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ABSTRACT. In this paper, the interaction of the strong shock with the weak discontinuity has
been investigated for the system of partial differential equations describing one dimensional
unsteady plane flow of an inviscid gas with large number of dust particles. The amplitudes of
the reflected and transmitted waves after interaction of the weak discontinuity through a strong
shock are evaluated by exploiting the results of general theory of wave interaction.
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1. INTRODUCTION

The problem of the interaction of an acoustic wave with a shock has been studied by Swan
& Fowles [1] and Van Moorhen & Georgel[2]. The evolution of a weak discontinuity for
a hyperbolic quasi-linear system of equations satisfying the Bernoulli's law has been studied
quite extensively in the literatures (see for instance Varley & Cumberhbatch [3], Jeffrey [4] and
Boillat & Ruggeri [5]). The fact that a shock undergoes an acceleration jump as a consequence
of an interaction with a weak wave![6] has been accounted for in the works of Brun [7] and
Boillat & Ruggeri [§]. Radha, Sharma & Jeffrey [9] have shown that the general theory of wave
interaction problem which originated from the work of Jeffrey [10] leads to the results obtained
by Brun [7] and Boillat & Ruggeri[[8]. The theory has been successfully applied to study the
interaction of a weak discontinuity wave with a bore and to evaluate the amplitudes of reflected
and transmitted waves after interaction in shallow water [11].

We consider a system of partial differential equations describing the one dimensional un-
steady plane flow of an inviscid dusty gas. It is assumed that the dusty gas consists of a perfect
gas and a large number of small particles. The present work is concerned with the cases when
the mass concentration of the particles is comparable with that of the gas. The volume occu-
pied by the particles is negligible because the density of the solid particles is much larger than
that of the gas. The amplitudes of reflected and transmitted waves after interaction of the weak
discontinuity through a strong shock are evaluated by exploiting the results of general theory of
wave interaction [9].

2. BAsSIC EQUATIONS
The governing equations can be written in the matrix form.as [12] & [13]
(2.1) Ui+ AU, = f,

whereU = (p,u,p,o,v,0)", andf = (0, —oD/(mp), —(y — 1)o{(u+v)D + Q},0, D /m,
Q/(mC,,))", and

uw p 0 0 0 O
0 w 1/p 0 0 0
A - O vp w 0 0 O
0 0 0 wooO
00 0 0wv 0
00 0 00w

Here, z is the distancet the time,p , u, p are the density, velocity, and pressure of the gas
ando, v, 6 are the mass concentration, velocity and temperature of the particles, respectively;

v = C,/C, is the specific heat ratio of the perfect gasis the mass of a particle arid,, C, &

C,, are specific heat of gas at constant pressure, specific heat of the gas at constant volume and
the specific heat of the particles, respectively. The equation of state for the thermally perfect
gas is given by

p = pRT,

whereT is the temperature of the gas aRds the gas constant.

The gas and the patrticles interact through the drag fércand the heat transfer rate
experienced by the particles not in equilibrium with the gas/_In [12] the forni3 ahd() are
taken in the following form

1
D= gﬂd2p(u—v)|u—v|CD, Q = nduC,Pr~"(T — 0)Nu,
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whered, the diameter of the particl&e = p|u — v|d/u, the Reynolds number based upahe
and the relative velocity of the particle to the gas, = (0.48 + 28 Re~#), the coefficient of
drag,Nu = (2.0 + 0.6 Pr*/3Re!/?), the Nusselt numbel?r = uC,/k, the prandtl numbey,
the viscosity and;, the thermal conductivity of the gas.
We consider the motion of a shock front,= x(¢), propagating into an inhomogeneous
medium specified by
(2.2) up =0, po = constant p, = py(z), 09 =00(x), vo=v9(z), B9 = bo(z).
Equation|(2.1Ll) can be written in the conservation form
(2.3) Gi(2,t,U) + Fy(2,8,U) = H(a,t,U),
whereU is the solution vector behind the shock ardF’ and H are given by
G = (,07 pu, p(CyT +u?/2), 0,00, 0(Cpl + 112/2))W
F = (pu, pu* + p, pu(C,T + u*/2), 00, 00%, +0v(Cp b + v2/2))tr
H = (0,—0D/m,—c(vD + Q)/m,0,0D/m,o(vD + Q)/m)" .
Let V' be the shock velocity; then the Rankine-Hugoniot jump conditions across the shock
front may be derived fronj (2.3) as

