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ABSTRACT. First, we fill in key gaps in Steiner’s nice characterization of the most nearly cir-
cular ellipse which passes through the vertices of a convex quadrilateral, Ð. Steiner proved that
there is only one pair of conjugate directions,M1 andM2, that belong to all ellipses of circum-
scription. Then he proves thatif there is an ellipse,E, whoseequalconjugate diameters possess
the directional constantsM1 andM2, thenE must be an ellipse of circumscription which has
minimal eccentricity. However, Steiner does not show the existence or uniqueness of such an
ellipse. We prove that there is a unique ellipse of minimal eccentricity which passes through
the vertices of Ð. We also show that there exists an ellipse which passes through the vertices of
Ð and whoseequalconjugate diameters possess the directional constantsM1 andM2. We also
show that there exists a unique ellipse of minimal area which passes through the vertices of Ð.
Finally, we call a convex quadrilateral, Ð, bielliptic if the unique inscribed and circumscribed
ellipses of minimal eccentricity have the same eccentricity. This generalizes the notion of bicen-
tric quadrilaterals. In particular, we show the existence of a bielliptic convex quadrilateral which
is not bicentric.
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2 ALAN HORWITZ

1. I NTRODUCTION

Let Ð be a convex quadrilateral in thexy plane. An ellipse which passes through the vertices
of Ð is called a circumscribed ellipse or ellipse of circumscription. In the book [1], Dörrie
presents Steiner’s nice characterization of the ellipse of circumscription which has minimal
eccentricity, which he calls the most nearly circular ellipse. A pair ofconjugate diameters
are two diameters of an ellipse such that each bisects all chords drawn parallel to the other.
Every non circular ellipse has a unique pair ofequal conjugate diameters. Letθ1 andθ2 be
the angles which a pair of conjugate diameters make with the positivex axis. Thentan θ1 and
tan θ2 are called a pair ofconjugate directions. First, Steiner proves that there is only one
pair of conjugate directions,M1 andM2, that belong to all ellipses of circumscription. Then
he proves in essence thatif there is an ellipse,E, whoseequal conjugate diameters possess
the directional constantsM1 andM2, thenE must be an ellipse of circumscription which has
minimal eccentricity. There are several gaps and missing pieces in Steiner’s result. Steiner does
not show that thereexistsan ellipse of circumscription,E, whose equal conjugate diameters
possess the directional constantsM1 andM2, or that such an ellipse isunique. He also doesnot
prove in general theuniquenessof an ellipse of circumscription which has minimal eccentricity.
That leaves open the possibility that there exists a circumscribed ellipse of minimal eccentricity
that mightnot haveequal conjugate diameters which possess the directional constantsM1

andM2. Steiner’s proof does show that if there exists an ellipse of circumscription,E, whose
equal conjugate diameters possess the directional constantsM1 andM2, then any other ellipse
of circumscription of minimal eccentricity must also have equal conjugate diameters which
possess the directional constantsM1 andM2.

In Propositions 2.2 and 2.3 we fill in these gaps in Steiner’s proof. We prove (Proposition
2.2), without using the directional constantsM1 andM2, that there is a unique ellipse,EO, of
minimal eccentricity which passes through the vertices of Ð. Then we show(Proposition 2.3)
that there exists an ellipse which passes through the vertices of Ð and whoseequalconjugate
diameters possess the directional constantsM1 andM2. In addition, our methods enable us to
prove (Theorem 3.2) that there is a unique ellipse ofminimal area which passes through the
vertices of Ð. Our proof applies to the case when Ð is not a trapezoid, though the results can
be proven in that case by using a limiting argument or by directly deriving the corresponding
formulas as done for the non–trapezoid case.

In [2] the author proved numerous results about ellipsesinscribed in convex quadrilaterals,
where we filled in similar gaps in a classical solution to Newton’s problem, which was to de-
termine the locus of centers of ellipses inscribed in Ð. In addition, in [2] the author proved that
there exists a unique ellipse of minimal eccentricity,EI , inscribed in Ð. This leads to the last
section of this paper, where we discuss a special class of convex quadrilaterals which we call
bielliptic and which generalize the bicentric quadrilaterals. A convex quadrilateral, Ð, is called
bicentric if there exists a circle inscribed in Ð and a circle circumscribed about Ð. Ð is called
bielliptic if EI andEO have thesameeccentricity. We prove (Theorem 5.1), that there exists a
bielliptic convex quadrilateral which is not bicentric. We also prove (Theorem 5.2), that there
exists a bielliptic trapezoid which is not bicentric.

Finally we prove the perhaps not so obvious result (Theorem 4.2), that if Ð is not a parallel-
ogram, andE1 andE2 are each ellipses, withE1 inscribed in Ð andE2 circumscribed about Ð,
thenE1 andE2 cannot have the same center.

In a forthcoming paper, we shall focus on ellipses inscribed in, and circumscribed about, par-
allelograms. In particular, there is a nice characterization of the ellipse of minimal eccentricity
inscribed in a parallelogram.
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2. M INIMAL ECCENTRICITY

We state the following lemma without proof(see [6]).

