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ABSTRACT. First, we fill in key gaps in Steiner’s nice characterization of the most nearly cir-
cular ellipse which passes through the vertices of a convex quadrilateral, B. Steiner proved that
there is only one pair of conjugate directiodg; and 5, that belong to all ellipses of circum-
scription. Then he proves thétthere is an ellipsef’, whoseequal conjugate diameters possess

the directional constant&/; and M5, then E must be an ellipse of circumscription which has
minimal eccentricity. However, Steiner does not show the existence or uniqueness of such an
ellipse. We prove that there is a unique ellipse of minimal eccentricity which passes through
the vertices of B. We also show that there exists an ellipse which passes through the vertices of
b and whoseequalconjugate diameters possess the directional constdntsnd M,. We also

show that there exists a unique ellipse of minimal area which passes through the vertices of .
Finally, we call a convex quadrilateral, D, bielliptic if the unique inscribed and circumscribed
ellipses of minimal eccentricity have the same eccentricity. This generalizes the notion of bicen-
tric quadrilaterals. In particular, we show the existence of a bielliptic convex quadrilateral which
is not bicentric.
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2 ALAN HORWITZ

1. INTRODUCTION

Let B be a convex quadrilateral in thg plane. An ellipse which passes through the vertices
of B is called a circumscribed ellipse or ellipse of circumscription. In the book [1], Dorrie
presents Steiner’s nice characterization of the ellipse of circumscription which has minimal
eccentricity, which he calls the most nearly circular ellipse. A paicaijugate diameters
are two diameters of an ellipse such that each bisects all chords drawn parallel to the other.
Every non circular ellipse has a unique pairagfual conjugate diameters. Lét and6, be
the angles which a pair of conjugate diameters make with the positaas. Thentan ¢, and
tan 6, are called a pair o€onjugate directions First, Steiner proves that there is only one
pair of conjugate directions\/; and Ms, that belong to all ellipses of circumscription. Then
he proves in essence thétthere is an ellipseF, whoseequal conjugate diameters possess
the directional constant&/; and M;, then £ must be an ellipse of circumscription which has
minimal eccentricity. There are several gaps and missing pieces in Steiner’s result. Steiner does
not show that therexistsan ellipse of circumscriptiont, whose equal conjugate diameters
possess the directional constahfsand/,, or that such an ellipse ismique. He also doesot
prove in general theniqguenessf an ellipse of circumscription which has minimal eccentricity.
That leaves open the possibility that there exists a circumscribed ellipse of minimal eccentricity
that mightnot haveequal conjugate diameters which possess the directional constédnts
and M,. Steiner’s proof does show that if there exists an ellipse of circumscriptipmhose
equal conjugate diameters possess the directional condtaraad M5, then any other ellipse
of circumscription of minimal eccentricity must also have equal conjugate diameters which
possess the directional constanfs and M.

In Propositions 2]2 and 3.3 we fill in these gaps in Steiner’s proof. We prove (Proposition
[2.7), without using the directional constatt§ and A/,, that there is a unique ellips€, of
minimal eccentricity which passes through the vertices of B. Then we show(Propésition 2.3)
that there exists an ellipse which passes through the vertices of B and adposkeonjugate
diameters possess the directional constantsand M,. In addition, our methods enable us to
prove (Theorem 3]2) that there is a unique ellipsengfimal area which passes through the
vertices of B. Our proof applies to the case when b is not a trapezoid, though the results can
be proven in that case by using a limiting argument or by directly deriving the corresponding
formulas as done for the non—trapezoid case.

In [2] the author proved numerous results about ellipgssribed in convex quadrilaterals,
where we filled in similar gaps in a classical solution to Newton’s problem, which was to de-
termine the locus of centers of ellipses inscribed in B. In addition,lin [2] the author proved that
there exists a unique ellipse of minimal eccentricify, inscribed in . This leads to the last
section of this paper, where we discuss a special class of convex quadrilaterals which we call
bielliptic and which generalize the bicentric quadrilaterals. A convex quadrilateral, b, is called
bicentric if there exists a circle inscribed in B and a circle circumscribed about . P is called
bielliptic if E; andE have thesameeccentricity. We prove (Theorgm b.1), that there exists a
bielliptic convex quadrilateral which is not bicentric. We also prove (Thegrem 5.2), that there
exists a bielliptic trapezoid which is not bicentric.

Finally we prove the perhaps not so obvious result (Thegrem 4.2), that if b is not a parallel-
ogram, and®; and E, are each ellipses, with; inscribed in B andr, circumscribed about D,
thenE, and E, cannot have the same center.

