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ABSTRACT. In this paper, we investigate the growth of solutions of the differential equation
f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f

′
+ A0 (z) f = F (z) , whereA0 (z) , ..., Ak−1 (z) and

F (z) /≡ 0 are entire functions. Some estimates are given for the iterated order of solutions of the
above equation when one of the coefficientsAs is being dominant in the sense that it has larger
growth thanAj (j 6= s) andF .

Key words and phrases:Linear differential equation, Growth of entire function, Iterated order.

2000Mathematics Subject Classification.Primary 34M10. Secondary 30D35.

ISSN (electronic): 1449-5910

c© 2007 Austral Internet Publishing. All rights reserved.

http://ajmaa.org/
mailto: Belaidi <belaidi@univ-mosta.dz>
http://www.ams.org/msc/


2 BENHARRAT BELAÏDI

1. I NTRODUCTION AND STATEMENT OF RESULTS

For the definition of the iterated order of an entire function, we use the same definition as
in [9], ( [4], p. 317), ([10], p. 129). For allr ∈ R, we defineexp1 r := er andexpp+1 r :=

exp
(
expp r

)
, p ∈ N. We also define for allr sufficiently largelog1 r := log r andlogp+1 r :=

log
(
logp r

)
, p ∈ N. Moreover, we denote byexp0 r := r, log0 r := r, log−1 r := exp1 r and

exp−1 r := log1 r. Let f be an entire function. Then the iteratedp−orderσp (f) of f is defined
by

(1.1) σp (f) = lim
r→+∞

logpT (r, f)

log r
= lim

r→+∞

logp+1M (r, f)

log r
(p ≥ 1 is an integer) ,

whereT (r, f) is the Nevanlinna characteristic function off andM (r, f) = max|z|=r |f (z)|
(see [8]). Forp = 1, this notation is called order and forp = 2 hyper-order (see [2], [4], [12]).
Fork ≥ 2, we consider the non-homogeneous linear differential equation

(1.2) f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f
′
+ A0 (z) f = F (z) ,

whereA0 (z) , ..., Ak−1 (z) andF (z) /≡ 0 are entire functions. It is well-known that all solutions
of equation (1.2) are entire functions and if at least one coefficientAs (z) is transcendental, then
at least some of the solutions are of infinite order. On the other hand, there exist equations of
this form that possess one or more solutions of finite order. For example:f (z) = ez satisfies
f
′′′ − ezf

′′ − e−zf
′
+ ezf = ez − 1.

Extensive work in recent years has been concerned with the growth of solutions of complex
linear differential equations. Many results have been obtained for the growth of solutions of the
differential equation

(1.3) f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f
′
+ A0 (z) f = 0,

whereA0 (z) , ..., Ak−1 (z) are entire functions, see e.g. [2], [3], [9] and [11]. Examples of such
results are the following two theorems:

Theorem 1.1. ([11]) Let A0 (z) , ..., Ak−1 (z) be entire functions such that for some integers,
1 ≤ s ≤ k − 1, we haveσp (Aj) ≤ α < β = σp (As) ≤ +∞ for all j 6= s. Then every
transcendental solutionf of (1.3) satisfiesσp (f) ≥ σp (As) .

Theorem 1.2. ([3]) LetA0 (z) , ..., Ak−1 (z) be entire functions, where0 < σ (A0) < 1/2, and
let there exist a real constantβ < σ (A0) and a setEβ ⊂ [0, +∞) with densEβ = 1 such that
for all r ∈ Eβ, we have

(1.4) min
|z|=r

|Aj (z)| ≤ exp
(
rβ

)
(j = 1, 2, ..., k − 1) .

Then every solutionf /≡ 0 of (1.3) is of infinite order with hyper-orderσ2 (f) ≥ σ (A0) .