Lemma 2.1. : The equationAx2+By2+2Cxy+Dx+Ey+F = 0, withA, B > 0, is the equa-
tion of an ellipse,E0, if and only ifAB−C2 > 0 andAE2+BD2+4FC2−2CDE−4ABF >
0. Leta andb denote the lengths of the semi–major and semi–minor axes, respectively, ofE0.
Letφ denote the acute rotation angle of the axes ofE0 going counterclockwise from the positive
x axis and let(x0, y0) denote the center ofE0. Then

(2.1) a2 =
AE2 + BD2 + 4FC2 − 2CDE − 4ABF

2(AB − C2)
(
A + B −

√
(B − A)2 + 4C2

) ,

(2.2) b2 =
AE2 + BD2 + 4FC2 − 2CDE − 4ABF

2(AB − C2)
(
A + B +

√
(B − A)2 + 4C2

) ,

(2.3) φ =
1

2
cot−1

(
A−B

2C

)
, C 6= 0 andφ = 0 if C = 0,

and

(2.4) x0 = −1

2

BD − CE

AB − C2
, y0 =

1

2

CD − AE

AB − C2
.

Throughout this section, we let Ð be a given convex quadrilateral and we assume throughout
that Ð is not a trapezoid. We use the notation and terminology of Steiner in [1]. LetOPRQ
denote the vertices of Ð, in counterclockwise order. Use the oblique coordinate system with−→
OP as thex axis and

−→
OQ as they axis, with those sides given byy = 0 andx = 0. By using an

isometry of the plane, we can assume thatO = (0, 0), P lies on the positivex axis, and thatR
andQ are in the first quadrant. LetH =

←→
QR∩

←→
OP,K =

←→
PR∩

←→
OQ, p =

∣∣OP
∣∣ , q =

∣∣OQ
∣∣ , h =∣∣OH

∣∣ , andk =
∣∣OK

∣∣. The sides
←→
PR and

←→
QR are given byz = 0 andw = 0, respectively,

wherez = kx + py − kp andw = qx + hy − hq. As in the diagram shown in [1], we assume
thatR is to the right of, and below,Q, and the slope of

←→
PR is less than the slope of

←→
OQ. Other

shapes for a convex quadrilateral are possible, of course, but we do not consider those cases in
the proofs below, the details being similar. It follows that

(2.5) 0 < p < h, 0 < q < k.

Any ellipse passing through the vertices of Ð has equationλxz + µyw = 0, whereλ andµ
arenonzeroreal numbers. Lettingv = λ

µ
, the equation becomesvxz + yw = 0, or

(2.6) kvx2 + hy2 + (vp + q)xy − vkpx− hqy = 0.

Let A = kv, B = h, C = 1
2
(vp + q), D = −vkp, E = −hq, andF = 0. ThenAB − C2 =

kvh− 1
4
(vp + q)2 =

1
4
[−p2v2 + (4kh− 2pq) v − q2]. Let

g(v) = 4khv − (vp + q)2 = 4
(
AB − C2

)
.
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4 ALAN HORWITZ

Note thatg(v) = 0 ⇐⇒ v = 1
p2

(
2kh− pq ± 2

√
kh (kh− pq)

)
. Henceg(v) > 0, and

thusAB − C2 > 0, if and only if v ∈ I, where

I =

(
1

p2

(
2kh− pq − 2

√
kh (kh− pq)

)
,

1

p2

(
2kh− pq + 2

√
kh (kh− pq)

))
.

Also, (2kh− pq)2 − 4 (kh (kh− pq)) = q2p2 > 0. Sincekh > pq by (2.5),2kh − pq >

2
√

kh (kh− pq). HenceI ⊂ (0,∞) , which implies thatv > 0 wheneverv ∈ I. Now
AE2 +BD2 +4FC2−2CDE−4ABF = khv [vp2(k − q) + q2(h− p)] > 0 if v ∈ I by (2.5).
By Lemma 2.1, (2.6) is the equation of a nontrivial ellipse if and only ifv ∈ I. Our first main
result is the following.

Proposition 2.2. : There is a unique ellipse,EO, of minimal eccentricity which passes through
the vertices of Ð.

Proof. By Lemma 2.1,

(2.7) a2 =
2khv [vp2(k − q) + q2(h− p)](

4khv − (vp + q)2) (
kv + h−

√
(kv − h)2 + (vp + q)2

)
and

(2.8) b2 =
2khv [vp2(k − q) + q2(h− p)](

4khv − (vp + q)2) (
kv + h +

√
(kv − h)2 + (vp + q)2

) ,

which implies that
b2

a2
=

kv + h−
√

(kv − h)2 + (vp + q)2

kv + h +
√

(kv − h)2 + (vp + q)2
. Some simplification yields

(2.9)
b2

a2
= f(v) =

g(v)(
kv + h +

√
(kv − h)2 + (vp + q)2

)2 .

We shall now minimize the eccentricity by maximizing
b2

a2
. Differentiatingf with respect tov

yieldsf ′(v) = −2(2hk−pq)(vk−h)+p2hv−q2k√
(kv−h)2+(vp+q)2

�
kv+h+

√
(kv−h)2+(vp+q)2

�2 . Thus

f ′(v) = 0 ⇐⇒ (2hk − pq) (vk − h) + p2hv − q2k = 0 ⇐⇒ v = v0, where

(2.10) v0 =
q2k + 2kh2 − hpq

2k2h− kpq + hp2
.