In a forthcoming paper, we shall focus on ellipses inscribed in, and circumscribed about, par-
allelograms. In particular, there is a nice characterization of the ellipse of minimal eccentricity
inscribed in a parallelogram.
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2. MINIMAL ECCENTRICITY

We state the following lemma without proof(séé [6]).

Lemma 2.1.: The equatioMz?+ By?+2Czy+ Dz + Ey+F = 0, with A, B > 0, is the equa-
tion of an ellipse £, if and only ifAB—C? > 0 and AE?+ BD?4+4FC? -2CDE —4ABF >

0. Leta andb denote the lengths of the semi—major and semi—minor axes, respectively, of
Let¢ denote the acute rotation angle of the axe&gfjoing counterclockwise from the positive
x axis and letz, yo) denote the center dfy. Then

AE? + BD? 4+ 4FC? — 2CDE — 4ABF

(2.1) a® = :
2mB—wNA+B—¢w_AV+%ﬂ

22) j_AE?+ BD*+4FC? — 20DE — 4ABF
sz—mNA+B+¢w—AV+%ﬂ’

1, [(A-B o

(2.3) ¢—§C0t < 50 ),C#Oandgb—OIfC’—O,

and

2.0 b _\BD-CE 10D — AE

T AB_c2' T oA — 2

Throughout this section, we let B be a given convex quadrilateral and we assume throughout
that B is not a trapezoid. We use the notation and terminology of Steiner in [1]O PdtQ)
denote the vertices of B, in counterclockwise order. Use the oblique coordinate system with
OP as ther axis andﬁj as they axis, with those sides given y= 0 andz = 0. By using an
isometry of the plane, we can assume that (0,0), P lies on the positiver axis, and thai?

> g > < —_ —_

andQ are in the first quadrant. Léf = QRNOP, K = PRNOQ,p = |OP|,q = |0Q|,h =
|OH|, andk = |OK|. The sidesPR and QR are given by: = 0 andw = 0, respectively,
wherez = kx + py — kp andw = qx + hy — hq. As in the diagram shown in[1], we assume
that R is to the right of, and belowg, and the slope oP R is less than the slope (ﬂ<_c>2 Other
shapes for a convex quadrilateral are possible, of course, but we do not consider those cases in
the proofs below, the details being similar. It follows that

(2.5) O0<p<hO0O<q<ek.

Any ellipse passing through the vertices of B has equation+ puyw = 0, whereX andy
arenonzeroreal numbers. Letting = % the equation becomes:z + yw = 0, or

(2.6) kva® + hy?® + (vp + q)zy — vkpr — hqy = 0.

Let A= kv, B=h,C = L(vp+q), D = —vkp, E = —hg, andF = 0. ThenAB — C* =
kvh — L(vp + q)? =
1 [=p*v? + (4kh — 2pg) v — ¢?]. Let

g(v) = 4khv — (vp+ q)*> = 4 (AB — C?)..
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Note thatg(v) = 0 <— v = <2kh pq £ 2\/kh (kh — pq> Henceg(v) > 0, and
thusAB — C? > 0, if and only if v e I, where

f:( (20h - pq_zm) . (2kh — pq -+ 23/F (h— pg) pq)>

Also, (2kh — pq)* — 4 (kh (kh — pq)) = ¢*p> > 0. Sincekh > pq by (2.8),2kh — pq >
2y/kh (kh — pq). Hencel C (0,00), which implies thatv > 0 wheneverv € I. Now
AE?*+BD?+4FC?-2CDE —4ABF = khv [vp?(k — q) + ¢*(h — p)] > 0if v € I by (2.5).
By Lemmg 2.1,[(2)6) is the equation of a nontrivial ellipse if and only & 7. Our first main
result is the following.

Proposition 2.2.: There is a unique ellipsdyo, of minimal eccentricity which passes through
the vertices of b.