(v + Dpp*(x (1)) V? Dty = 2 po(X(£)V* — vpo

(v = Dpo(x())V? + 2ypo” (v+1)  px@)V

_ 2p(X()V? — (v — )po

o(x(t),t) =oo(x(?),  v(x(t),t) =vo(x(?),  0(x(t),t) = bo(x(?)).
where a subscrigi refers to the medium ahead of the shock.

p(x(t),1) =

9

3. EVOLUTION OF THE WEAK DISCONTINUITY
The matrixA in (2.) has eigenvalues
B.1) AV =(u+a), A =y, A = (4 —a), A4 =y (atriple root)
with the corresponding left and right eigen vectors
LW = (0, pa,1,0 0,0), RW = (1/(2a%),1/(2pa),1/2,0,0,0),

L® = (-a?,0,0,0,0,0), R®*Y =(-a72,0,0,0,0,0)",
(3.2) LB = (0, pa,l,OOO) R®) = (=1/(2a?), —1/(2pa),1/2,0,0,0)",
' L< Y =(0,0,0,0,1,1), R%Y =(0,0,0,1,0,1),
42) = (0,0,0,0,1,1/2), R“? =(0,0,0,1,0,2)",
0,0,0,0,1,1/3), R*Y =(0,0,0,1,0,3),

(
43 = (
wherea = (’yp/p)l/2 is the frozen speed of sound.

The transport equation for the weak discontinuities across'theharacteristics of a hyper-
bolic system of: equations of the typé (4.1) is given by (see Radha, Sharma & Jefirey [9])

Lyt L (U + M) (VAD)A + {(VLOD)A 7=
(3.3) HLE M) (VAD) Uy + M) — (V(LER) ), A; = 0,

where the matrixd possessesg distinct real eigenvalues'”, i = 1,2, 3..., p, assumed to be

p
ordered so thax® < \® < AP~V < XU with multiplicities m; such thatz m; = n,
=1
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together withn linearly independent left (respectively, right) eigenvectbfs’) (respectively,
RURY |k =1,2, ..., m; corresponding to the eigenvalugd. Here,

(3.4) A= (R,
k=1

is the jump inU, across theC'™ discontinuity propagating along the curve determined by
dz/dt = A\ originating from the pointzy, to) in the region behind the shock, the subscript
b refers to the state just behind the shock and ahead oftleharacteristic curvenz,(j) is the
amplitude of theC'") wave,V denotes the gradient operator with respedt to

Substituting the values df, f from equationl)A(l), LM and A, from ), ) and
(3.4) respectively, in the equatidn (B.3) we obtain the following Bernoulli type equation

1
(3.5) da'? + O+ 1)0z(1)2 +JaW =0
dt 4pa ’

where

v+1)
4pa
1 o
202 m
ZE%KV—DD+&H%W—UW+UHRﬁ%7—UQJ
- %%[%D + (v = 1)@y

Once, the values of the parameters behind the shoekp, o, v, 6 and the forms ofD and@
are known, the above equation can be solved to obtain the vatie of

o

a
(pau, + pr) + (2% — % lpx)
p - pa

+ [a,D +{a+ (v —=1)(u+v)}D, + (v — 1)Q,]

4. COLLISION OF THE WEAK DISCONTINUITY WITH THE STRONG SHOCK WAVE

In order to study the amplitudes of the reflected and transmitted weak discontinuities, we
write the conservation equation (2.3) in the regions behind and ahead of the shock (i.e. to the
left and to the right of the discontinuity curvéy /dt = I which propagates with the spe&j

Gi(z,t,U) + Fy(z,t,U) = H(z,t,U),
(41) G*t($7t7 U*) + F*I(watv U*) = H*(.T,t, U*)7

wherelU andU, are the solution vectors behind and ahead of the shockzafhtand H are as
in (2.3).

Let (z,,t,) be the point at which the fasteSt? discontinuity ofl, moving along the
characteristic, (z,t) = 0 and originating from the pointz, to) intersects the discontinuity
line. As in [9], the amplitudes of the incident, reflected and transmitted waves on the disconti-
nuity line are given by the relations

mi m
A (P) = Z a}gl)(tp)Rgl,k)’ AZ(R)(P> _ Z ag) (t,,)Rgi’k),
k=1 pt

m;

(4.2) APy =3 8P () R,

k=1
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where a subscript refers to the values evaluated at the shock. The evolutionary equations to
determine the jump in the shock acceleratilh the coefficients of the amplitudes of reflected

WaveSa,(f) and transmitted W&V@,(j) after interaction are given by the matrix equation