Some more simplification yields(kv0 − h)2 + (v0p + q)2 = (ph+qk)2W

(2k2h−kpq+hp2)2
, where

(2.11) W = 4k2h2 + (hp− qk)2 .

It follows that

(2.12) g (v0) =
4kh (kh− pq) W

(2k2h− kpq + hp2)2 .
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Thus g (v0) > 0 by by (2.5) and (2.12), which implies thatv0 ∈ I. Note thatkv + h +√
(kv − h)2 + (vp + q)2 > 0 for all v > 0, andg(v) > 0, v ∈ I. Thusf is differentiable onI

and has a unique real critical point inI. Sinceg vanishes at the endpoints ofI, f also vanishes
at the endpoints ofI by (2.9). Sincef(v) > 0 on I, f(v0) must give the unique maximum off
on I.

Note that the quadrilateral Ð above, with verticesOPRQ, is not cyclic since b2

a2 = 1 ⇐⇒
(kv − h)2 + (vp + q)2 = 0, which cannot hold ifv ∈ I. Thus any ellipse of circumscription is
not a circle. In [1], Steiner shows that the unique pair of conjugate directions that belong to all
ellipses which pass through the vertices of Ð is given by

(2.13) M1 = −k

p
+

r

hp
, M2 = −k

p
− r

hp
, wherer =

√
hk

√
hk − pq.

Proposition 2.3.There exists an ellipse which passes through the vertices of Ð and whose equal
conjugate diameters possess the directional constantsM1 andM2.

Proof. Let EO denote the the unique ellipse from Proposition 2.2 of minimal eccentricity which
passes through the vertices of Ð. As noted above, the quadrilateral Ð, with verticesOPRQ,
is not cyclic, which implies thatEO is not a circle. LetL and L′ denoteequal conjugate
diameters ofEO with directional constantsM andM ′, respectively. Letφ denote the acute
angle of counterclockwise rotation of the axes ofEO and leta andb denote the lengths of the
semi–major and semi–minor axes, respectively, ofEO. It is known(see, for example, [5]) that
L andL′ make equal acute angles, on opposite sides, with the semi–major axis ofEO. Let θ
denote the acute angle going counterclockwise from the major axis ofEO to one of the equal

conjugate diameters, which implies thattan θ =
b

a
. By Lemma 2.1, withA = kv, B = h,

C =
1

2
(vp + q), D = −kpv, E = −hq, andF = 0, cot(2φ) =

kv − h

vp + q
. Note thatC 6= 0,

which implies thatφ 6= 0. As one would expect from the results in [1],if there is some ellipse
whose equal conjugate diameters possess the directional constantsM1 andM2, then that ellipse
minimizes the eccentricity among all ellipses of circumscription. By the proof of Proposition
2.2, the pointv0 given in (2.10) yields the ellipse which minimizes the eccentricity. Thus, to
prove Proposition 2.3, we letv = v0. Thencot(2φ) = kq−hp

2kh
⇒ cot2 φ−1

2 cot φ
= kq−hp

2kh
⇒ cot φ =

1
2kh

(
kq − hp±

√
4k2h2 + (kq − hp)2

)
= kq−hp±

√
W

2kh
. We first need to determine whether to

choose the positive or the negative root. Ifkq−hp ≥ 0, thencot(2φ) = kq−hp
2kh
≥ 0⇒ 0 < 2φ ≤

π
2
⇒ 0 < φ ≤ π

4
⇒ 1 ≤ cot φ < ∞. Let x = 2kh, y = kq − hp, 0 < x < ∞, 0 ≤ y < ∞.

If cot φ = kq−hp−
√

W
2kh

, thencot φ =
y−
√

x2+y2

x
= y

x
−

√
1 +

(
y
x

)2
= u −

√
1 + u2, where

u = y
x
, 0 ≤ u < ∞. Let z(u) = u −

√
1 + u2. Thenz′(u) =

√
1+u2−u√

1+u2 > 0, z(0) = −1, and
lim

u→∞
z(u) = 0. Thus−1 ≤ z(u) < 0 ⇒ −1 ≤ cot φ < 0, which contradicts1 ≤ cot φ < ∞.

If kq − hp < 0, thencot(2φ) = kq−hp
2kh

< 0 ⇒ π
2

< 2φ < π ⇒ π
4

< φ < π
2
⇒ 0 < cot φ < 1.