Proof. By Lemmg 2.1,

2khv [vp?(k — q) + ¢*(h — p)]

2.7) a2 —
(4khv — (vp +q)°) (’W =k — )2+ (op + q)Q)

and

(2.8) B — 2khv [vp*(k — q) + ¢*(h — p)]

(4khv — (vp + q)Q) <k:v +h+ \/(k‘v — h)2+ (vp + q)2>

2 kv+h—/(kv—nh)2+ Up+q2
which implies that” = V ko =B+ (p +q)
a

. Some simplification yields
kv + h+ \/(k’v—h)2—i— (vp + q)°

(2.9) Y ) = 5v) o2
(kzv (ko — )2+ (op + q)2)

We shall now minimize the eccentricity by maximizirg. Differentiating f with respect ta
a

yields f/(v) = 22Nk —pa) (vk =) +p*hv—g°k >. Thus
(kv=h)2+(vp+a)? (kv+ht/ (kv—h)2+(vp-+q)?
f'(v) =0 < (2hk — pq) (vk — h) + p*hv — ¢*k = 0 <= v = v,, where
¢*k + 2kh? — hpq
2k2h — kpq + hp?

(2.10) vo =

2
(phtak) W \vhere

. - . . 2
Some more simplification yieldsv, — h)% + (vop+¢q)” = R2h—kpgthp?)?

(2.11) W = 4k*h? 4 (hp — qk)*.

It follows that

(2.12) 4 (vp) = 4kh (kh — pqg) W

(2k2h — kpq + hp?)*
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Thus g (vy) > 0 by by (2.3) and[(2.12), which implies that € I. Note thatkv + h +

\/(kv —h)2+ (vp+q)° > 0forallv > 0, andg(v) > 0,v € I. Thusf is differentiable on/
and has a unique real critical pointin Sinceg vanishes at the endpoints bf / also vanishes
at the endpoints of by (2.9). Sincef(v) > 0 on, f(vy) must give the unique maximum ¢f
onl.ng

Note that the quadrilateral B above, with vertic@® R(Q), is not cyclic sinces—z =1 <~

(kv — h)? + (vp + q)* = 0, which cannot hold i» € I. Thus any ellipse of circumscription is
not a circle. In[[1], Steiner shows that the unique pair of conjugate directions that belong to all
ellipses which pass through the vertices of D is given by

k k

(2.13) My =~ oMy =%~ wherer = Vhk\/hk — pg.
hp’ p hp

Proposition 2.3. There exists an ellipse which passes through the vertices of B and whose equal

conjugate diameters possess the directional constafitand M.

Proof. Let E, denote the the unique ellipse from Proposifior} 2.2 of minimal eccentricity which
passes through the vertices of B. As noted above, the quadrilateral B, with v&pticRg),

is not cyclic, which implies that, is not a circle. LetL and L’ denoteequal conjugate
diameters ofE, with directional constantd/ and M’, respectively. Lety denote the acute
angle of counterclockwise rotation of the axesif and leta andb denote the lengths of the
semi—major and semi—minor axes, respectivelyef It is known(see, for example,|[5]) that

L and L’ make equal acute angles, on opposite sides, with the semi—major a¥is dfet 6
denote the acute angle going counterclockwise from the major axi% @b one of the equal

conjugate diameters, which implies thah 6 = 9 By Lemm, withA = kv, B = h,
a
v

1 —h
C = (vp+ q), D = —kpv, E = —hq, andF = 0, cot(2¢) = . Note thatC' # 0,

WhICh implies thaty # 0. As one would expect from the results in [if],there is some ellipse
whose equal conjugate diameters possess the directional congtaaitsl )/,, then that ellipse
minimizes the eccentricity among all ellipses of circumscription. By the proof of Proposition
[2.7, the point, given in [2.10) yields the ellipse Which minimizes the eccentricity Thus, to

prove Propositiof 2|3, we let = v, Thencot(2qﬁ) = ket oy cot?ol _ kahp oot —

2kh 2cot ¢ 2kh
Qkh (kq — hp £ \/4k2h? + (kq — hp)2> — ka—hp=VW \ne first need to determine whether to

2kh
choose the positive or the negative rootkd¢fhp > 0, thencot(2¢) = ’fg;}’jp >0=>0<2p<
5=>0<¢o <7 =1<cotg <oco. Letrx =2kh,y="Fkq—hp,0 <z <o0,0<y<oo.

If cot ¢ = F=heVW thencot g = VIR 1+(ﬂ)2 = u — 1+ u?, where

2kh T x
u="2%0<u<oo Letz(u) =u—+1+u? Thenz'(u) = —V“{\/i—_“ > 0, 2(0) = —1, and

lim z(u) = 0. Thus—1 < z(u) < 0 = —1 < cot ¢ < 0, which contradictd < cot ¢ < oco.

