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ABSTRACT. In this paper, the interaction of the strong shock with the weak discontinuity has
been investigated for the system of partial differential equations describing one dimensional
unsteady plane flow of an inviscid gas with large number of dust particles. The amplitudes of
the reflected and transmitted waves after interaction of the weak discontinuity through a strong
shock are evaluated by exploiting the results of general theory of wave interaction.
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1. I NTRODUCTION

The problem of the interaction of an acoustic wave with a shock has been studied by Swan
& Fowles [1] and Van Moorhen & George [2]. The evolution of a weak discontinuity for
a hyperbolic quasi-linear system of equations satisfying the Bernoulli’s law has been studied
quite extensively in the literatures (see for instance Varley & Cumberbatch [3], Jeffrey [4] and
Boillat & Ruggeri [5]). The fact that a shock undergoes an acceleration jump as a consequence
of an interaction with a weak wave [6] has been accounted for in the works of Brun [7] and
Boillat & Ruggeri [8]. Radha, Sharma & Jeffrey [9] have shown that the general theory of wave
interaction problem which originated from the work of Jeffrey [10] leads to the results obtained
by Brun [7] and Boillat & Ruggeri [8]. The theory has been successfully applied to study the
interaction of a weak discontinuity wave with a bore and to evaluate the amplitudes of reflected
and transmitted waves after interaction in shallow water [11].

We consider a system of partial differential equations describing the one dimensional un-
steady plane flow of an inviscid dusty gas. It is assumed that the dusty gas consists of a perfect
gas and a large number of small particles. The present work is concerned with the cases when
the mass concentration of the particles is comparable with that of the gas. The volume occu-
pied by the particles is negligible because the density of the solid particles is much larger than
that of the gas. The amplitudes of reflected and transmitted waves after interaction of the weak
discontinuity through a strong shock are evaluated by exploiting the results of general theory of
wave interaction [9].

2. BASIC EQUATIONS

The governing equations can be written in the matrix form as [12] & [13]

Ut + AUx = f,(2.1)

whereU = (ρ, u, p, σ, v, θ)tr, andf = (0,−σD/(mρ),−(γ − 1)σ{(u + v)D + Q}, 0, D/m,
Q/(mCm))tr, and

A =


u ρ 0 0 0 0
0 u 1/ρ 0 0 0
0 γp u 0 0 0
0 0 0 v σ 0
0 0 0 0 v 0
0 0 0 0 0 v

 .

Here,x is the distance,t the time,ρ , u, p are the density, velocity, and pressure of the gas
andσ, v, θ are the mass concentration, velocity and temperature of the particles, respectively;
γ = Cp/Cv is the specific heat ratio of the perfect gas,m is the mass of a particle andCp, Cv &
Cm are specific heat of gas at constant pressure, specific heat of the gas at constant volume and
the specific heat of the particles, respectively. The equation of state for the thermally perfect
gas is given by

p = ρRT,

whereT is the temperature of the gas andR is the gas constant.
The gas and the particles interact through the drag forceD and the heat transfer rateQ

experienced by the particles not in equilibrium with the gas. In [12] the forms ofD andQ are
taken in the following form

D =
1

8
πd2ρ(u− v)|u− v|CD, Q = πdµCpPr−1(T − θ)Nu,
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whered, the diameter of the particle,Re = ρ|u − v|d/µ, the Reynolds number based uponed
and the relative velocity of the particle to the gas,CD = (0.48 + 28Re−0.85), the coefficient of
drag,Nu = (2.0 + 0.6Pr1/3Re1/2), the Nusselt number,Pr = µCp/k, the prandtl number,µ,
the viscosity andk, the thermal conductivity of the gas.

We consider the motion of a shock front,x = χ(t), propagating into an inhomogeneous
medium specified by

u0 = 0, p0 = constant, ρ0 = ρ0(x), σ0 = σ0(x), v0 = v0(x), θ0 = θ0(x).(2.2)

Equation (2.1) can be written in the conservation form

Gt(x, t, U) + Fx(x, t, U) = H(x, t, U),(2.3)

whereU is the solution vector behind the shock andG, F and H are given by

G =
(
ρ, ρu, ρ(CV T + u2/2), σ, σv, σ(Cmθ + v2/2)

)tr
,

F =
(
ρu, ρu2 + p, ρu(CpT + u2/2), σv, σv2, +σv(Cmθ + v2/2)

)tr
,

H = (0,−σD/m,−σ(vD + Q)/m, 0, σD/m, σ(vD + Q)/m)tr .