Again, if cot φ = kq−hp−
√

W
2kh

, then cot φ = z(u),−∞ < u < 0. Sincez(0) = −1 and
lim

u→−∞
z(u) = −∞, −∞ < z(u) < −1⇒ cot φ < −1, which contradicts0 < cot φ < 1. That

proves

(2.14) cot φ =
kq − hp +

√
W

2kh
.
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6 ALAN HORWITZ

To finish the proof of Proposition 2.3, note thatM1 = −kh+
√

kh
√

kh−pq
hp

=
√

kh−
√

kh+
√

kh−pq
hp

< 0

andM2 < 0. Thus the only way thatL andL′ can form angles ofθ and−θ, respectively, with
the semi–major axis ofEO is if the major axis ofEO has a negative slope. In that case theminor
axis ofEO is rotated byφ counterclockwise from the positivex axis. It follows that the two
directional constants,M andM ′, are given bytan

(
φ + θ − π

2

)
andtan

(
φ− θ − π

2

)
. We shall

prove thattan
(
φ + θ − π

2

)
= M1. We find it convenient to introduce the following variables:

s = hp + kq, t = hp− kq.

Note that
2k2h− kpq + hp2 = k(kh− pq) + k2h + hp2 > 0

by (2.5). Hence

(kv0 + h) +

√
(kv0 − h)2 + (v0p + q)2 = kv0 + h + (ph+qk)

√
W

2k2h−kpq+hp2 ,

which implies that

(kv0+h)(2k2h−kpq+hp2)+(ph+qk)
√

W

2k2h−kpq+hp2 = W+(ph+qk)
√

W
2k2h−kpq+hp2 =

√
W

√
W+(ph+qk)

2k2h−kpq+hp2 .

By (2.9) and (2.12),

f(v0) = 4kh(kh−pq)W

(2k2h−kpq+hp2)2
(2k2h−kpq+hp2)

2

W(
√

W+(ph+qk))
2 = 4kh(kh−pq)

(
√

W+(ph+qk))
2 = 4r

(
√

W+s)
2 .

By (2.9) again,

(2.15)
b

a
=

2r√
W + s

.

By (2.14) and (2.15),tan
(
φ + θ − π

2

)
= tan θ tan φ−1

tan θ+tan φ
=

b
a

2kh
kq−hp+

√
W
−1

b
a

+
2kh

kq−hp+
√

W

=
2r√
W+s

2kh√
W−t

−1

2r√
W+s

+
2kh√
W−t

=

4khr−(
√

W+s)(
√

W−t)
2r(

√
W−t)+2kh(

√
W+s)

. Hence

tan
(
φ + θ − π

2

)
−M1 =

1

2

4khr−(
√

W+s)(
√

W−t)
r(
√

W−t)+kh(
√

W+s)
− r−hk

hp
= 0 ⇐⇒

4kh2rp− hp
(√

W + s
) (√

W − t
)
− 2r(r − hk)

(√
W − t

)
−2(r − hk)kh

(√
W + s

)
= 0 ⇐⇒

4kh2rp + hpst + 2r(r − hk)t− 2s(r − hk)kh+

(−hp (s− t)− 2r(r − hk)− 2(r − hk)kh)
√

W − hpW = 0.

Now 4kh2rp+hpst+2r(r−hk)t−2s(r−hk)kh = hpW and−hp (s− t)−2r(r−hk)−2(r−
hk)kh = 0. Hencetan

(
φ + θ − π

2

)
= M1. Similarly, one can show thattan

(
φ− θ − π

2

)
=

M2.

By Propositions 2.2 and 2.3 and the main result in ([1]), we have

Theorem 2.4. There exists a unique ellipse,EO, which passes through the vertices of Ð and
whose equal conjugate diameters possess the directional constantsM1 andM2. Furthermore,
EO is the unique ellipse of minimal eccentricity among all ellipses which pass through the
vertices of Ð.
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3. M INIMAL AREA

We now prove a result similar to Proposition 2.2, but which instead minimizes thearea
among all ellipses which pass through the vertices of Ð. This was not discussed by Steiner in
[1] and there does not appear to be a nice characterization of the minimal area ellipse. Again
we shall prove the case when Ð is not a trapezoid. Since ratios of areas of ellipses and four–
sided convex polygons are preserved under one–one affine transformations, we may assume
throughout this section, unless stated otherwise, that the vertices of Ð are(0, 0), (1, 0), (0, 1),
and(s, t) for some positive real numberss andt. Furthermore, since Ð is convex and is not a
trapezoid, it follows easily that

(3.1) s + t > 1 ands 6= 1 6= t.

Lemma 3.1. Suppose that the vertices of Ð are(0, 0), (1, 0), (0, 1), and(s, t) for some positive
real numberss andt satisfying (3.1). Let

ms,t =
t

s(s− 1)2

(
s + t− 1 + st− 2

√
st (s + t− 1)

)
Ms,t =

t

s(s− 1)2

(
s + t− 1 + st + 2

√
st (s + t− 1)

)
.

An ellipse,E0, passes through the vertices of Ð if and only ifE0 has the form

(3.2) stux2 + sty2 − [s(s− 1)u + t(t− 1)] xy − stux− sty = 0, u ∈ Is,t = (ms,t, Ms,t) .