U—00

If kg — hp < 0, thencot(2¢) = "2 < 0= 2 <29 <71 =T << I =0<cotep <1l

Again, if cot¢ = *= ’;?,';hr thencot ¢ = z(u),—oco0 < u < 0. Slncez(o) = —1and
lim z(u) = —o00, —00 < z(u) < —1 = cot ¢ < —1, which contradict$) < cot ¢ < 1. That
proves
kqg—h vV
(2.14) cot ¢ = 4 27;; W
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To finish the proof of Propositi.3, note they = L VEh=pg — \/};p =YEhtVRh—pq ‘ﬁ“kh P21 < ()

and M, < 0. Thus the only way that and L’ can form angles of and—6, respectlvely, with
the semi—-major axis af, is if the major axis o, has a negative slope. In that caserttiaor

axis of E, is rotated byy counterclockwise from the positive axis. It follows that the two
directional constants\/ and ', are given bytan (¢ + ¢ — Z) andtan (¢ — 6 — Z). We shall

prove thatan (¢ + 6 — T) = M;. We find it convenient to introduce the following variables:
s=hp+kq,t =hp— kq.
Note that
2k*h — kpq + hp* = k(kh — pq) + k*h + hp* > 0
by (2.5). Hence
(ko + h) + 1/ (ko — h)? + (vop + )° = kvig + h + ;HET
which implies that

(kvo+h) (2k2h—kpg+hp? ) +(Ph+ak) VW Wi (ph+qk)VIV _ T YWk (phetak)
2k2h—kpq-+hp? " 2k2h—kpq+hp? 2k2h kpg+hp?*

By (29) and[Z-1p),
F(vp) = —hlh—pW (2k2h—kpq-+hp? )2 _ _ Akh(kh—pg)  _ _ 4r
0 (2k2h—kpg-+hp?)* W(W+(ph+qk)) (\/W+(ph+qk))2 (\/W+S)2.
By (2.9) again,
b 2r
2.15 -—= .
( ) a W +s
b 2%kh 2r _2kh
By (2.14) and|(2.15)tan (¢ + 60 — Z) = t?ifetfﬁi;l = sz—hp;,ﬁ = Wets VWi
a’ kqg—hp+vVW IWts T VW—t

Akhr—(VW+s) (VW —t)

2r (VW —t)+2kh(vVW+s) " Hence

- _ Lakhr—(VWs)(VW-t)
tan (¢ +6 —3) — My = oot =0

4kh*rp — hp (\/W + 8> (\/W — t) —2r(r — hk) <\/W - t)
=2y = hk)kh (VIV +5) =0 =

4kh*rp + hpst + 2r(r — hk)t — 2s(r — hk)kh+
(—=hp (s —t) — 2r(r — hk) — 2(r — hk)kh) VWV — hpW = 0.

Now 4kh?rp+ hpst+2r(r — hk)t—2s(r —hk)kh = hpW and—hp (s — t) —2r(r —hk) —2(r—
hk)kh = 0. Hencetan (¢ + 6 — Z) = M;. Similarly, one can show thatn (¢ — 6 — Z) =
MQ. 1

By Proposition$ 2]2 ar{d 2.3 and the main resultlin ([1]), we have

Theorem 2.4. There exists a unique ellipsé&,, which passes through the vertices of b and
whose equal conjugate diameters possess the directional condtardad M,. Furthermore,

Eo is the unique ellipse of minimal eccentricity among all ellipses which pass through the
vertices of b.
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3. MINIMAL AREA

We now prove a result similar to Propositipn 2.2, but which instead minimizesutee
among all ellipses which pass through the vertices of B. This was not discussed by Steiner in
[1] and there does not appear to be a nice characterization of the minimal area ellipse. Again
we shall prove the case when D is not a trapezoid. Since ratios of areas of ellipses and four—
sided convex polygons are preserved under one—one affine transformations, we may assume
throughout this section, unless stated otherwise, that the vertices of @,8%e(1,0), (0,1),
and(s, t) for some positive real numbessand¢. Furthermore, since B is convex and is not a
trapezoid, it follows easily that

(3.1) s+t>1ands #1#t.

Lemma 3.1. Suppose that the vertices of B dfe 0), (1,0), (0, 1), and(s, t) for some positive
real numberss andt satisfying|[(3.]L). Let

t

msy = W(S‘i‘t—l‘l‘St—Q\/St(S"‘t—l))
t

Ms,t = m(S—Ft—l‘i‘St—FQ\/St(s—Ft—l))

An ellipse,Ey, passes through the vertices of D if and onlgifhas the form
(38.2) stuz® + sty® — [s(s — Du+t(t — 1)]wy — stux — sty = 0,u € I,y = (myy, Myy) .