Let V be the shock velocity; then the Rankine-Hugoniot jump conditions across the shock
front may be derived from (2.3) as

ρ(χ(t), t) =
(γ + 1)ρ0

2(χ(t))V 2

(γ − 1)ρ0(χ(t))V 2 + 2γp0

, u(χ(t), t) =
2

(γ + 1)

ρ0(χ(t))V 2 − γp0

ρ0(χ(t))V
,

p(χ(t), t) =
2ρ0(χ(t))V 2 − (γ − 1)p0

(γ + 1)
,(2.4)

σ(χ(t), t) = σ0(χ(t)), v(χ(t), t) = v0(χ(t)), θ(χ(t), t) = θ0(χ(t)).

where a subscript0 refers to the medium ahead of the shock.

3. EVOLUTION OF THE WEAK DISCONTINUITY

The matrixA in (2.1) has eigenvalues

λ(1) = (u + a), λ(2) = u, λ(3) = (u− a), λ(4) = v (a triple root)(3.1)

with the corresponding left and right eigen vectors

L(1) = (0, ρa, 1, 0, 0, 0), R(1) = (1/(2a2), 1/(2ρa), 1/2, 0, 0, 0)tr,
L(2) = (−a2, 0, 0, 0, 0, 0), R(2,1) = (−a−2, 0, 0, 0, 0, 0)tr,
L(3) = (0,−ρa, 1, 0, 0, 0), R(3) = (−1/(2a2),−1/(2ρa), 1/2, 0, 0, 0)tr,
L(4,1) = (0, 0, 0, 0, 1, 1), R(4,1) = (0, 0, 0, 1, 0, 1)tr,
L(4,2) = (0, 0, 0, 0, 1, 1/2), R(4,2) = (0, 0, 0, 1, 0, 2)tr,
L(4,3) = (0, 0, 0, 0, 1, 1/3), R(4,1) = (0, 0, 0, 1, 0, 3)tr,

(3.2)

wherea = (γp/ρ)1/2 is the frozen speed of sound.
The transport equation for the weak discontinuities across theith characteristics of a hyper-

bolic system ofn equations of the type (2.1) is given by (see Radha, Sharma & Jeffrey [9])

L
(i,k)
b

dΛi

dt
+ L

(i,k)
b (Ubx + Λi)(∇λ(i))bΛi + {(∇L(i,k))bΛi}tr dUb

dt

+(L
(i,k)
b Λi)((∇λ(i))bUbx + λbx

(i))− (∇(L(i,k)f))bΛi = 0,(3.3)

where the matrixA possessesp distinct real eigenvaluesλ(i), i = 1, 2, 3..., p, assumed to be

ordered so thatλ(p) < λ(p) < λ(p−1) < .... < λ(1) with multiplicities mi such that
p∑

i=1

mi = n,
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together withn linearly independent left (respectively, right) eigenvectorsL(i,k) (respectively,
R(i,k)), k = 1, 2, ...,mi corresponding to the eigenvaluesλ(i). Here,

Λi =

mi∑
k=1

α
(i)
k (t)R

(i,k)
b ,(3.4)

is the jump inUx across theC(1) discontinuity propagating along the curve determined by
dx/dt = λ(1) originating from the point(x0, t0) in the region behind the shock, the subscript
b refers to the state just behind the shock and ahead of theith characteristic curve,α(i)

k is the
amplitude of theC(1) wave,∇ denotes the gradient operator with respect toU .

Substituting the values ofU , f from equation (2.1),λ(1), L(1) andΛ1 from (3.1), (3.2) and
(3.4) respectively, in the equation (3.3) we obtain the following Bernoulli type equation

dα(1)

dt
+

(γ + 1)

4ρa
α(1)2 + J∗α(1) = 0,(3.5)

where

J∗ =
(γ + 1)

4ρa
(ρaux + px) +

(
2ux −

aρx

ρ
+

γ

ρa
px

)
+

1

2a2

σ

m
[aρD + {a + (γ − 1)(u + v)}Dρ + (γ − 1)Qρ]

+
1

2ρa

σ

m
[(γ − 1)D + {a + (γ − 1)(u + v)}Du + (γ − 1)Qu]

+
1

2

σ

m
[apD + (γ − 1)Qp].