The purpose of this paper is to extend the above results to the non-homogeneous linear differ-
ential equation (1.2). We will prove the following theorems:

Theorem 1.3. Let A0 (z) , ..., Ak−1 (z) and F (z) /≡ 0 be entire functions such that for some
integers, 1 ≤ s ≤ k − 1, we havemax{σp (Aj) (j 6= s) , σp (F )} < σp (As) < +∞. Then
every transcendental solutionf of (1.2) withσp (f) < +∞ satisfiesσp (f) ≥ σp (As) .

The following result was proved in the case ofp = 1 ands = 0 in ([6], Theorem 3).
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Theorem 1.4. Let A0 (z) , ..., Ak−1 (z) and F (z) /≡ 0 be entire functions such that for some
integers, 0 ≤ s ≤ k − 1, we haveσp (As) = +∞ andmax{σp (Aj) (j 6= s) , σp (F )} < +∞.
Then every solutionf of (1.2) satisfiesσp (f) = +∞.

Theorem 1.5. LetA0 (z) , ..., Ak−1 (z), F (z) /≡ 0 be entire functions, where0 < σ (A0) < 1/2
andσ (F ) = σ < +∞, and let there exist a real constantβ < σ (A0) and a setEβ ⊂ [0, +∞)
with densEβ = 1 such that for allr ∈ Eβ, we have

(1.5) min
|z|=r

|Aj (z)| ≤ exp
(
rβ

)
(j = 1, 2, ..., k − 1) .

Then every solutionf of (1.2) is of infinite order and hyper-orderσ2 (f) ≥ σ (A0) with at most
one exceptional solutionf0 satisfyingσ (f0) < +∞.

2. PRELIMINARY L EMMAS

Our proofs depend mainly upon the following lemmas. Before starting these lemmas, we
recall the concept of density of subsets of[0, +∞) . For E ⊂ [0, +∞) , we define the linear
measure of a setE by m (E) =

∫ +∞
0

χE (t) dt, whereχE is the characteristic function ofE.
The upper and the lower densities ofE are defined by

(2.1) densE = lim
r→+∞

m (E ∩ [0, r])

r
, densE = lim

r→+∞

m (E ∩ [0, r])

r
.

Lemma 2.1. ([2]) Let E be a set of complex numbers satisfyingdens{|z| : z ∈ E} > 0, and
let A0 (z) , ..., Ak−1 (z) be entire functions such that for some real constants0 ≤ β < α and
µ > 0, we have

(2.2) |A0 (z)| ≥ exp (α |z|µ)

and

(2.3) |Aj (z)| ≤ exp (β |z|µ) ( j = 1, ..., k − 1)

asz →∞ for z ∈ E. Then every solutionf /≡ 0 of (1.3) satisfiesσ (f) = +∞ andσ2 (f) ≥ µ.

Lemma 2.2. ([7], p. 90) Letf be a nontrivial entire function, and letα > 1 and ε > 0 be
given constants. Then there exist a constantc > 0 and a setE ⊂ [0, +∞) having finite linear
measure such that for allz satisfying|z| = r /∈ E, we have

(2.4)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ c [T (αr, f) rε log T (αr, f)]j (j ∈ N) .

Lemma 2.3. Let E be a set of complex numbers satisfyingdens{|z| : z ∈ E} > 0, and
let A0 (z) , ..., Ak−1 (z) be entire functions such that for some real constants0 ≤ β < α and
µ > 0, we have

(2.5) |A0 (z)| ≥ exp (α |z|µ)

and

(2.6) |Aj (z)| ≤ exp (β |z|µ) ( j = 1, ..., k − 1)

as z → ∞ for z ∈ E, and letF (z) /≡ 0 be an entire function withσ (F ) < +∞. Then every
solutionf of (1.2) satisfiesσ (f) = +∞ andσ2 (f) ≥ µ with at most one exceptional solution
f0 satisfyingσ (f0) < +∞.
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Proof. We affirm that (1.2) can only possess at most one exceptional solutionf0 such that
σ (f0) < +∞. In fact, if f ∗ is a second solution withσ (f ∗) < +∞, thenσ (f0 − f ∗) < +∞.
But f0 − f ∗ is a solution of the corresponding homogeneous equation (1.3) of (1.2). This
contradicts Lemma 2.1.
Suppose thatf is a solution of (1.2) withσ(f) = +∞. Now from (1.2), it follows that

(2.7) |A0 (z)| ≤
∣∣∣∣f (k)

f

∣∣∣∣ + |Ak−1 (z)|
∣∣∣∣f (k−1)

f

∣∣∣∣ + ... + |A1 (z)|
∣∣∣∣f ′

f

∣∣∣∣ +

∣∣∣∣Ff
∣∣∣∣ .