If a andb denote the lengths of the semi–major and semi–minor axes, respectively, ofE0, then

a2 = 2s2t2(s+t−1)u(su+t)

[−s2(s−1)2u2+2st(s+st+t−1)u−t2(t−1)2]
×(3.3)

1

st(u+1)−
√

t2(s2+(t−1)2)−2st(s+t−1)u+s2(t2+(s−1)2)u2
(3.4)

and

b2 = 2s2t2(s+t−1)u(su+t)

[−s2(s−1)2u2+2st(s+st+t−1)u−t2(t−1)2]
×(3.5)

1

st(u+1)+
√

t2(s2+(t−1)2)−2st(s+t−1)u+s2(t2+(s−1)2)u2
.(3.6)

Finally, the center ofE0, (x0, y0) , is given by

(3.7) x0 =
st [(2st + s2 − s) u + (t2 − t)]

2st (st + s + t− 1) u− s2 (s− 1)2 u2 − t2 (t− 1)2

and

(3.8) y0 =
st [(2st + t2 − t) u + (s2 − s)u2]

2st (st + s + t− 1) u− s2 (s− 1)2 u2 − t2 (t− 1)2 .

Proof. Substituting the vertices of Ð into the general equation of a conic,Ax2 +By2 +2Cxy +
Dx + Ey + F = 0, A,B > 0, yields the equationsF = 0, A + D = 0, B + E = 0, and
As2 + Bt2 + 2Cst − As − Bt = 0, which implies thatAs(s − 1) + Bt(t − 1) + 2Cst = 0

or C = −As(s−1)+Bt(t−1)
2st

. Multiplying thru byst and dividing thru byB yields the equation in

(3.2), withu =
A

B
. Conversely, any conic satisfying (3.2) must pass through the vertices of Ð.

By Lemma 2.1, the curve defined by (3.2) is an ellipse if and only ifs2t2u (s + t− 1) (su + t) >
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8 ALAN HORWITZ

0 and−s2 (s− 1)2 u2 + 2st (st + s + t− 1) u − t2 (t− 1)2 > 0. The first inequality clearly
holds sinces + t > 1 andu > 0. We write the second condition asα(u) < 0, where

α(u) = s2(s− 1)2u2 − 2st (st + s + t− 1) u + t2(t− 1)2.

Now it is easy to show thatα(u) < 0 ⇐⇒ ms,t < u < Ms,t. That proves (3.2). IfE0 satisfies
(3.2), then (3.3) and (3.5) follow immediately from Lemma 2.1–(2.7) and (2.8), and (3.7) and
(3.8) follow immediately from Lemma 2.1–2.4.

Theorem 3.2. There exists a unique ellipse,EA, of minimal area which passes through the
vertices of Ð.

Proof. By Lemma 3.1–(3.3) and (3.5),

a2b2 =
(

2s2t2(s+t−1)u(su+t)

−s2(s−1)2u2+2st(s+st+t−1)u−t2(t−1)2

)2

×

1
[st(u+1)]2−[t2(s2+(t−1)2)−2st(s+t−1)u+s2(t2+(s−1)2)u2]

= 4u2(su+t)2s2t2[st(s+t−1)]2

[−t2(t−1)2+(4s2t2−2s(s−1)t(t−1))u−s2(s−1)2u2]
3 = β(u),

where

β(u) = −4u2(su + t)2s2t2 (st (s + t− 1))2

(α(u))3 .

Note thatβ is differentiable onIs,t sinceα(u) < 0 there. Also,ms,t > 0 ⇐⇒ s+t−1+st >

2
√

st (s + t− 1) ⇐⇒ (s + t− 1 + st)2 >

4st (s + t− 1)(sinces+t > 1) ⇐⇒ (t− 1)2 (s− 1)2 > 0, which holds sinces, t 6= 1. Thus
ms,t > 0 andMs,t > 0, which implies thatIs,t ⊂ (0,∞). Now lim

u→m+
s,t

α(u) = lim
u→M−

s,t

α(u) = 0,

so thatα(u) approaches0 thru negative numbers asu approaches the endpoints ofIs,t. In
addition, the numerator ofβ(u), for givens andt, satisfies4u2(su+ t)2s2t2 (st (s + t− 1))2 >
δ > 0 for u ∈ Is,t. Thus lim

u→m+
s,t

β(u) = lim
u→M−

s,t

β(u) = ∞, which implies thatβ must attain its

global minimum onIs,t. Differentiating with respect tou yields
β′(u) = 8u (su + t) s2t2 (st (s + t− 1))2 γ(u)

(α(u))4
, where

γ(u) = s3 (s− 1)2 u3 + s2t
(
2s2 − 3s + st + 1 + t

)
u2

−st2
(
2t2 + st− 3t + s + 1

)
u− t3 (t− 1)2 .

Now 2s2 − 3s + st + 1 + t = 2(s − 1)2 + st + s + t − 1 > 0 and2t2 + st − 3t + s + 1 =
2(t− 1)2 + st + s + t− 1 > 0 by (3.1). Henceγ has precisely one sign change, which implies
thatγ has exactly one real root in(0,∞) by Descartes’ Rule of Signs. That in turn implies that
β has aunique global minimum onIs,t, which yields a unique ellipse of minimal area which
passes through the vertices of Ð.

