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1. I NTRODUCTION

We consider the semilinear elliptic equation

(1.1) ∆u = p(x)f(u), x ∈ Ω ⊆ Rn, n ≥ 3,

whereΩ is open and connected, the nonnegative functionp can be zero on much of the domain,
and f is a Lipschitz continuous function on[0,∞) that satisfiesf(0) = 0, f(s) > 0 for
s > 0. In addition, we assume that there exists a nonnegative, nondecreasing Hölder continuous
functiong and positive constantsM ands0 such that

(1.2) g(s) ≤ f(s) ≤ Mg(s) for all s ≥ s0.

We are interested in the existence of large solutions of (1.1) onΩ; i.e., solutions for which
u(x) →∞ asx → ∂Ω if Ω is bounded, and ifΩ is unbounded, we also require thatu(x) →∞
for |x| → ∞ within Ω.

Unlike almost all previous work (See, for example, [1, 2, 6, 7, 8, 10, 12, 13], and their refer-
ences.), we do not requiref to be nondecreasing. The usual requirement thatf be monotonic
is necessary, in part, because the proofs depend on the maximum principle. However, wheref
is not monotonic, the maximum principle cannot be applied directly to equation (1.1).

The only existence result for non-monotonicf we are aware of is given by Goncalves and
Roncalli [5]. They proved existence under the conditionslim infs→∞ f(s)/sb > 0 and0 <
sups>0 f(s)/sa < ∞, 1 < b ≤ a < ∞. These conditions reduce to the existence of position
constantsc0 andc1 such thatc0s

a ≤ f(s) ≤ c1s
a for s large, and hence is a special case of our

results.
For nondecreasingf , we know that (1.1) has a large solution on a bounded domain if and

only if f satisfies (see [7]) ∫ ∞

1

[∫ s

0

f(t) dt

]−1/2

ds < ∞.(1.3)

We prove here that this remains true for nonmonotonef (Theorem 2.2). For unbounded do-
mains, we prove results analogous to those for increasingf . In particular, we show that ifp
decays rapidly as|x| → ∞, then, as in the bounded domain case, (1.1) has a large solution if
and only if f satisfies (1.3) (see Corollary 3.4). Our proofs, although comparable to those in
[7], require substantial innovations to compensate for the lack of monotonicity.

We note that similar results for systems comparable to (1.1) such as

∆u = p(x)f(v)

∆v = q(x)h(u)

remain an open problem. Indeed, existence results for large solutions of such systems are known
only under the rather restrictive conditions thatΩ = Rn, p andq are spherically symmetric and
bothf andh are nondecreasing (see [3], [11]).

2. EXISTENCE OF SOLUTIONS ON BOUNDED DOMAINS

We first make some preliminary definitions and observations before establishing our exis-
tence theorems. In particular, we define the functionsG andH as follows:

(2.1) G(s) =

{
A min{f(t) : s ≤ t ≤ s0, } , 0 ≤ s ≤ s0

Af(s0)g(s)/g(s0) , s ≥ s0.

(2.2) H(s) =

{
K max{f(t) : 0 ≤ t ≤ s} , 0 ≤ s ≤ s0,
KF0g(s)/g(s0) , s ≥ s0,
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where0 < A ≤ min{1, g(s0)
f(s0)

}, F0 = max{f(t) : 0 ≤ t ≤ s0}, K is a constant chosen so that
K ≥ max{1, Mg(s0)/F0}, andM comes from (1.2). We note without proof thatG andH are
nondecreasingCα

loc([0,∞)) functions which are positive when their argument is positive, and
satisfy

(2.3) G(s) ≤ f(s) ≤ H(s) for s ≥ 0 .

We say that the nonnegative functionp is c-positiveif for any x0 ∈ Ω satisfyingp(x0) = 0,
there exists a domainΩ0 such thatx0 ∈ Ω0, Ω0 ⊂ Ω, andp(x) > 0 for all x ∈ ∂Ω0. Thusp can
be zero on much of the domain.

Lemma 2.1. SupposeΩ is a bounded domain inRn with a C2,γ boundary, andp is a non-
negativeCα(Ω) function that is c-positive onΩ. Supposef is Lipschitz continuous on[0,∞),
f(0) = 0, f(s) > 0 for s > 0 and satisfies (1.2). Then for any nonnegative constantc, the
boundary value problem

(2.4)
∆v = p(x)f(v), x ∈ Ω,
v(x) = c, x ∈ ∂Ω

has a nonnegative classical solutionv onΩ.

