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ABSTRACT. We study the existence of large solutions of the semilinear elliptic equatioa-

p(z) f(u) wheref is not monotonic. We prove existence, on bounded and unbounded domains,
under the assumption thdtis Lipschitz continuousf(0) = 0, f(s) > 0 for s > 0 and there
exists a nonnegative, nondecreasing Holder continuous fungtand a constand/ such that

g(s) < f(s) < Mg(s) for larges. The nonnegative functionis allowed to be zero on much of

the domain.
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1. INTRODUCTION

We consider the semilinear elliptic equation
(1.1) Au=p(z)f(u), z€ QCR" n>3,

wheref2 is open and connected, the nonnegative fungtioan be zero on much of the domain,
and f is a Lipschitz continuous function off, co) that satisfiesf(0) = 0, f(s) > 0 for

s > 0. In addition, we assume that there exists a nonnegative, nondecreasing Holder continuous
functiong and positive constant® ands, such that

(1.2) g(s) < f(s) < Mg(s) forall s > s.

We are interested in the existence of large solution$ of (1.190ne., solutions for which
u(xr) — oo asr — 0N if Q2 is bounded, and 2 is unbounded, we also require thdt:) — oo
for |z| — oo within €.

Unlike almost all previous work (See, for example,[[1, 2,16,/ 7, 8| 10, 12, 13], and their refer-
ences.), we do not requiréto be nondecreasing. The usual requirement fhia¢ monotonic
is necessary, in part, because the proofs depend on the maximum principle. Howeverf where
is not monotonic, the maximum principle cannot be applied directly to equatign (1.1).

The only existence result for non-monotorfiave are aware of is given by Goncalves and
Roncalli [5]. They proved existence under the condititinsinf, .., f(s)/s® > 0 and0 <
SUP,sq f(s)/s* < 00,1 < b < a < oco. These conditions reduce to the existence of position
constants, andc; such thatys® < f(s) < ¢;s* for s large, and hence is a special case of our
results.

For nondecreasing, we know that[(1]l) has a large solution on a bounded domain if and
only if f satisfies (see [7])

(1.3) /100 [/0 () dt] ™ s < oo

We prove here that this remains true for nonmonotgr@heoren] 2.2). For unbounded do-
mains, we prove results analogous to those for increaginip particular, we show that ip
decays rapidly agz| — oo, then, as in the bounded domain cape,|(1.1) has a large solution if
and only if f satisfies[(1]3) (see Corollary B.4). Our proofs, although comparable to those in
[7], require substantial innovations to compensate for the lack of monotonicity.

We note that similar results for systems comparablg tg (1.1) such as

Au = p(z) f(v)
Av = q(x)h(u)

remain an open problem. Indeed, existence results for large solutions of such systems are known
only under the rather restrictive conditions thiat= R™, p andq are spherically symmetric and
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both f andh are nondecreasing (see [3], [11]).

2. EXISTENCE OF SOLUTIONS ON BOUNDED DOMAINS

We first make some preliminary definitions and observations before establishing our exis-
tence theorems. In particular, we define the functiGrend H as follows:

_f Amin{f(t):s<t<sp},0<s<
@D Gls) = { Afso)a(s)o(o0)s 5> w0
e - {KpmlsiE) s
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where0 < A < min{1, %2}, Fyy = max{f(t) : 0 <t < s}, K is a constant chosen so that
K > max{1, Mg(so)/Fo}, andM comes from[(1]2). We note without proof th@tand H are
nondecreasing’;}.(]0, c0)) functions which are positive when their argument is positive, and

satisfy
(2.3) G(s) < f(s) < H(s)fors >0.

We say that the nonnegative functipms c-positiveif for any z, € (2 satisfyingp(z,) = 0,
there exists a domaifl, such thatr, € 2, Qy C 2, andp(x) > 0 for all x € 9€y. Thusp can
be zero on much of the domain.