If « andb denote the lengths of the semi—major and semi—minor axes, respectivélytioén

(33) CL2 25242 (s4+-t—1)u(su+tt)

- [—52(8—1)2u2+25t(s+5t+t—1)u—t2(t—1)2] x
1
(3.4) st(ut1)—/12(s2+(t—1)2) —2st(s+t—1)uts2 (12+(s—1)2)u2
and
2 2522 (s+t—1)u(su+t)
(35) b" = [—32(s—1)2u2+2st(s+st+t—1)u—t2(t—1)2] X
(3.6) 1

st(ut1)+4/12(s2+(t—1)2) —2st(s+t—1)u+s2(2+(s—1)2)u2
Finally, the center of, (o, yo) , IS given by

st[(2st + s* — s)u+ (12 — )]

3.7 =

37 o st (st+s+t—1)u—s2(s—1)°u2—2(t—1)°
and

(3.8) " st[(2st + 12 —t)u + (52 — s)u?]

S ost(st+s+t—1u—s2(s—1)u2—2(t—1)%

Proof. Substituting the vertices of B into the general equation of a cehié+ By? + 2Cxy +
Dx+ FEy+ F =0, A, B > 0, yields the equation$’ = 0, A+ D = 0,B+ E = 0, and
As? + Bt* + 2Cst — As — Bt = 0, which implies thatds(s — 1) + Bt(t — 1) + 2Cst = 0
or ¢ = —As=DEBI=D \Myltiplying thru by st and dividing thru byB vyields the equation in

2st
. A . e .
), withu = 5 Conversely, any conic satlsfyln.Z) must pass through the vertices of b.

By Lemmd 2.1, the curve defined by (8.2) is an ellipse if and oni§tifu (s + ¢ — 1) (su +t) >
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0and—s?(s —1)*u® + 2st (st + s+t —1)u — t2(t — 1)* > 0. The first inequality clearly
holds sinces 4+ ¢ > 1 andu > 0. We write the second condition agu) < 0, where
a(u) = s%(s — 1)%u® — 2st (st + s+t — 1) u+t*(t — 1)°.

Now it is easy to show that(u) < 0 <= m,,; < u < M,,. That proves|(3]2). IF, satisfies

(3.9), then[(3.8) and (3.5) follow immediately from Lemma] 2.14(2.7) (2.8),[and (3.7) and
(3.9) follow immediately from Lemmja 2.[-2.4.

Theorem 3.2. There exists a unique ellipsé;,, of minimal area which passes through the
vertices of .

Proof. By Lemmd 3.14(3]3) and (3.5),

_ 25242 (s+t—1)u(su+t)

2
2b2 — E 5 %
—s52(s—1)*u2+2st(s+st+t—1)u—t2(t—1)

a

1
[st(u+1)]%—[t2(s2+(t—1)2) —2st(s+t—1)uts2 (t24+(s—1)2)u?]

_ 4u? (sutt)2s2t2[st(s+t—1)) _
[—t2(t—1)2+(452t2—2s(s—1)t(t—1))u—52(5—1)2u2]3 Blu),

where

4u?(su + )22t (st (s +t — 1))2
ﬁ(u) == 3 .

(a(u))

Note that3 is differentiable orY, ; sincea(u) < Othere. Alsojn,, > 0 <= s+t—1+st >
2Wst(s+t—1) < (s+t—1+st)’>

4st (s +t — 1)(sinces+t > 1) < (t—1)*(s —1)* > 0, which holds since, t # 1. Thus
mg, > 0andM,, > 0, which implies thatl,; C (0,00). Now lim «a(u) = lim a(u) =0,

uU—m.,

u—

s,t s,t

so thata(u) approache$ thru negative numbers as approaches the endpoints bf;. In
addition, the numerator @f(u), for givens andt, satisfiestu?(su+t)2s%2 (st (s +t — 1))* >
d > 0foru e I;;. Thus lim, B(u) = lim B(u) = oo, which implies that3 must attain its

u*)ms,t u— s,t

global minimum on/, ;. Differentiating with respect ta yields
B'(u) = 8u (su +t) st (st (s +t — 1)) (07((;“‘))4, where

y(u) = (s —1)"u+ 5% (28> = 3s+ st +1+1t)u’

—st? (2 + st =3t +s+ 1) u—t*(t—1)°.

Now2s* —3s+st+1+t=2(s—1)*+st+s+t—1>0and2t? + st —3t +s+1 =
20t — 1) +st+s+t—1>0by ). Hencey has precisely one sign change, which implies
that~ has exactly one real root {i), o) by Descartes’ Rule of Signs. That in turn implies that
B has aunique global minimum on/,;, which yields a unique ellipse of minimal area which
passes through the vertices of p.