Remark 3.1. In [3] and [4], the authors investigate the problem of constructing and character-
izing an ellipse of minimal area containing a finite set of points. The results and methods in §
3 of this paper are different than in those papers, but it is worth pointing out some of the small
intersection. In particular, for a convex quadrilateral, Ð, the authors in [3] and [4] construct an
algorithm for finding the minimal area ellipse containing Ð and they also prove a uniqueness
result. For the case when this ellipse passes thru all four vertices of Ð, this ellipse is then the
minimal area ellipse discussed in this paper. However, there is a convex quadrilateral, Ð, for
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which the minimal area ellipse containing Ð does not pass thru all four vertices of Ð. In that
case, the minimal area ellipse discussed in this paper is not the same.

4. I NSCRIBED VERSUS CIRCUMSCRIBED

In this section and the next, we allow Ð to be atrapezoid, so we shall need a version of
Lemma 3.1 for trapezoids. The proof of Lemma 4.1 below follows immediately from Lemma
2.1 or from Lemma 3.1 by allowings to approach1. We omit the details here.

Lemma 4.1. Suppose that Ð is atrapezoidwith vertices(0, 0), (1, 0), (0, 1), and(1, t), 0 < t 6=
1. An ellipse,E0, passes through the vertices of Ð if and only ifE0 has the form

(4.1) ux2 + y2 − (t− 1)xy − ux− y = 0, u ∈ It =

(
1

4
(t− 1)2 ,∞

)
.

If a andb denote the lengths of the semi–major and semi–minor axes, respectively, ofE0, then

(4.2) a2 =
−2u (u + t)(

(t− 1)2 − 4u
) (

u + 1−
√

(t− 1)2 + (u− 1)2

)
and

(4.3) b2 =
−2u (u + t)(

(t− 1)2 − 4u
) (

u + 1 +
√

(t− 1)2 + (u− 1)2

) .

Finally, the center ofE0, (x0, y0) , is given by

(4.4) x0 =
2u + t− 1

4u− (t− 1)2
, y0 =

(1 + t) u

4u− (t− 1)2
.

Remark 4.1. Lemma 4.1 actually holds whent = 1 as well, which of course yields the unit
square.

Theorem 4.2. Let Ð be a convex quadrilateral in thexy plane which isnot a parallelogram.
Suppose thatE1 andE2 are each ellipses, withE1 inscribed in Ð andE2 circumscribed about
Ð. ThenE1 andE2 cannot have the same center.

Proof. Assume first that Ð isnot a trapezoid. Since the center of an ellipse is affine invariant,
we may assume that the vertices of Ð are(0, 0), (1, 0), (0, 1), and(s, t) as above, wheres andt
satisfy (3.1). By ([2], Theorem 2.3), ifM1 andM2 are the midpoints of the diagonals of Ð, then
each point on the open line segment,Z, connectingM1 andM2 is the center of some ellipse
inscribed in Ð. Thus the locus of centers ofE1 is preciselyZ. For Ð above, the equation ofZ is
y = L(x) = 1

2
s−t+2x(t−1)

s−1
, wherex lies in the open interval connnecting1

2
and 1

2
s. If E1 andE2

have the same center, then the center ofE2, (x0, y0) , must lie onZ. HenceL (x0) = y0, which

implies thatL (x0)−y0 =
−(s+t)[(s−s2)u+t2−t][(s2−s)u+t2−t]

2[s2(s−1)2u2−2st(s+st+t−1)u+t2(t−1)2](s−1)
= 0. Thus(s− s2) u+t2−t =

0 or (s2 − s) u+t2−t = 0, which implies thatu = ± t2−t
s2−s

. If u = t2−t
s2−s

, then some simplification

yields, by (3.7) in Lemma 3.1,x0 = 1
2
s. Similarly, if u = − t2−t

s2−s
, thenx0 = 1

2
. But 1

2
s and

1
2

do not lie onZ, and thusE1 andE2 cannot have the same center. Now suppose that Ð is a
trapezoid, but not a parallelogram. Then we may assume, again by affine invariance, that the
vertices of Ð are(0, 0), (1, 0), (0, 1), and(1, t), t 6= 1. The equation ofZ is nowx = 1

2
, wherey

lies in the open interval connnecting1
2

and 1
2
t. If E1 andE2 have the same center, thenx0 = 1

2
.

By (4.4) of Lemma 4.1, 2u+t−1
4u−(t−1)2

= 1
2
⇒ 4u + 2t − 2 = 4u − (t − 1)2 ⇒ t = ±1, which

contradicts the assumption thatt > 0, t 6= 1. AgainE1 andE2 cannot have the same center.
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It is easy to find examples where the center of an ellipse circumscribed about Ð may lie inside
Ð, on the boundary of Ð, or outside the closure of Ð. We make the following conjectures.

Conjecture 4.3. The center of the ellipse of minimal eccentricity circumscribed about Ð lies
inside Ð.

Conjecture 4.4. The center of the ellipse of minimal area circumscribed about Ð lies inside Ð.

5. BIELLIPTIC QUADRILATERALS

The following definition is well–known.

Definition 5.1. Let Ð be a convex quadrilateral in thexy plane.
(A) Ð is called cyclic if there is a circle which passes through the vertices of Ð.
(B) Ð is called tangential if a circle can be inscribed in Ð.
(C) Ð is called bicentric if Ð is both cyclic and tangential.