Then by Lemma 2.2, there exists a setE1 ⊂ [0, +∞) with a finite linear measure such that for
all z satisfying|z| = r /∈ E1, we have

(2.8)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ r [T (2r, f)]k+1 (j = 1, ..., k) .

Also, by the hypothesis of Lemma 2.3, there exists a setE2 with dens {|z| : z ∈ E2} > 0 such
that for allz satisfying z ∈ E2, we have

(2.9) |A0 (z)| ≥ exp (α |z|µ)

and

(2.10) |Aj (z)| ≤ exp (β |z|µ) ( j = 1, ..., k − 1)

asz →∞. Sinceσ (f) = +∞, there exists
{
r
′
n

} (
r
′
n → +∞

)
such that

(2.11) lim
r′n→+∞

log log M
(
r
′
n, f

)
log r′n

= +∞.

Set the linear measure ofE1, m (E1) = δ < +∞, then there exists a pointrn ∈
[
r
′
n, r

′
n + δ + 1

]
−

E1. From
log log M (rn, f)

log rn

≥
log log M

(
r
′
n, f

)
log (r′n + δ + 1)

(2.12) =
log log M

(
r
′
n, f

)
log r′n + log (1 + (δ + 1) /r′n)

,

it follows that

(2.13) lim
rn→+∞

log log M (rn, f)

log rn

= +∞.

Then for a given arbitrary largeρ > σ (F ) ,

(2.14) M (rn, f) ≥ exp (rρ
n)

holds for sufficiently largern. On the other hand, for a givenε with 0 < ε < ρ − σ (F ), we
have

|F (zn)| ≤ exp
(
rσ(F )+ε
n

)
,

(2.15)

∣∣∣∣F (zn)

f (zn)

∣∣∣∣ ≤ exp
(
rσ(F )+ε
n − rρ

n

)
→ 0 (rn → +∞) ,

where|f (zn)| = M (rn, f) and|zn| = rn. Hence from (2.7) -(2.10) and (2.15), it follows that
for all zn satisfying zn ∈ E2, |zn| = rn /∈ E1 and|f (zn)| = M (rn, f)

exp (α |zn|µ) ≤ |zn| [T (2 |zn| , f)]k+1 [1 + (k − 1) exp (β |zn|µ)]

(2.16) + o (1)
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aszn →∞. Now setE = {|zn| : zn ∈ E2}\E1 ⊂ [0, +∞), thendens E > 0 and

(2.17) exp (αrµ
n) ≤ drn exp (βrµ

n) [T (2rn, f)]k+1

as|zn| = rn → +∞ in E, whered (> 0) is some constant. Therefore,

(2.18) σ2 (f) = lim
rn→+∞

log log T (rn, f)

log rn

≥ µ.

Lemma 2.4. ([5]) Letf be an entire function of orderσ, where0 < σ < 1/2, and letε > 0 be
a given constant. Then there exists a setE ⊂ [0, +∞) with dens E ≥ 1− 2σ such that for all
z satisfying|z| = r ∈ E, we have

(2.19) |f (z)| ≥ exp
(
rσ−ε

)
.

Lemma 2.5. ([9]) Let f be a meromorphic function for whichi (f) = p ≥ 1 andσp (f) = σ,
and letk ≥ 1 be an integer. Then for anyε > 0,

(2.20) m

(
r,

f (k)

f

)
= O

(
expp−2 rσ+ε

)
,

outside of a possible exceptional setE of finite linear measure.

