, 2jy) = 0,(2.1)

‖Dµf(x, y)‖B ≤ ϕ(x, y),(2.2)

‖f(xy)− f(x)f(y)‖B ≤ ϕ(x, y)(2.3)

for all µ ∈ T1 and all x, y ∈ A. If there exists an L < 1 such that ϕ(x, x) ≤ 2Lϕ(x
2
, x

2
) for all

x ∈ A, then there exists a unique homomorphism H : A→ B such that

(2.4) ‖f(x)−H(x)‖B ≤
1

2− 2L
ϕ(x, x)

for all x ∈ A.

Proof. Consider the set
X := {g : A→ B}

and introduce the generalized metric on X:

d(g, h) = inf{C ∈ R+ : ‖g(x)− h(x)‖B ≤ Cϕ(x, x), ∀x ∈ A}.
It is easy to show that (X, d) is complete.

Now we consider the linear mapping J : X → X such that

Jg(x) :=
1

2
g(2x)

for all x ∈ A.
By Theorem 3.1 of [1],

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ X .
Letting µ = 1 and y = x in (2.2), we get

(2.5) ‖f(2x)− 2f(x)‖B ≤ ϕ(x, x)

for all x ∈ A. So
‖f(x)− 1

2
f(2x)‖B ≤

1

2
ϕ(x, x)

for all x ∈ A. Hence d(f, Jf) ≤ 1
2
.

By Theorem 1.3, there exists a mapping H : A→ B such that
(1) H is a fixed point of J , i.e.,

(2.6) H(2x) = 2H(x)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) <∞}.
This implies that H is a unique mapping satisfying (2.6) such that there exists C ∈ (0,∞)
satisfying

‖H(x)− f(x)‖B ≤ Cϕ(x, x)

for all x ∈ A.
(2) d(Jnf,H)→ 0 as n→∞. This implies the equality

(2.7) lim
n→∞

f(2nx)

2n
= H(x)
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for all x ∈ A.
(3) d(f,H) ≤ 1

1−Ld(f, Jf), which implies,

d(f,H) ≤ 1

2− 2L
.

This implies that the inequality (2.4) holds.
It follows from (2.1), (2.2) and (2.7) that

‖H(x+ y)−H(x)−H(y)‖B

= lim
n→∞

1

2n
‖f(2n(x+ y))− f(2nx)− f(2ny)‖B

≤ lim
n→∞

1

2n
ϕ(2nx, 2ny) = 0

for all x, y ∈ A. So

(2.8) H(x+ y) = H(x) +H(y)

for all x, y ∈ A.
Letting y = x in (2.2), we get

µf(2x) = f(µ2x)

for all µ ∈ T1 and all x ∈ A. By a similar method to that above, we obtain

µH(2x) = H(2µx)

for all µ ∈ T1 and all x ∈ A. Thus one can show that the mapping H : A→ B is C-linear.
It follows from (2.3) that

‖H(xy)−H(x)H(y)‖B = lim
n→∞

1

4n
‖f(4nxy)− f(2nx)f(2ny)‖B

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny)

≤ lim
n→∞

1

2n
ϕ(2nx, 2ny) = 0

for all x, y ∈ A. So
H(xy) = H(x)H(y)

for all x, y ∈ A.
Thus H : A→ B is a homomorphism satisfying (2.4), as desired.

Corollary 2.2. Let r < 1
2

and θ be nonnegative real numbers, and let f : A→ B be a mapping
such that

‖Dµf(x, y)‖B ≤ θ · ‖x‖rA · ‖y‖rA,(2.9)

‖f(xy)− f(x)f(y)‖B ≤ θ · ‖x‖rA · ‖y‖rA(2.10)

for all µ ∈ T1 and all x, y ∈ A. Then there exists a unique homomorphism H : A → B such
that

‖f(x)−H(x)‖B ≤
θ

2− 4r
‖x‖2rA

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA
for all x, y ∈ A. Then L = 22r−1 and we get the desired result.
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6 C. PARK AND TH.M. RASSIAS

Theorem 2.3. Let f : A→ B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2) and (2.3) such that

(2.11) lim
j→∞

4jϕ
( x

2j
,
y

2j

)
= 0

for all x, y ∈ A. If there exists an L < 1 such that ϕ(x, x) ≤ 1
2
Lϕ(2x, 2x) for all x ∈ A, then

there exists a unique homomorphism H : A→ B such that

(2.12) ‖f(x)−H(x)‖B ≤
L

2− 2L
ϕ(x, x)

for all x ∈ A.