Remark 3.1. In [3] and [4], the authors investigate the problem of constructing and character-

izing an ellipse of minimal area containing a finite set of points. The results and methods in §
[3 of this paper are different than in those papers, but it is worth pointing out some of the small
intersection. In particular, for a convex quadrilateral, B, the authois in [3][and [4] construct an

algorithm for finding the minimal area ellipse containing B and they also prove a unigueness
result. For the case when this ellipse passes thru all four vertices of D, this ellipse is then the
minimal area ellipse discussed in this paper. However, there is a convex quadrilateral, B, for
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which the minimal area ellipse containing B does not pass thru all four vertices of . In that
case, the minimal area ellipse discussed in this paper is not the same.

4. INSCRIBED VERSUS CIRCUMSCRIBED

In this section and the next, we allow P to bdrapezoid, so we shall need a version of
Lemmag 3.1 for trapezoids. The proof of Lemmal4.1 below follows immediately from Lemma
[2.7 or from Lemmé 3]1 by allowingto approach. We omit the details here.

Lemma 4.1. Suppose that b is tiapezoidwith vertices0, 0), (1,0), (0,1), and(1,¢),0 < t #
1. An ellipse,Ey, passes through the vertices of D if and onlgifhas the form

1
(4.2) ur® +y? — (t —Day —ur —y =0,u € I, = (Z(t—1)2,00>.

If « andb denote the lengths of the semi—major and semi—minor axes, respectivélytioén
—2u (u +t)

(4.2) a’ =

((t—1)* - 4u) (u+1 — \/(t— 1)° + (u — 1)2)
and
4.3) B —2u (u +t)

((t—1)2_4u) <u+1+\/(t_1)2+(u_1)2>.

Finally, the center oy, (2o, o) , iS given by
2u+t—1 (1+t)u
du— (12 T (-1
Remark 4.1. Lemma[ 4.1 actually holds when= 1 as well, which of course yields the unit
square.

Theorem 4.2. Let D be a convex quadrilateral in they plane which isnot a parallelogram.
Suppose thak’; and E; are each ellipses, witly; inscribed in B andE; circumscribed about
b. ThenE; and E; cannot have the same center.

Proof. Assume first that D isiot atrapezoid. Since the center of an ellipse is affine invariant,
we may assume that the vertices of b &ig)), (1,0), (0, 1), and(s, t) as above, whereandt
satisfy [3.1). By ([2], Theorem 2.3), if/; and )/, are the midpoints of the diagonals of B, then
each point on the open line segmeft, connecting); and M, is the center of some ellipse
inscribed in B. Thus the locus of centersiof is preciselyZ. For b above, the equation afis

y = L(x) = 15240 \wherex lies in the open interval connnectiggands. If E; andEy
have the same center, then the centebof(xo, o) , must lie onZ. HenceL (z,) = yo, which

—(s+t)[( —s )u+t2 t][(s —s)u+t ] - 9 9 .
2[s2(s—1)2u2—2st(s+st+t—Lu+t2(t—1)%](s—1) 0. Thus(s — &%) u+t"—t =

0or(s? — s) u+t>—t = 0, which implies that: = £ 5=L. If u = £=¢, then some simplification
yields, by [3.7) in Lemma 3|1z, = 1s. Similarly, if u = —£=L, thenz, = L. Butls and

% do not lie onZ, and thusE; and E; cannot have the same center. Now suppose that P is a
trapezoid, but not a parallelogram. Then we may assume, again by affine invariance, that the
vertices of b aré0,0), (1,0), (0,1), and(1,¢),t # 1. The equation of is nowz = 3, wherey

lies in the open interval connnectir%gand%t. If £, andE, have the same center, then= %

By (4.4) of Lemmg 4] 250, = 1 = du+ 2t — 2 = du— (t — 1) = ¢ = %1, which
contradlcts the assumption thai> 0,t # 1. Again E; and F; cannot have the same centgr.

implies thatlL (z¢)—yo =
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Itis easy to find examples where the center of an ellipse circumscribed about B may lie inside
b, on the boundary of D, or outside the closure of B. We make the following conjectures.

Conjecture 4.3. The center of the ellipse of minimal eccentricity circumscribed about D lies
inside .

Conjecture 4.4. The center of the ellipse of minimal area circumscribed about P lies inside D.