Lemma 2.1. Suppos€? is a bounded domain iiR" with a C?7 boundary, andp is a non-
negativeC'*((2) function that is c-positive of2. Suppose is Lipschitz continuous of), co),
f(0) =0, f(s) > 0for s > 0 and satisfies| (1]2). Then for any nonnegative constatiie

boundary value problem

Av =p(a) f(v), € 9,
v(z) =c, x € 0N

has a nonnegative classical solutioron (2.

(2.4)

Proof. From [4] (See Theorem 14.10) we have that for any nonnegative constaeite exist
nonnegative classical solutionsandwv, to the following boundary value problems

Avy = p(a)Glu), z €2,
v(r) = ¢ xedf,
AU? = p(flf)H(Ug), HAS Q?
ve(z) = ¢, x € IN.
We claim thaty; > v, on ). Indeed, suppose < v, at some point iff2. Lete > 0 be small
enough such thahaxg[vs(z) — vi(z) — eh(r)] > 0, whereh(r) = (1 + %)% r = |a|.
Then0 < vy(zg) — vi(xg) — eh(r) = maxglva(z) — v1(x) — eh(r)] and hence at, we have
0 > A(vg — vy — eh(r)) = p(zo)[H(va(x0)) — G(v1(20))] — €Ah(r) > —eAh(r) > 0, a

contradiction. The last inequality holds because 3. Thus,v; < vy in 2.
Now, lettingw = v; andv = v, we have that < v in Q and

AT = p(x)G (@) < p(x) (D), © € Q,
Ay = p(x)H(v) > p(z)f(v), © € Q.

Thus,v andv are upper and lower solutions, respectivelyaf= p(z) f(v) on(2, and hence the
monotone iteration scheme (seel[14]) gives the existence of a classical salutoreguation
(2.4) onQ withy <v <7. 1

The following is our main result for this section.

Theorem 2.2. Suppos«?, p and f satisfy the hypothesis of the lemma above. Then equation
(1.7) has a nonnegative large solutionnif and only if f satisfies[(1]3).

Proof. Supposef satisfies[(1]3). Let, andw,, be the nonnegative solutions of (see [7])

(2.5) Avy = p(x)G(vg), x € 9,
vp(x) = k, z € 0Q,
(2.6) Aw, = p(z)H(wy), x € Q,

wi(z) = k, z € 0N.
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Thenwv, andw; are monotonically increasing. We shall construct a monotone sequence of
functions {u;} which satisfies, for each,

Auy, = p(x) f(ur), © € Q,
ug(x) =k, x € 0N.

We start withk = 1. Lettingu; = v; andu; = w; we have that there exists a nonnegative
classical solution; of

Auy = p(a)f(wm), = €9,
w(z) = 1, z €99,

with w; = u; < u; <% = v;. We then consider the following system of equations
Avy = p(a)G(va), z €Q,
ve(x) = 2, x € 09,

Aul = p(x)f(ul)a VIS Qa
ui(x) = 1, z € 00

Lettingu; = v, andu, = u; we have that there exists a nonnegative classical solutior
Aus = p(x)f(uz), € Q,
ug(z) = 2, z €99,

with w; < u; < uy < U3 = v9. Continuing this line of reasoning we have that there exists a
nonnegative classical solutien to

Aup = p(x)f(ur), v €9,

up(x) = k, x € 09,
with w; < w1 < u, < vy, & > 2. Clearly the sequencu,} is monotone. We note that
since f satisfies[(1]3)(z does as well. Hence it can be shown (see Theorem 1 of [7]) that the
sequencég vy } converges to a classical solutiorof

Av = p(z)G(v), x € Q,

v(x) — o0, x — 0N,
It then follows thatw, < u;_; < u, < v. Hence, the sequende,} converges of) to some
functionu. A standard regularity argument for elliptic equations (See, e.g., the proof of Lemma

3in [9].) then shows that is a classical solution t¢ (J.1). By constructianis clearly a large
solution.