To avoid some problems caused by the exceptional set we recall the following Lemma.

Lemma 2.6. ([1], [9]) Let g : [0, +∞) → R and h : [0, +∞) → R be monotone non-
decreasing functions such thatg (r) ≤ h (r) outside of an exceptional setE of finite linear
measure. Then for anyα > 1, there existsr0 > 0 such thatg (r) ≤ h (αr) for all r > r0.

3. PROOF OF THEOREM 1.3

Let max {σp (Aj) ( j 6= s) , σp (F )} = β < σp (As) = α. Suppose thatf is a transcendental
solution of (1.2) withσ = σp (f) < +∞. It follows from (1.2) that

As (z) =
F (z)

f (s)
− f (k)

f (s)
− Ak−1 (z)

f (k−1)

f (s)
− ...− As+1 (z)

f (s+1)

f (s)

(3.1) − As−1 (z)
f (s−1)

f (s)
− ...− A1 (z)

f ′

f (s)
− A0 (z)

f

f (s)
.

Applying Lemma 2.5, we have

(3.2) m

(
r,

f (j+1)

f

)
= O

(
expp−2 rσ+ε

)
(j = 0, ..., k − 1) ,

holds for allr outside a setE ⊂ (0, +∞) with a linear measurem (E) = δ < +∞. Since
N

(
r, f (j+1)

)
≤ (j + 2) N (r, f) , it holds forj = 0, ..., k − 1 that

T
(
r, f (j+1)

)
= m

(
r, f (j+1)

)
+ N

(
r, f (j+1)

)
≤ m

(
r,

f (j+1)

f

)
+ m (r, f) + (j + 2) N (r, f)

(3.3) ≤ (j + 2) T (r, f) + m

(
r,

f (j+1)

f

)
.

By (3.3), we can obtain from (3.1) and (3.2) that

T (r, As) ≤ T (r, F ) + cT (r, f) +
∑
j 6=s

T (r, Aj)
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(3.4) + O
(
expp−2 rσ+ε

)
(r /∈ E) ,

wherec is a constant. Sinceσp (As) = α, there exists
{
r
′
n

} (
r
′
n → +∞

)
such that

(3.5) lim
r′n→+∞

logp T
(
r
′
n, As

)
log r′n

= α.

Sincem (E) = δ < +∞, there exists a pointrn ∈
[
r
′
n, r

′
n + δ + 1

]
− E. From

(3.6)
logp T (rn, As)

log rn

≥
logp T

(
r
′
n, As

)
log (r′n + δ + 1)

=
logp T

(
r
′
n, As

)
log r′n + log (1 + (δ + 1) /r′n)

we get

(3.7) lim
rn→+∞

logp T (rn, As)

log rn

≥ α.

So for any givenε (0 < 2ε < α− β) , and forj 6= s

(3.8) T (rn, Aj) ≤ expp−1 rβ+ε
n , T (rn, F ) ≤ expp−1 rβ+ε

n

and

(3.9) T (rn, As) > expp−1 rα−ε
n

hold for sufficiently largern. By (3.4), (3.8) and (3.9) we obtain for sufficiently largern

(3.10) expp−1 rα−ε
n ≤ k expp−1 rβ+ε

n + cT (rn, f) + O
(
expp−2 rσ+ε

n

)
.

Therefore,

(3.11) lim
rn→+∞

logp T (rn, f)

log rn

≥ α− ε

and sinceε > 0 is arbitrary, we getσp (f) ≥ σp (As) = α. This proves Theorem 1.3.

4. PROOF OF THEOREM 1.4

Settingmax {σp (Aj) ( j 6= s) , σp (F )} = β, then for a givenε > 0, we have

(4.1) T (r, Aj) ≤ expp−1 rβ+ε (j 6= s) , T (r, F ) ≤ expp−1 rβ+ε

for sufficiently larger. Now we can write from (1.2)

As (z) =
F (z)

f (s)
− f (k)

f (s)
− Ak−1 (z)

f (k−1)

f (s)
− ...− As+1 (z)

f (s+1)

f (s)

(4.2) − As−1 (z)
f (s−1)

f (s)
− ...− A1 (z)

f ′

f (s)
− A0 (z)

f

f (s)
.

