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ABSTRACT. In this paper, we investigate the growth of solutions of the differential equation
FE 4 A (2) fE D 4+ A (2) f + Ao (2) f = F(2), whereAq (2), ..., Ar_1 (z) and

F' (z)# 0 are entire functions. Some estimates are given for the iterated order of solutions of the
above equation when one of the coefficieAtsis being dominant in the sense that it has larger
growth than4; (j # s) andF.
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2 BENHARRAT BELAIDI

1. INTRODUCTION AND STATEMENT OF RESULTS

For the definition of the iterated order of an entire function, we use the same definition as
in [9], ([4], p. 317), ([10], p. 129). For alt € R, we defineexp, r := ¢" andexp,,, 7 :=
exp (exp, ), p € N. We also define for alt sufficiently largelog, r := log r andlog,,, , r :=
log (log, ), p € N. Moreover, we denote byxp, r := r, log,r := r, log_; r := exp, r and
exp_, r := log, . Let f be an entire function. Then the iteratedordero,, (f) of f is defined
by
— log, T (r, f)  — log,, M (r, f)

(1.1) o, (f) = TEIEOOT = lim_ log - (p > 1 is an integey,

whereT (r, f)is the Nevanlinna characteristic function pland M (r, f) = max.— | f ()|
(seel[8]). Fop = 1, this notation is called order and fpr= 2 hyper-order (see [2],[[4],[ [12]).
Fork > 2, we consider the non-homogeneous linear differential equation

1.2) FO+ 4 @) D+ + A(R) f 4+ A (2) [ =F(2),

whereA, (z) , ..., Ax—1 (z) andF' (z) % 0 are entire functions. It is well-known that all solutions

of equation|(1.R) are entire functions and if at least one coefficlefit) is transcendental, then

at least some of the solutions are of infinite order. On the other hand, there exist equations of
this form that possess one or more solutions of finite order. For exarfiplg: = ¢* satisfies

" —erf —erf 4 et f =e* — 1.

Extensive work in recent years has been concerned with the growth of solutions of complex

linear differential equations. Many results have been obtained for the growth of solutions of the

differential equation

(1.3) FO A () 5D 4+ A (2) f + A (2) f=0,

whereA, (z), ..., Ax_1 (2) are entire functions, see e.gl [2]| [3]] [9] and][11]. Examples of such
results are the following two theorems:

Theorem 1.1. ([11]) Let Ay (2), ..., Ax_1 (2) be entire functions such that for some integer
1 <s < k-1 wehaves, (4, < a< f =0,(A4;) < +ooforall j # s. Then every
transcendental solutiofi of (1.3) satisfies, (f) > o, (A).

Theorem 1.2.([3]) Let Ay (2), ..., Ax—1 (2) be entire functions, whefe < ¢ (4y) < 1/2, and
let there exist a real constamt < o (A,) and a setE3 C [0, 4o00) with denstz = 1 such that
forall r € E3, we have

(1.4) min [A4; (2)] <exp (r?) (j=1,2,....k—1).

|z|=r
Then every solutiorf 0 of (1.3) is of infinite order with hyper-order, (f) > o (4y).

The purpose of this paper is to extend the above results to the non-homogeneous linear differ-
ential equation (1]2). We will prove the following theorems:

Theorem 1.3.Let Ay (2), ..., Ax—1 (2) and F' (z) # 0 be entire functions such that for some
integers, 1 < s < k — 1, we havemax{o, (4,) (j #s), 0, (F)} < 0,(A;) < +oo. Then
every transcendental solutighof (1.2) witho,, (f) < +oc0 satisfiess, (f) > o, (4,) .

The following result was proved in the casepcf 1 ands = 0 in ([6], Theorem 3).
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Theorem 1.4.Let Ay (2),..., Ax—1 (2) and F' (z) # 0 be entire functions such that for some
integers, 0 < s < k — 1, we haver, (A;) = +oo andmax{o, (4;) (j # s), 0, (F)} < 4o0.
Then every solutiof of (1.3) satisfies,, (f) = +oc.

Theorem 1.5. Let Ay (2), ..., Ax_1 (2), F' (2) # 0 be entire functions, whefe< ¢ (Ay) < 1/2
ando (F) = 0 < 400, and let there exist a real constafit< o (A,) and a settlz C [0, +00)
with densts = 1 such that for al- € Ej, we have

(1.5) ‘rr?in]Aj () <exp(r?) (j=1,2,...,k—1).