We generalize the notion of bicentric quadrilaterals as follows. In ([2], Theorem 4.4) the
author proved that there is a unique ellipse,EI , of minimal eccentricity inscribed in a convex
quadrilateral, Ð. Using Proposition 1 from this paper, we letEO be the unique ellipse of minimal
eccentricity circumscribed about Ð.

Definition 5.2. A convex quadrilateral is calledbielliptic if EI andEO have thesame eccen-
tricity .

If Ð is bielliptic, we say that Ð is of classτ , 0 ≤ τ < 1, if EI andEO each have eccentricity
τ .

It is natural to ask the following:
Question: Does there exist a bielliptic quadrilateral of classτ for someτ , τ > 0 ?
We answer this in the affirmative with the following results.

Theorem 5.1. There exists a convex quadrilateral, Ð, which is not a parallelogram and which
is bielliptic of classτ for someτ > 0. That is, there exists a bielliptic convex quadrilateral
which is not a parallelogram and which is not bicentric.

Proof. Consider the convex quadrilateral, Ð, with vertices(0, 0), (1, 0), (0, 1), and(s, t). We
shall show that for somes andt satisfying (3.1), Ð is bielliptic of classτ for someτ > 0. It
is easy to show that Ð is cyclic if and only if(2s − 1)2 + (2t − 1)2 = 2. In general, a convex
quadrilateral is tangential if and only if the lengths of opposite sides add up to the same sum. It
follows that Ð is tangential if and only ifs = t. Consider the family of quadrilaterals Ðr given
by

(5.1) s = −3
2
r + 2, t = r

(
1
2

+ 1
2

√
2
)

+ 2− 2r, 0 ≤ r ≤ 1.

r = 0 gives s = 2 and t = 2, which yields a tangential quadrilateral which is not cyclic,
and r = 1 gives s = 1

2
and t = 1

2

(
1 +
√

2
)
, which yields a cyclic quadrilateral which is

not tangential. Since the eccentricity of the inscribed and circumscribed ellipses of minimal
eccentricity,EI(r) andEO(r), each vary continuously withr, Ðr must be bielliptic for some
r, 0 < r < 1. More precisely, letεI(r) and εO(r) denote the eccentricities ofEI andEO,
respectively. ThenεI(0) = 0 andεO(0) > 0 sinceEI(0) is a circle andEO(0) is not a circle.
Similarly, εI(1) > 0 andεO(1) = 0 sinceEI(1) is not a circle andEO(1) is a circle. SinceεI(r)
and εO(r) are each continuous functions ofr, by the Intermediate Value Theorem,εI(r0) =
εO(r0) for some0 < r0 < 1. Now if s and t satisfy (5.1), thens = t ⇐⇒ −3

2
r + 2 =

−3
2
r + 1

2
r
√

2 + 2 ⇐⇒ r = 0. So for0 < r < 1, Ðr cannot be tangential. One can also
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easily show that or0 < r < 1, Ðr cannot be cyclic, but we don’t need that here. It follows that
εI(r0) = εO(r0) = τ > 0, which means that Ðr0 is bielliptic of classτ .

Theorem 5.2. There exists a bielliptic trapezoid which is not a parallelogram, and which is of
classτ for someτ > 0.

Proof. Consider the trapezoid, Ð, with vertices(0, 0), (1, 0), (0, 1), and(1, t), t 6= 1. We shall
show that for somet 6= 1, Ð is bielliptic of classτ > 0. By Lemma 4.1–(4.2) and (4.3),

b2

a2 =
[(t−1)2−4u]

h
u+1−
√

(t−1)2+(u−1)2
i

[(t−1)2−4u]
h
u+1+
√

(t−1)2+(u−1)2
i . Hence the square of the eccentricity of an ellipse circum-

scribed about Ð is given byε(u) = 1 − b2

a2 =
2
√

(t−1)2+(u−1)2

u+1+
√

(t−1)2+(u−1)2
, u ∈ It =

(
1
4
(t− 1)2 ,∞

)
.

Differentiating with respect tou yieldsε′(u) =
−2(3+t2−2t−2u)

(u+1+
√

t2−2t+2+u2−2u)
2
√

(t−1)2+(u−1)2
= 0 ⇐⇒

u = 1
2
(t2 − 2t + 3). We shall show that this value ofu gives the minimal eccentricity. First,

ε
(

1
2
(t2 − 2t + 3)

)
=

2
√

(t2−2t+5)(t−1)2

t2−2t+5+
√

(t2−2t+5)(t−1)2
= 2|t−1|

√
t2−2t+5

t2−2t+5+|t−1|
√

t2−2t+5
= 2|t−1|√

t2−2t+5+|t−1| <

2|t−1|
|t−1|+|t−1| = 1. Also, lim

u→(t−1)2/4+
ε(u) = 1 and lim

u→∞
ε(u) = 1. Thus the square of the mini-

mal eccentricity of an ellipse circumscribed about Ð is given by

(5.2) εO =
2 |t− 1|√

t2 − 2t + 5 + |t− 1|
.