Proof. From [4] (See Theorem 14.10) we have that for any nonnegative constantc there exist
nonnegative classical solutionsv1 andv2 to the following boundary value problems

∆v1 = p(x)G(v1), x ∈ Ω,

v1(x) = c, x ∈ ∂Ω,

∆v2 = p(x)H(v2), x ∈ Ω,

v2(x) = c, x ∈ ∂Ω.

We claim thatv1 ≥ v2 on Ω. Indeed, supposev1 < v2 at some point inΩ. Let ε > 0 be small
enough such thatmaxΩ[v2(x) − v1(x) − εh(r)] > 0, whereh(r) = (1 + r2)−1/2, r = |x|.
Then0 < v2(x0) − v1(x0) − εh(r) ≡ maxΩ[v2(x) − v1(x) − εh(r)] and hence atx0 we have
0 ≥ ∆(v2 − v1 − εh(r)) = p(x0)[H(v2(x0)) − G(v1(x0))] − ε∆h(r) ≥ −ε∆h(r) > 0, a
contradiction. The last inequality holds becausen ≥ 3. Thus,v2 ≤ v1 in Ω.

Now, lettingv = v1 andv = v2 we have thatv ≤ v in Ω and

∆v = p(x)G(v) ≤ p(x)f(v), x ∈ Ω,

∆v = p(x)H(v) ≥ p(x)f(v), x ∈ Ω.

Thus,v andv are upper and lower solutions, respectively, of∆v = p(x)f(v) onΩ, and hence the
monotone iteration scheme (see [14]) gives the existence of a classical solution,v, to equation
(2.4) onΩ with v ≤ v ≤ v.

The following is our main result for this section.

Theorem 2.2. SupposeΩ, p andf satisfy the hypothesis of the lemma above. Then equation
(1.1) has a nonnegative large solution inΩ if and only iff satisfies (1.3).

Proof. Supposef satisfies (1.3). Letvk andwk be the nonnegative solutions of (see [7])

∆vk = p(x)G(vk), x ∈ Ω,(2.5)

vk(x) = k, x ∈ ∂Ω,

∆wk = p(x)H(wk), x ∈ Ω,(2.6)

wk(x) = k, x ∈ ∂Ω.
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Then vk and wk are monotonically increasing. We shall construct a monotone sequence of
functions {uk} which satisfies, for eachk,

∆uk = p(x)f(uk), x ∈ Ω,
uk(x) = k, x ∈ ∂Ω.

We start withk = 1. Letting u1 = v1 andu1 = w1 we have that there exists a nonnegative
classical solutionu1 of

∆u1 = p(x)f(u1), x ∈ Ω,

u1(x) = 1, x ∈ ∂Ω,

with w1 = u1 ≤ u1 ≤ u1 = v1. We then consider the following system of equations

∆v2 = p(x)G(v2), x ∈ Ω,

v2(x) = 2, x ∈ ∂Ω,

∆u1 = p(x)f(u1), x ∈ Ω,

u1(x) = 1, x ∈ ∂Ω.

Lettingu2 = v2 andu2 = u1 we have that there exists a nonnegative classical solutionu2 of

∆u2 = p(x)f(u2), x ∈ Ω,

u2(x) = 2, x ∈ ∂Ω,

with w1 ≤ u1 ≤ u2 ≤ u2 = v2. Continuing this line of reasoning we have that there exists a
nonnegative classical solutionuk to

∆uk = p(x)f(uk), x ∈ Ω,

uk(x) = k, x ∈ ∂Ω,

with w1 ≤ uk−1 ≤ uk ≤ vk, k ≥ 2. Clearly the sequence{uk} is monotone. We note that
sincef satisfies (1.3),G does as well. Hence it can be shown (see Theorem 1 of [7]) that the
sequence{vk} converges to a classical solutionv of

∆v = p(x)G(v), x ∈ Ω,

v(x) → ∞, x → ∂Ω.

It then follows thatw1 ≤ uk−1 ≤ uk ≤ v. Hence, the sequence{uk} converges onΩ to some
functionu. A standard regularity argument for elliptic equations (See, e.g., the proof of Lemma
3 in [9].) then shows thatu is a classical solution to (1.1). By construction,u is clearly a large
solution.