Now suppose thaf does not satisfy (1]3); i.¢f satisfies

2.7) [mmvwﬁym@:m

and assume, for contradiction, thatis a nonnegative large solution ¢f (1.1). Let be a
nonnegative classical solution of

(2.8) Ave = p@)H(), v €D,
vp(x) = k, v € oK.

Then the sequencfy} is nondecreasing and. < « on (2. It follows that {v;} converges
to a nonnegative function on 2. Another standard regularity argument will show thas a
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classical solution of the system

Av =p(x)H(v), =€
v(z) — oo, x — OSL.

This problem, however, has no solution because, as a consequence off (8afisfies

/1 " /0 " H ()] 2 ds = oo

(see Theorem 1 of [7]). Hence, equati¢n [1.1) has no nonnegative large solution Dimis
completes the proof

3. EXISTENCE OF SOLUTIONS ON UNBOUNDED DOMAINS

We now consider the case whepes unbounded and begin by lettiigg = R"™. Consistent
with results for nondecreasing we require

(3.1) /000 ro(r)dr < oo,
whereg(r) = max|,—, p().

Theorem 3.1. Suppose is a nonnegative c-positivéy, (R™) function which satisfie$ (3.1),
is Lipschitz continuous oft), o), f(0) = 0, f(s) > 0 for s > 0, and f satisfies[(1]2). Then
(1.7) has a nonnegative entire large solution provideshtisfies|(1]3)

Proof. Using a proof similar to that of Theorgm .2, it is a straightforward exercise to prove the
existence of nonnegative solutionsandwy, to the following boundary value problems

(3.2) Av, = p(x)G(vi), |z| <k,
vp(x) — oo as|z| — k,
(3.3) Awe = ple)H(wy), |z <k,

wg(zr) — ocas|z| —k,

which satisfyw;, < v, on|z| < k. Itis clear, by the maximum principle, that(xz) > vy 1 (2)

on |z| < k, for eachk. By definingu,(z) = oo for |z| > k, we have that the sequencg

is monotonely deceasing d®’. Furthermore, we can employ the same method to produce a
nonnegative solution, to the boundary value problem

(3.4) Aup = p()f(ug), |z] <k,
ug(x) — oo as|x| — k,

with wy, < ug < vg. If we can show that the sequen, } is uniformly bounded and equicon-
tinuous on bounded subsets, then the Ascoli-Arzela Theorem will allow us to proviugiat
has a convergent subsequenceRdnwhich is uniformly convergent on compact sets. To do
this, we letB(0, 1) C 2 = R™ be the ball centered at zero with radius one. Noticedhat vy,
and that the sequence;f is decreasing. Then we have that < v, on B(0, 1) for all £ > 2.
Hence, the sequeneg is uniformly bounded orB(0, 1). We also have that is a solution to
(3.4) onB(0, 1), anduy, € C>*(B(0,1)). Thus, by Theorem 3.9 of [4], we have, for> 3, the
gradient bound

(3.5) sup d,|Vug(2)] < C(sup [ug + sup d2[p(x) f (ug(2))]),
|z|<2 z|<2 ||<2
whereC' = C(n) andd, = dist(z,0B(0,2)). Furthermore, sincé, > 1 for |z| > 1 we have
(3.6) sup |Vug(z)| < sup d,|Vug(x)| < sup d,|Vug(x)|,
|[<1 |z[<1 || <2
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implying the sequencey.}, k£ > 3, is equicontinuous of3(0, 1). Hence there exists a subse-
quence {:;} of { ux} which converges to a nonnegative functiohon the ballB(0,1) C Q.