In [2] the author derived formulas for the eccentricity of the unique ellipse of minimal eccen-
tricity inscribed in a convex quadrilateral, Ð. Those formulas apply when Ð isnot a trapezoid.
The methods used in [2] can easily be adapted to the case when Ð is a trapezoid. The ellipse of
minimal eccentricity inscribed in a trapezoid is also unique, and one can derive the following
formulas. LetIt denote the open interval with1

2
and 1

2
t as endpoints. For fixedt, we define the

following functions ofk, k ∈ It.

E(k) =
(2k − 1) (2k − t)

16 (t− 1)2 k4 + 8 (t2 + 6t + 1) k2 − 32t (t + 1) k + 17t2 − 2t + 1
,

(5.3) ε(k) =
2

1 +
√

1− 16t (1− t)2 E(k)
,

and
c(k) = 16k3 − 12(t + 1)k2 + 4(2t− 1)k + t + 1.

Thenc(k) has a unique root,k0, in It, andε (k0) equals the square of the minimal eccentricity of
an ellipse inscribed in Ð. By (5.2) and (5.3), we want to show that there is a value oft 6= 1 and
k ∈ It such thatc(k) = 0 and 2|t−1|√

(t−1)2+4+|t−1|
= 1

1+
√

1−16t(1−t)2E(k)
. This is equivalent, after

some algebraic simplification, to4t (t− 1)4 E(k) + 1 = 0. Some more algebraic simplification
yields the equation

16 (t− 1)2 k4 +
(
16t5 − 64t4 + 96t3 − 56t2 + 64t + 8

)
k2(5.4)

−8t (1 + t)
(
t2 − 4t + 5

) (
t2 + 1

)
k+

4t6 − 16t5 + 24t4 − 16t3 + 21t2 − 2t + 1 = 0.

Thus we want a solution to the simultaneous equations (5.4) andc(k) = 0, with t 6= 1
and k ∈ It. Maple gives the following solutions:t = 1, k = 1

2
, t = 1

2
i, k = ±1

2
i, and

AJMAA, Vol. 7, No. 1, Art. 8, pp. 1-12, 2010 AJMAA

http://ajmaa.org


12 ALAN HORWITZ

t =
2ρ3

2−3ρ2
2+1−2ρ2

3ρ2
2−4ρ2−1

, k = 1
2
ρ2 whereρ2 is a root of

p(x) = 32x11 − 287x10 + 1006x9 − 1487x8 + 160x7+

1762x6 − 884x5 − 822x4 + 80x3 + 333x2 + 150x + 21.

t = 1 or t = 1
2
i do not satisfyt real,t 6= 1. Sincep(1) = 64 > 0 andp(1.5) = −23.07715 < 0, p

must have a root,x0, between1 and2. Numericallyx0 ≈ 1.2323. It appears that the real roots
of p are approximately−0.8296,

1.2323, 1.7787, though we don’t need that here. Nowρ2 = 1.2323 ⇒ t =
2ρ3

2−3ρ2
2+1−2ρ2

3ρ2
2−4ρ2−1

≈
1.6581. Thenk = 1

2
ρ2 = 0.6161 ∈ It. The corresponding common value of the eccentricity is

approximately0.6901.

Remark 5.1. It is interesting to note here that the bielliptic quadrilateral in Theorem 5.1 is
not a trapezoid. The family of quadrilaterals Ðr given in the proof of Theorem 5.1 yields a
trapezoid if and only ifs = 1 or t = 1. Now s = 1 ⇐⇒ −3

2
r + 2 = 1 ⇐⇒ r = 2

3

andt = 1 ⇐⇒ r
(

1
2

+ 1
2

√
2
)

+ 2 − 2r = 1 ⇐⇒ r = 2
3−
√

2
> 1. Thus Ðr is a trapezoid

⇐⇒ r = 2
3
. Now r = 2

3
⇒ t = 1 + 1

3

√
2. By (5.2) in the proof of Theorem 5.2, the square of

the minimal eccentricity of an ellipse circumscribed about Ð2/3 is 2√
19+1

≈ 0.373. Also, It ≈
(0.5, 0.736) andc(k) = 16k3 +

(
−24− 4

√
2
)
k2 +

(
8
3

√
2 + 4

)
k + 2 + 1

3

√
2 = 0 has the root

k ≈ 0.5918 in It. That yieldsE(k) ≈ −1.4295. By (5.3) in the proof of Theorem 5.2, the
square of the minimal eccentricity of an ellipse inscribed in Ð2/3 is ε(k) ≈ 0.5113. Thus the
bielliptic convex quadrilateral from Theorem 5.1 is not a trapezoid.

Theorems 5.1 and 5.2 show the existence of a bielliptic quadrilateral of classτ for some
0 < τ < 1. We cannot yet answer the following:

Question: Does there exist a bielliptic quadrilateral of classτ for eachτ , 0 < τ < 1 ?
Question: If Ð is a bielliptic quadrilateral, is there a nice relationship between the ellipse

of minimal eccentricity inscribed in Ð and the ellipse of minimal eccentricity passing thru the
vertices of Ð ? This would generalize the known relationship between the inscribed and circum-
scribed circles of bicentric quadrilaterals.

Remark 5.2. In a future paper we prove that a square is the only bielliptic parallelogram.
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