106 - G+ (V6), Y (zak (11-A9) Rgm)

zpqﬂ

(4.3) (VG Z <Zﬂ (H _ )\Sﬁj))sz(j,k)>

7=1 =

= —(VG), Zag) (1‘[ _ )\(1)>2 ROH),

k=1

which is a system of. inhomogeneous algebraic equations.
We have now at = ¢,

24T ) 2T

(4.4) OIS, G I A® = 270 [ @ g TL
(vy+1) (vy+1) (v+1)

and

(45) )\>(i<1) = ('7]90/100)1/27 /\a(k2) - 07 >\>(i<3) - _(prO/po)lma >\>(i<4) = Voc,

wherel? = 2v(y — 1). Since, the pressure ahead of the shock wave (where the variables are
designated by asterisk) is very small when compared with the pressure behind, it follows that the
Lax evolutionary conditions for a physical shock|[14] for an intelgerthe intervall <[ <p

P S Vil | I OIS &
(4.6) AP < APD o ND T < 2D < AW

are satisfied, i.e.
(4.7) AD <A << A® < XD and AP <A@ < AW <20 <1

In effect, this asserts that when the incident wave with velokity att = ¢, encounters the
shock, it gives rise two reflected waves with velocité8 and\® and three transmitted waves
with velocities A along the characteristics issuing from the collision point. The reflection
and transmission coefficientg?, o3, 614) 52 andﬁ and the jump in shock acceleration
(1] = II,+ H at the collision timeg = t, can be determined from the algebraic system of
equatlons

(G — G, ] (VG) R — A\P)2a® + (VG), RO (IT — AP)20®

(4.8) —(V*GL)s Z R — A28 = —(v@), RV (1T — AV)2a®

=1
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In view of relations[(2.2),[(2]4) andl (4.8) the balance equation at thettjrian be written as
the following system of algebraic equations in the unknofifisa(®, o®, (", g, iV

2p0(x (1)) 1] — (v — 1)2&(2) (= 1)2@(3) It N 1)26((1)
(- 1) T2 or? oT? ’
2p0(x (1)) T 2y =1 n (HT 1T +2) @
(- 1) P2y + 1) 2y +1)
(=T + 2)&(1)
B 2I2(y + 1) ’
4py(x(t)) - 2y =17 o, AT =1(1=T—1) g
(v=1) [2(y+1) [2(y+1)
(=T =14+ 1)
(4.9) —_ B0 o),

654) + UOcHﬁgl) + {Cm(e[)c + UOC/2)H2 + CmUOCpo}ﬁgl) = 07
BY 4 06 185 + {Cr(Boe + voe/2)TI% + 2C00000 185 = 0,
D 4 06185 + {C(Boc + v0e/2)TT + 3Cp000p0 185 = 0,
The first three equations of the above algebraic system (4.9) yields on solving
(V-T-1P(=-D2+T+2)T+1)
817 po(x(®)) y(v+ 1)+ (T +2)
a® — (y-T—=1? A(y-T-1) INCY)
Ay =10 y(v+1)+ T +2)
@_(-T-17 T—9(y-1) NS
(y+T —=12~9(y+1)+(TC'+2)
wherea™ can be determined from (3.5). From the last three equatior]s gf (4.9) it is evident
that although the coefﬁcienxﬁ“), ﬁé‘”, ﬁz(f) can have some nonzero values other than the trivial
solution, they do not depend upon the coefficiefit i.e. the incidenC(") wave. Hence, there
are two reflected waves in the characteristics with the velocifeand A\, respectively, and
the initial discontinuity of the incident wave has no effect on transmitted waves propagating
with the velocityA® .
Equations[(4.10) demonstrate that the amplitudes of the reflected waves are proportional to
the incident wave and as would be expected, in the absence of the incident wave(i=e0),
the jump in the shock acceleration vanishes and there are no reflected waves. Moreover, an

increase in the magnitude of the initial discontinuity of the incident wave causes the reflection
coefficients and the jump in shock acceleration to increase in magnitude.

1] =

(4.10)

5. RESULTS AND CONCLUSION

In this paper, the amplitudes of reflected and transmitted waves and the jump in the shock
acceleration after interaction of the weak discontinuity through a strong shock are evaluated for
a gas with large number of dust particles. It has been observed that there are two reflected waves
along the characteristic lines with velociti#®’ and\®) and the transmission is independent of
the incident discontinuity. In the absence of the incident wave the jump in the shock acceleration
vanishes and there are no reflected or transmitted waves. An increase in the magnitude of the
initial discontinuity of the incident wave causes the reflection coefficients and the jump in shock
acceleration to increase in magnitude.
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