Once, the values of the parameters behind the shockρ, u, p, σ, v, θ and the forms ofD andQ
are known, the above equation can be solved to obtain the value ofα(1).

4. COLLISION OF THE WEAK DISCONTINUITY WITH THE STRONG SHOCK WAVE

In order to study the amplitudes of the reflected and transmitted weak discontinuities, we
write the conservation equation (2.3) in the regions behind and ahead of the shock (i.e. to the
left and to the right of the discontinuity curve,dx/dt = Π which propagates with the speedΠ)

Gt(x, t, U) + Fx(x, t, U) = H(x, t, U),

G∗t(x, t, U∗) + F∗x(x, t, U∗) = H∗(x, t, U∗),(4.1)

whereU andU∗ are the solution vectors behind and ahead of the shock andG, F and H are as
in (2.3).

Let (xp, tp) be the point at which the fastestC(1) discontinuity of(4.1)1, moving along the
characteristicφ1(x, t) = 0 and originating from the point(x0, t0) intersects the discontinuity
line. As in [9], the amplitudes of the incident, reflected and transmitted waves on the disconti-
nuity line are given by the relations

Λ1(P ) =

m1∑
k=1

α
(1)
k (tp)R

(1,k)
s , Λ

(R)
i (P ) =

mi∑
k=1

α
(i)
k (tp)R

(i,k)
s ,

Λ
∗(T )
i (P ) =

m∗
i∑

k=1

β
(i)
k (tp)R

∗(i,k)
s ,(4.2)
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where a subscripts refers to the values evaluated at the shock. The evolutionary equations to
determine the jump in the shock acceleration[Π̇], the coefficients of the amplitudes of reflected
wavesα(i)

k and transmitted wavesβ(i)
k after interaction are given by the matrix equation

[Π̇](G−G∗)s + (∇G)s

p∑
i=p−q+1

(
mi∑
k=1

α
(i)
k

(
Π− λ(i)

)2

R(i,k)
s

)

− (∇∗G∗)s

q∑
j=1

(
mj∑
k=1

β
(j)
k

(
Π− λ(j)

∗

)2

R∗(j,k)
s

)
(4.3)

= −(∇G)s

mi∑
k=1

α
(1)
k

(
Π− λ(1)

)2

R(1,k)
s ,

which is a system ofn inhomogeneous algebraic equations.
We have now att = tp

λ(1) =
2 + Γ

(γ + 1)
Π, λ(2) =

2

(γ + 1)
Π, λ(3) =

2− Γ

(γ + 1)
Π, λ(4) = v0cΠ,(4.4)

and

λ(1)
∗ = (γp0/ρ0)

1/2, λ(2)
∗ = 0, λ(3)

∗ = −(γp0/ρ0)
1/2, λ(4)

∗ = v0c,(4.5)

whereΓ2 = 2γ(γ − 1). Since, the pressure ahead of the shock wave (where the variables are
designated by asterisk) is very small when compared with the pressure behind, it follows that the
Lax evolutionary conditions for a physical shock [14] for an integerl in the interval1 ≤ l ≤ p

λ(p) < λ(p−1) < ... < λ(l+1) < Π < λ(l) < ... < λ(1)

λ(p)
∗ < λ(p−1)

∗ < ... < λ(l)
∗ < Π < λ(l−1)

∗ < ... < λ(1)
∗ ,(4.6)

are satisfied, i.e.

λ(3) < λ(2) < Π < λ(4) < λ(1), and λ(3)
∗ < λ(2)

∗ < λ(4)
∗ < λ(1)

∗ < Π.(4.7)

In effect, this asserts that when the incident wave with velocityλ(1) at t = tp encounters the
shock, it gives rise two reflected waves with velocitiesλ(2) andλ(3) and three transmitted waves
with velocitiesλ(4) along the characteristics issuing from the collision point. The reflection
and transmission coefficientsα(2), α(3), β

(4)
1 , β

(4)
2 andβ

(4)
3 and the jump in shock acceleration

[Π̇] = Π̇t+p
− Π̇t−p

at the collision timet = tp can be determined from the algebraic system of
equations