Hence by (3.3) and (4.2) we obtain that

(4.3) T (r, As) ≤ T (r, F ) + cT (r, f) +
k−1∑
j=0

m

(
r,

f (j+1)

f

)
+

∑
j 6=s

T (r, Aj) ,

wherec is a constant. Ifσ = σp (f) < +∞, then

(4.4) m

(
r,

f (j+1)

f

)
= O

(
expp−2 rσ+ε

)
(j = 0, ..., k − 1)
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holds for all r outside a setE ⊂ (0, +∞) with a linear measurem (E) = δ < +∞. For
sufficiently larger, we have

(4.5) T (r, f) ≤ expp−1 rσ+ε.

Thus

(4.6) T (r, As) ≤ k expp−1 rβ+ε + c expp−1 rσ+ε + O
(
expp−2 rσ+ε

)
for r /∈ E and sufficiently larger. By Lemma 2.6, we have for anyα > 1

(4.7) T (r, As) ≤ k expp−1 (αr)β+ε + c expp−1 (αr)σ+ε + O
(
expp−2 (αr)σ+ε)

for sufficiently larger. Therefore,

(4.8) σp (As) ≤ max {β + ε, σ + ε} < +∞.

This contradicts the fact thatσp (As) = +∞.

5. PROOF OF THEOREM 1.5

Let β < σ (A0) and letf be a solution of (1.2). Suppose thatβ < α < σ (A0) and that there is
a setEβ ⊂ [0, +∞) of lower density 1 satisfying (1.5). Set

(5.1) E1 =

{
z : |z| = r ∈ Eβ and |Aj (z)| = min

|z|=r
|Aj (z)| (j = 1, 2, ..., k − 1)

}
.

Then dens{|z| : z ∈ E1 } = 1 and

(5.2) |Aj (z)| ≤ exp
(
rβ

)
( j = 1, 2, ..., k − 1)

for all z ∈ E1. Also, from Lemma 2.4, there is a setE2 ⊂ [0, +∞) of positive upper density
such that for allz satisfying|z| ∈ E2, we have

(5.3) |A0 (z)| ≥ exp (rα) .

Now let E = {z ∈ E1 : |z| ∈ E2} . Then with a setE and the numberα, A0 (z) , ..., Ak−1 (z)
andF (z) satisfy the hypothesis of Lemma 2.3 respectively. Hence we conclude by Lemma 2.3
that every solutionf of equation (1.2) satisfiesσ (f) = +∞ and

(5.4) σ2 (f) = lim
r→+∞

log log T (r, f)

log r
≥ α

with at most one exceptional solutionf0 satisfyingσ (f0) < +∞. Thus the result of the theorem
follows sinceα is arbitrary.

Next, we give an example that illustrates Theorem 1.5.

Example 5.1.LetP1 (z),...,Pk−1 (z) be nonconstant polynomials, and leth1 (z),...,hk−1 (z) be
entire functions satisfyingσ (hj) < deg Pj (j = 1, ..., k − 1). LetA0 (z) , F (z) /≡ 0 be entire
functions, where0 < σ (A0) < 1/2 and σ (F ) = σ < +∞. Then, by Theorem 1.5, every
solutionf of the equation

(5.5) f
(k)

+ hk−1 (z) ePk−1(z)f
(k−1)

+ ... + h1 (z) eP1(z)f
′
+ A0 (z) f = F (z)

is of infinite order andσ2 (f) ≥ σ (A0) with at most one exceptional solutionf0 satisfying
σ (f0) < +∞ since

min
|z|=r

∣∣hj (z) ePj(z)
∣∣ → 0 (j = 1, ..., k − 1)

asr → +∞.
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