Now suppose thatf does not satisfy (1.3); i.e.f satisfies

(2.7)
∫ ∞

1

[∫ s

0

f(t) dt

]−1/2

ds = ∞

and assume, for contradiction, thatu is a nonnegative large solution of (1.1). Letvk be a
nonnegative classical solution of

∆vk = p(x)H(vk), x ∈ Ω,(2.8)

vk(x) = k, x ∈ ∂Ω.

Then the sequence{vk} is nondecreasing andvk ≤ u on Ω. It follows that {vk} converges
to a nonnegative functionv on Ω. Another standard regularity argument will show thatv is a
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classical solution of the system

∆v = p(x)H(v), x ∈ Ω
v(x) →∞, x → ∂Ω.

This problem, however, has no solution because, as a consequence of (2.7),H satisfies∫ ∞

1

[

∫ s

0

H(t)dt]−1/2ds = ∞

(see Theorem 1 of [7]). Hence, equation (1.1) has no nonnegative large solution onΩ. This
completes the proof.

3. EXISTENCE OF SOLUTIONS ON UNBOUNDED DOMAINS

We now consider the case whereΩ is unbounded and begin by lettingΩ = Rn. Consistent
with results for nondecreasingf , we require

(3.1)
∫ ∞

0

rφ(r)dr < ∞,

whereφ(r) = max|x|=r p(x).

Theorem 3.1. Supposep is a nonnegative c-positiveCα
loc(R

n) function which satisfies (3.1),f
is Lipschitz continuous on[0,∞), f(0) = 0, f(s) > 0 for s > 0, andf satisfies (1.2). Then
(1.1) has a nonnegative entire large solution providedf satisfies (1.3)

Proof. Using a proof similar to that of Theorem 2.2, it is a straightforward exercise to prove the
existence of nonnegative solutionsvk andwk to the following boundary value problems

∆vk = p(x)G(vk), |x| < k,(3.2)

vk(x) → ∞ as|x| → k,

∆wk = p(x)H(wk), |x| < k,(3.3)

wk(x) → ∞ as|x| → k,

which satisfywk ≤ vk on |x| ≤ k. It is clear, by the maximum principle, thatvk(x) ≥ vk+1(x)
on |x| ≤ k, for eachk. By definingvk(x) = ∞ for |x| ≥ k, we have that the sequencevk

is monotonely deceasing onRn. Furthermore, we can employ the same method to produce a
nonnegative solutionuk to the boundary value problem

∆uk = p(x)f(uk), |x| < k,(3.4)

uk(x) → ∞ as|x| → k,

with wk ≤ uk ≤ vk. If we can show that the sequence{uk} is uniformly bounded and equicon-
tinuous on bounded subsets, then the Ascoli-Arzela Theorem will allow us to prove that{uk}
has a convergent subsequence onRn which is uniformly convergent on compact sets. To do
this, we letB(0, 1) ⊆ Ω = Rn be the ball centered at zero with radius one. Notice thatuk ≤ vk,
and that the sequence {vk} is decreasing. Then we have thatuk ≤ v2 on B(0, 1) for all k ≥ 2.
Hence, the sequenceuk is uniformly bounded onB(0, 1). We also have thatuk is a solution to
(3.4) onB(0, 1), anduk ∈ C2,α(B(0, 1)). Thus, by Theorem 3.9 of [4], we have, fork ≥ 3, the
gradient bound

sup
|x|<2

dx|∇uk(x)| ≤ C(sup
|x|<2

|uk|+ sup
|x|<2

d2
x|p(x)f(uk(x))|),(3.5)

whereC = C(n) anddx = dist(x, ∂B(0, 2)). Furthermore, sincedx ≥ 1 for |x| ≥ 1 we have

sup
|x|<1

|∇uk(x)| ≤ sup
|x|<1

dx|∇uk(x)| ≤ sup
|x|<2

dx|∇uk(x)|,(3.6)
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implying the sequence {uk}, k ≥ 3, is equicontinuous onB(0, 1). Hence there exists a subse-
quence {u1

k} of { uk} which converges to a nonnegative functionu1 on the ballB(0, 1) ⊆ Ω.
Now, consider the subsequence {u1

k} on the ballB(0, 2) ⊆ Ω = Rn centered at0 with radius
two. It is clear that the subsequence {u1

k} is uniformly bounded onB(0, 2). Furthermore,u1
k is

a solution to equation (3.4) onB(0, 2), and thereforeu1
k ∈ C2,α(B(0, 2)). Thus, we have the