(G−G∗)s[Π̇] + (∇G)sR
(2)
s (Π− λ(2)

s )2α(2) + (∇G)sR
(3)
s (Π− λ(3)

s )2α(3)

−(∇∗G∗)s

3∑
i=1

R∗(4,i)
s (Π− λ(4)

∗s )2β
(4)
i = −(∇G)sR

(1)
s (Π− λ(1)

s )2α(1).(4.8)
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In view of relations (2.2), (2.4) and (4.8) the balance equation at the timetp can be written as
the following system of algebraic equations in the unknowns[Π̇], α(2), α(3), β

(4)
1 , β

(4)
2 , β

(4)
3

2ρ0(χ(t))

(γ − 1)
[Π̇]− (γ − 1)2

Γ2
α(2) − (γ + Γ− 1)2

2Γ2
α(3) = −(γ − Γ− 1)2

2Γ2
α(1),

2ρ0(χ(t))

(γ − 1)
[Π̇]− 2(γ − 1)2

Γ2(γ + 1)
α(2) − (γ + Γ− 1)2(Γ + 2)

2Γ2(γ + 1)
α(3)

= −(γ − Γ− 1)2(Γ + 2)

2Γ2(γ + 1)
α(1),

4ρ0(χ(t))

(γ − 1)
[Π̇]− 2γ − 1)2

Γ2(γ + 1)
α(2) +

(γ + Γ− 1)2(γ − Γ− 1)

Γ2(γ + 1)
α(3)

= −(γ − Γ− 1)2(γ + Γ + 1)

Γ2(γ + 1)
α(1),(4.9)

β
(4)
1 + v0cΠβ

(4)
2 + {Cm(θ0c + v0c/2)Π2 + Cmσ0cρ0}β

(4)
3 = 0,

β
(4)
1 + v0cΠβ

(4)
2 + {Cm(θ0c + v0c/2)Π2 + 2Cmσ0cρ0}β

(4)
3 = 0,

β
(4)
1 + v0cΠβ

(4)
2 + {Cm(θ0c + v0c/2)Π2 + 3Cmσ0cρ0}β

(4)
3 = 0,

The first three equations of the above algebraic system (4.9) yields on solving

[Π̇] =
(γ − Γ− 1)2

8Γ2

(γ − 1)

ρ0(χ(t))

2γ + (Γ + 2)(Γ + 1)

γ(γ + 1) + (Γ + 2)
α(1)

α(2) =
(γ − Γ− 1)2

4(γ − 1)2

γ(γ − Γ− 1)

γ(γ + 1) + (Γ + 2)
α(1)(4.10)

α(3) =
(γ − Γ− 1)2

(γ + Γ− 1)2

Γ− γ(γ − 1)

γ(γ + 1) + (Γ + 2)
α(1).

whereα(1) can be determined from (3.5). From the last three equations of (4.9) it is evident
that although the coefficientsβ(4)

1 , β
(4)
2 , β

(4)
3 can have some nonzero values other than the trivial

solution, they do not depend upon the coefficientα(1) i.e. the incidentC(1) wave. Hence, there
are two reflected waves in the characteristics with the velocitiesλ(2) andλ(3), respectively, and
the initial discontinuity of the incident wave has no effect on transmitted waves propagating
with the velocityλ(4) .

Equations (4.10) demonstrate that the amplitudes of the reflected waves are proportional to
the incident wave and as would be expected, in the absence of the incident wave (i.e.α(1) = 0),
the jump in the shock acceleration vanishes and there are no reflected waves. Moreover, an
increase in the magnitude of the initial discontinuity of the incident wave causes the reflection
coefficients and the jump in shock acceleration to increase in magnitude.

5. RESULTS AND CONCLUSION

In this paper, the amplitudes of reflected and transmitted waves and the jump in the shock
acceleration after interaction of the weak discontinuity through a strong shock are evaluated for
a gas with large number of dust particles. It has been observed that there are two reflected waves
along the characteristic lines with velocitiesλ(2) andλ(3) and the transmission is independent of
the incident discontinuity. In the absence of the incident wave the jump in the shock acceleration
vanishes and there are no reflected or transmitted waves. An increase in the magnitude of the
initial discontinuity of the incident wave causes the reflection coefficients and the jump in shock
acceleration to increase in magnitude.
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