5. BIELLIPTIC QUADRILATERALS
The following definition is well-known.

Definition 5.1. Let B be a convex quadrilateral in theg plane.
(A) b is called cyclic if there is a circle which passes through the vertices of .
(B) b is called tangential if a circle can be inscribed in D.
(C) b is called bicentric if b is both cyclic and tangential.

We generalize the notion of bicentric quadrilaterals as follows/In ([2], Theorem 4.4) the
author proved that there is a unique ellipgg, of minimal eccentricity inscribed in a convex
guadrilateral, B. Using Proposition 1 from this paper, welgtbe the unique ellipse of minimal
eccentricity circumscribed about D.

Definition 5.2. A convex quadrilateral is calledielliptic if £; and £, have thesame eccen-
tricity .

If B is bielliptic, we say that B is of class, 0 < 7 < 1, if E; andE, each have eccentricity
T.
It is natural to ask the following:
Question: Does there exist a bielliptic quadrilateral of clas®r somer, 7 > 0 ?
We answer this in the affirmative with the following results.

Theorem 5.1. There exists a convex quadrilateral, B, which is not a parallelogram and which
is bielliptic of classr for somer > 0. That is, there exists a bielliptic convex quadrilateral
which is not a parallelogram and which is not bicentric.

Proof. Consider the convex quadrilateral, B, with verti¢eso), (1,0), (0,1), and(s,t). We

shall show that for some andt satisfying [(3.1), D is bielliptic of class for somer > 0. It

is easy to show that B is cyclic if and only(i2s — 1)? + (2t — 1)*> = 2. In general, a convex
quadrilateral is tangential if and only if the lengths of opposite sides add up to the same sum. It
follows that b is tangential if and only ¥ = ¢. Consider the family of quadrilaterals.f@iven

by
(5.1) 8=—§T+2,t=r<%+%\/§)+2—2r,0§r§1.

r = 0 givess = 2 andt = 2, which yields a tangential quadrilateral which is not cyclic,
andr = 1 givess = 1 andt = 1 (1++/2), which yields a cyclic quadrilateral which is

not tangential. Since the eccentricity of the inscribed and circumscribed ellipses of minimal
eccentricity,£;(r) and Eo(r), each vary continuously with, B, must be bielliptic for some

r,0 < r < 1. More precisely, leg;(r) andeo(r) denote the eccentricities df; and Ey,
respectively. Them;(0) = 0 andep(0) > 0 since£;(0) is a circle andE(0) is not a circle.
Similarly, e;(1) > 0 andep(1) = 0 sinceE;(1) is not a circle andip (1) is a circle. Since;(r)
andep(r) are each continuous functions afby the Intermediate Value Theoremry(ry) =

co(ro) for some0 < ry < 1. Now if s andt satisfy [5.1), thems = t «— —3r 42 =

—%r + %r\/§+ 2 < r =0. Sofor0 < r < 1, B, cannot be tangential. One can also
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easily show that o0 < r < 1, B, cannot be cyclic, but we don’t need that here. It follows that
er(ro) = €o(ro) = 7 > 0, which means that R is bielliptic of classr. 1

Theorem 5.2. There exists a bielliptic trapezoid which is not a parallelogram, and which is of
classr for somer > 0.

Proof. Consider the trapezoid, B, with verticé$ 0), (1,0), (0,1), and(1,t),t # 1. We shall
show that for some # 1, D is bielliptic of classt > 0. By Lemma[4.1{(4]2) and (4.3),
2 [(t-1)2 44 [u+1—\/(t—1)2+(u—1)2_

- [(t-1)%—44] [u+1+\/(t71)2+(u71)2

(=u

. Hence the square of the eccentricity of an ellipse circum-

N

a

24/ (t—1)2+(u—1)2 1 9
I = (z(t—1 _
u+1+\/(t—1)2+(u—1)27u €l = (5( )", 00)

—2(8+t2—2t—2u)
(u+1+\/t2—2t+2+u2—2u)2\/(t—1)2+(u—1)2
u = 3 (t* — 2t + 3). We shall show that this value afgives the minimal eccentricity. First,

scribed about D is given by(u) = 1 — & =

Differentiating with respect ta yieldse'(u) = =0 <<=

1o _ /@y’ aenEmEs ey
¢ <2 (t =2t + 3)) T 2outst/(2—2u45)(t—1)2 P 2A5HE-1VIR-2t+5 T V20454t <
% — 1. Also, lim €(u) = 1 and lim e(u) = 1. Thus the square of the mini-

u—(t—1)2/a+
mal eccentricity of an ellipse circumscribed about D is given by

20t —1]
V=2t + 54|t — 1]
In [2] the author derived formulas for the eccentricity of the unique ellipse of minimal eccen-
tricity inscribed in a convex quadrilateral, . Those formulas apply whenmis trapezoid.
The methods used inl[2] can easily be adapted to the case when D is a trapezoid. The ellipse of
minimal eccentricity inscribed in a trapezoid is also unique, and one can derive the following

formulas. Let/; denote the open interval Wi@qand%t as endpoints. For fixed we define the
following functions ofk, k € I,.