Now, consider the subsequenag f on the ball B(0,2) C Q = R" centered ab with radius
two. Itis clear that the subsequencé  is uniformly bounded onB(0, 2). Furthermorey; is
a solution to equatiorj (3.4) oB(0,2), and thereforeit € C*%(B(0,2)). Thus, we have the
gradient bound

3.7) sup dy| Vuy(2)| < C(sup [ug| + sup dzlp(@) f(ui(2)))),
|[<3 |z|<3 |z|<3
whereC' = C(n) andd, = dist(z,0B(0, 3)). Again, sincel, > 1 we have
(3.8) sup |V (2)] < sup dq|[Vuy(2)] < sup do| Vg (),
|[<2 |z[<2 lz|<3

so that the subsequence}} is also equicontinuous o (0, 2). So, there exists a subsequence
{u3} of { ui} which converges to a nonnegative functiohon the ballB(0,2) C Q.
Continuing this line of reasoning, we have that there exist nonnegative large solutjers
u, ... on the ballsB(0, 3), B(0,4), B(0,5), ..., respectively. Furthermore we note that
(3.9 u=u=v'=u'=u’=.., onB(0,1)
and, more generally,
u™ =yt =™ = . onB(0,m).

Now we define the functiom on R™ asu(z) = u'(z) for |z| < i. Thusu'(z) — u(z) as
i — oo for all x € R™ and the convergence is uniform on compact sets. Once again, a standard
regularity argument will show that is a solution to[(1]1) of2 = R". It is easy to see thatis,
in fact, a large solution since = lim;_.., w; satisfiesw < u, andw is large by virtue of(3.1))
(see Theorem 2 of [7]a

We now extend this result to somewhat arbitrary unbounded domains.

Theorem 3.2. Supposé? is an unbounded domain iR", n > 3, with compactC?” boundary
and suppose there exists a sequence of bounded doffajns each with smooth boundary,
such thatQ, C Q. forall k = 1,2,... andQ = |J;—, Q. Suppose is a nonnegative c-
positiveC; (R™) function with¢(r) = max{p(z) : |z| = r, = € Q} and assume that it satisfies
inequality [3.1). Assume thtis Lipschitz continuous of), co), f(0) = 0, f(s) > 0for s > 0,
and f satisfies[(1.2). Then (1.1) has a nonnegative large solution providsdisfies[(1]3).

Proof. We replace the functions, andwy, in the proof of Theorerp 3] 1 with the solutions to
Avy = p(x)G(vg), © € Q,
vp(x) — oo, © — 0,
Aw, = p(x)H(wy), © € Q,
wi(x) — o0, x — 0,

for eachk. The proof now follows an analogous approach to that of Theprejm 3.1. We omit the
details.n

We now give a partial converse to Theorem 3.2.

Theorem 3.3. Letp, f, ¢, andQ be as in Theorern 3.3. In addition, suppose there exists a
nonnegative functioh continuous o0, co) and differentiable or0, co) such that) < ¢(r) <
h?(r) for all » > 0 and h satisfies one of the following: (a) there exists a constastich that
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0 < r?2¢(r) < C, Vr > 0; or (b) lim, .o r"*h(r) = co and [ h(r)dr < co. If ) has
a nonnegative large solution dn, thenf satisfies inequality (1} 3).

Proof. Letu be a large solution of (1].1). We can now construct a proof, very similar to the proof
of Theorem 5 in([7], using the equatiakv = ¢(r)H (v) in place of Av = ¢(r) f(v) in [7] to
obtain a contradiction. We omit the details.

Our final result provides necessary and sufficient conditions to ensure the existence of a large
solution of [1.1) on an unbounded domain. It closely follows the corollarylof [7] and therefore
stated without proof.

Corollary 3.4. Let f and 2 be as in Theorerh 3.2, and assumé a nonnegative c-positive
() function for which there exists a constakitsuch that

(3.10) p(x) < Klz|™%, a>2.
for |z| large andz € (2, Then a necessary and sufficient condition ffor|(1.1) to have a nonnega-
tive large solution onf? is that f satisfy inequality{(1]3).
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