Proof. We consider the linear mapping J : X → X such that

Jg(x) := 2g
(x

2

)
for all x ∈ A.

It follows from (2.5) that∥∥∥f(x)− 2f
(x

2

)∥∥∥
B
≤ ϕ

(x
2
,
x

2

)
≤ L

2
ϕ(x, x)

for all x ∈ A. Hence d(f, Jf) ≤ L
2

.
By Theorem 1.3, there exists a mapping H : A→ B such that:

(1) H is a fixed point of J , i.e.,

(2.13) H(2x) = 2H(x)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) <∞}.

This implies that H is a unique mapping satisfying (2.13) such that there exists C ∈ (0,∞)
satisfying

‖H(x)− f(x)‖B ≤ Cϕ(x, x)

for all x ∈ A.
(2) d(Jnf,H)→ 0 as n→∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= H(x)

for all x ∈ A.
(3) d(f,H) ≤ 1

1−Ld(f, Jf), which implies,

d(f,H) ≤ L

2− 2L
,

which implies that the inequality (2.12) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a mapping
satisfying (2.9) and (2.10). Then there exists a unique homomorphism H : A→ B such that

‖f(x)−H(x)‖B ≤
θ

4r − 2
‖x‖2rA

for all x ∈ A.
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Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA
for all x, y ∈ A. Then L = 21−2r and we get the desired result.

3. STABILITY OF DERIVATIONS ON BANACH ALGEBRAS

Note that a C-linear mapping δ : A → A is called a derivation on A if δ satisfies δ(xy) =
δ(x)y + xδ(y) for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of derivations on Banach algebras for the
functional equation Dµf(x, y) = 0.

Theorem 3.1. Let f : A→ A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.1) such that

‖Dµf(x, y)‖A ≤ ϕ(x, y),(3.1)

‖f(xy)− f(x)y − xf(y)‖A ≤ ϕ(x, y)(3.2)

for all µ ∈ T1 and all x, y ∈ A. If there exists an L < 1 such that ϕ(x, x) ≤ 2Lϕ
(
x
2
, x

2

)
for all

x ∈ A, then there exists a unique derivation δ : A→ A such that

(3.3) ‖f(x)− δ(x)‖A ≤
1

2− 2L
ϕ(x, x)

for all x ∈ A.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique C-linear map-
ping δ : A→ A satisfying (3.3). The mapping δ : A→ A is given by

δ(x) = lim
n→∞

f(2nx)

2n

for all x ∈ A.
It follows from (3.2) that

‖δ(xy)− δ(x)y − xδ(y)‖A

= lim
n→∞

1

4n
‖f(4nxy)− f(2nx) · 2ny − 2nxf(2ny)‖A

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny) ≤ lim

n→∞

1

2n
ϕ(2nx, 2ny) = 0

for all x, y ∈ A. So
δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ A. Thus δ : A→ A is a derivation satisfying (3.3).

Corollary 3.2. Let r < 1
2

and θ be nonnegative real numbers, and let f : A→ A be a mapping
such that

‖Dµf(x, y)‖A ≤ θ · ‖x‖rA · ‖y‖rA,(3.4)

‖f(xy)− f(x)y − xf(y)‖A ≤ θ · ‖x‖rA · ‖y‖rA(3.5)

for all µ ∈ T1 and all x, y ∈ A. Then there exists a unique derivation δ : A→ A such that

‖f(x)− δ(x)‖A ≤
θ

2− 4r
‖x‖2rA

for all x ∈ A.
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8 C. PARK AND TH.M. RASSIAS

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA
for all x, y ∈ A. Then L = 22r−1 and we get the desired result.

Theorem 3.3. Let f : A→ A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.11), (3.1) and (3.2). If there exists an L < 1 such that ϕ(x, x) ≤ 1

2
Lϕ(2x, 2x) for

all x ∈ A, then there exists a unique derivation δ : A→ A such that

‖f(x)− δ(x)‖A ≤
L

2− 2L
ϕ(x, x)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1.

Corollary 3.4. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (3.4) and (3.5). Then there exists a unique derivation δ : A→ A such that

‖f(x)− δ(x)‖A ≤
θ

4r − 2
‖x‖2rA

for all x ∈ A.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA
for all x, y ∈ A. Then L = 21−2r and we get the desired result.
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