(52) €0 =

(2k — 1) (2k — t)
16(t—1)° k4 +8 (12 4+ 6t + 1) k2 =32t (t+ 1) k+ 1762 — 2t + 1

2

(5.3) e(k) =
1+ \/1 — 16t (1 —t)* E(k)

Y

and

c(k) = 16k> — 12(t + 1)k* + 4(2t — D)k 4+t + 1.
Thenc(k) has a unique rooty, in I;, ande (kq) equals the square of the minimal eccentricity of
an ellipse inscribed in B. BY (5.2) and (b.3), we want to show that there is a vatug dfand

_ 2/t—1] 1
k € I, such thate(k) = 0 and Y ey Ee TR Y ey This is equivalent, after

some algebraic simplification, ta (t — 1)* E(k) + 1 = 0. Some more algebraic simplification
yields the equation

(5.4) 16 (t — 1)* k* + (16t° — 64¢t* + 96t° — 56¢> + 64 + 8) k*
—8t(1+1t) (t* —4t+5) (£ + 1) k+
4t° — 16t° + 24¢* — 16t° + 214> — 2t + 1 = 0.

Thus we want a solution to the simultaneous equatipng (5.4)@nd= 0, with ¢ # 1
andk € I,. Maple gives the following solutionst = 1,k = 3,t = i,k = +3i, and
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t = 2p5—3p3+1-2p,

_1 i
SRty , k = 5p, Wherep, is a root of

p(z) = 320 — 28721 4 100627 — 14872° 4 16027+
176225 — 8842 — 8222* + 8023 + 33322 + 150z + 21.

t = 1ort = i do not satisfy real,t # 1. Sincep(1) = 64 > 0 andp(1.5) = —23.07715 < 0,p
must have a root;,, betweenl and2. Numericallyz, ~ 1.2323. It appears that the real roots
of p are approximately-0.8296,

1.2323,1.7787, though we don't need that here. Now = 1.2323 = ¢ = 2”%;5’@% ~

1.6581. Thenk = %pg = 0.6161 € I,. The corresponding common value of the eccentricity is
approximatelyd.6901.

Remark 5.1. It is interesting to note here that the bielliptic quadrilateral in Thedrerh 5.1 is
not a trapezoid. The family of quadrilaterals Biven in the proof of Theorern §.1 yields a

trapezoid if and only ifs = 1or¢t = 1. Nows =1 < —3r4+2=1 < r =212
andt =1 <= r(}+3V2)+2-2r=1 < r = ﬁi > 1. Thus B is a trapezoid

<= r=2 Nowr =2=t=1+1v2 By (5.9)in the proof of Theorefn §.2, the square of
the minimal eccentricity of an ellipse circumscribed abouit;Bs ﬁ ~ 0.373. Also, I; ~

(0.5,0.736) andc(k) = 16k* + (—24 — 4v2) k* + (8v2+4) k + 2+ 1v/2 = 0 has the root
k =~ 0.5918 in I,. That yieldsE(k) ~ —1.4295. By (5.3) in the proof of Theorein §.2, the
square of the minimal eccentricity of an ellipse inscribed insBs e(k) ~ 0.5113. Thus the
bielliptic convex quadrilateral from Theorgm b.1 is not a trapezoid.

Theoremg 5]1 and 5.2 show the existence of a bielliptic quadrilateral of clémssome
0 < 7 < 1. We cannot yet answer the following:

Question: Does there exist a bielliptic quadrilateral of clasr eachr,0 < 7 < 17?

Question: If D is a bielliptic quadrilateral, is there a nice relationship between the ellipse
of minimal eccentricity inscribed in B and the ellipse of minimal eccentricity passing thru the
vertices of B ? This would generalize the known relationship between the inscribed and circum-
scribed circles of bicentric quadrilaterals.

Remark 5.2. In a future paper we prove that a square is the only bielliptic parallelogram.
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