gradient bound

sup
|x|<3

dx|∇u1
k(x)| ≤ C(sup

|x|<3

|u1
k|+ sup

|x|<3

d2
x|p(x)f(u1

k(x))|),(3.7)

whereC = C(n) anddx = dist(x, ∂B(0, 3)). Again, sincedx ≥ 1 we have

sup
|x|<2

|∇u1
k(x)| ≤ sup

|x|<2

dx|∇u1
k(x)| ≤ sup

|x|<3

dx|∇u1
k(x)|,(3.8)

so that the subsequence {u1
k} is also equicontinuous onB(0, 2). So, there exists a subsequence

{u2
k} of { u1

k} which converges to a nonnegative functionu2 on the ballB(0, 2) ⊆ Ω.
Continuing this line of reasoning, we have that there exist nonnegative large solutionsu3, u4,

u5, ... on the ballsB(0, 3), B(0, 4), B(0, 5), ..., respectively. Furthermore we note that

u1 = u2 = u3 = u4 = u5 = ..., onB(0, 1)(3.9)

and, more generally,

um = um+1 = um+2 = ..., onB(0, m).

Now we define the functionu on Rn asu(x) = ui(x) for |x| < i. Thusui(x) → u(x) as
i →∞ for all x ∈ Rn and the convergence is uniform on compact sets. Once again, a standard
regularity argument will show thatu is a solution to (1.1) onΩ = Rn. It is easy to see thatu is,
in fact, a large solution sincew ≡ limk→∞wk satisfiesw ≤ u, andw is large by virtue of(3.1)
(see Theorem 2 of [7]).

We now extend this result to somewhat arbitrary unbounded domains.

Theorem 3.2. SupposeΩ is an unbounded domain inRn, n ≥ 3, with compactC2,γ boundary
and suppose there exists a sequence of bounded domains{Ωk}, each with smooth boundary,
such thatΩk ⊆ Ωk+1 for all k = 1, 2, ... and Ω =

⋃∞
k=1 Ωk. Supposep is a nonnegative c-

positiveCα
loc(Rn) function withφ(r) ≡ max{p(x) : |x| = r, x ∈ Ω} and assume that it satisfies

inequality (3.1). Assume thatf is Lipschitz continuous on[0,∞), f(0) = 0, f(s) > 0 for s > 0,
andf satisfies (1.2). Then (1.1) has a nonnegative large solution providedf satisfies (1.3).

Proof. We replace the functionsvk andwk in the proof of Theorem 3.1 with the solutions to

∆vk = p(x)G(vk), x ∈ Ωk,

vk(x) → ∞, x → ∂Ωk,

∆wk = p(x)H(wk), x ∈ Ωk,

wk(x) → ∞, x → ∂Ωk,

for eachk. The proof now follows an analogous approach to that of Theorem 3.1. We omit the
details.

We now give a partial converse to Theorem 3.2.

Theorem 3.3. Let p, f , φ, andΩ be as in Theorem 3.3. In addition, suppose there exists a
nonnegative functionh continuous on[0,∞) and differentiable on(0,∞) such that0 ≤ φ(r) ≤
h2(r) for all r ≥ 0 andh satisfies one of the following: (a) there exists a constantC such that
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0 ≤ r2n−2φ(r) ≤ C, ∀r ≥ 0; or (b) limr→∞ rn−1h(r) = ∞ and
∫∞

0
h(r)dr < ∞. If (1.1) has

a nonnegative large solution onΩ, thenf satisfies inequality (1.3).

Proof. Let u be a large solution of (1.1). We can now construct a proof, very similar to the proof
of Theorem 5 in [7], using the equation∆v = φ(r)H(v) in place of∆v = φ(r)f(v) in [7] to
obtain a contradiction. We omit the details.

Our final result provides necessary and sufficient conditions to ensure the existence of a large
solution of (1.1) on an unbounded domain. It closely follows the corollary of [7] and therefore
stated without proof.

Corollary 3.4. Let f and Ω be as in Theorem 3.2, and assumep is a nonnegative c-positive
Cα

loc(Ω) function for which there exists a constantK such that

(3.10) p(x) ≤ K|x|−α, α > 2.

for |x| large andx ∈ Ω, Then a necessary and sufficient condition for (1.1) to have a nonnega-
tive large solution onΩ is thatf satisfy inequality (1.3).
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