Then every solutiorf of (1.3) is of infinite order and hyper-ordet, (f) > o (A,) with at most
one exceptional solutiof satisfyingo (fy) < +oc.

2. PRELIMINARY LEMMAS

Our proofs depend mainly upon the following lemmas. Before starting these lemmas, we
recall the concept of density of subsets[@f+occ) . For £ C [0, +00), we define the linear

measure of a set by m (E) = 0+°° X (1) dt, wherey is the characteristic function df.

The upper and the lower densitiesofare defined by

(2.1) densk = lim M

r—+00 r

densE = lim MENOT])
r—-400 T

Lemma 2.1. ([2]) Let £ be a set of complex numbers satisfyikigs{|z| : = € E} > 0, and
let Ay (2), ..., Ax—1 (2) be entire functions such that for some real constadits. 3 < « and
1> 0, we have

(2.2) |Ag (2)] > exp (a]2[")
and
(2.3) |4 (2)] <exp (Bl]") (j=1,... k=1

asz — oo for z € E. Then every solutiori = 0 of (1.3) satisfies (f) = +oc andoy (f) > p.

Lemma 2.2. ([7], p. 90) Letf be a nontrivial entire function, and let > 1 ande > 0 be
given constants. Then there exist a constant 0 and a set? C [0, +oo) having finite linear
measure such that for all satisfying|z| = r ¢ E, we have

‘f(” ()
1)

Lemma 2.3. Let E be a set of complex numbers satisfymgus{|z| : = € E} > 0, and
let Ay (2), ..., Ax—1 (2) be entire functions such that for some real constants § < « and
1> 0, we have

(2.4) <c|T (ar, f)rflogT (ar, f)]] (j eN).

(2.5) | Ag (2)] > exp (a]2[")
and
(2.6) |4 (2)| < exp (Bl]") (j=1,...k—1)

as z — oo for z € E, and letF (z) # 0 be an entire function witlr (F') < +o00. Then every
solution f of (1.2) satisfies (f) = +oo ando, (f) > p with at most one exceptional solution
fo satisfyingo (fo) < +o0.
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Proof. We affirm that [(1.R) can only possess at most one exceptional solfifisnch that

o (fo) < +oo. Infact, if f* is a second solution with (f*) < +oo, theno (fo — f*) < +o0.

But fo — f* is a solution of the corresponding homogeneous equdtion (1.3) of (1.2). This
contradicts Lemm@a?Z.1.

Suppose thaf is a solution of[(1.2) withr (/) = +oco. Now from (1.2), it follows that

flED £l |F
: L |E

(2.7) |Ap (2)| < ’? + ...+ |41 (2)] +

G|

AR

Then by Lemma 2]2, there exists a S8t C [0, +oc) with a finite linear measure such that for

all z satisfying|z| = r ¢ E;, we have

9 (2)
f(z)

Also, by the hypothesis of Lemma 2.3, there exists @&etith dens {|z| : z € F,} > 0 such

that for all = satisfying z € F,, we have

<r[TEnHM G=1,.., k).

(2.8) ‘

(2.9) |Ag (2)] > exp (a]2[")
and
(2.10) 4 ()] < exp(Blel) (5=1,.. k—1)

asz — oo. Sinceo (f) = +oo, there existgr, } (r, — +o0c) such that

2.11) i 8108 M (rn, f)

’ log r’
7y, —+00 gry,

:—I—OO

Setthe linear measure 6%, m (E;) = § < +oo, then there exists a point € [r,,,r, + 0 + 1]—
FE;. From
log log M (7, f) - loglog M (r;,f)
log r,, ~ log(r, +0+1)

B log log M (r;,f)
~logr! +log (14 (6 +1)/r.)

(2.12)

it follows that
log log M
(2.13) i 08108 M (. )

pa——— log ry,

= 400.

Then for a given arbitrary large > o (F)
(2.14) M (rn, [) 2 exp (r7)
holds for sufficiently large-,,. On the other hand, for a givenwith 0 < ¢ < p — o (F), we
have

|F (z)] < exp (rg %)
[ (zn)
where|f (z,)| = M (r,, f) and|z,| = r,,. Hence from[(2]7) [(2.10) anfl (2]15), it follows that
for all z,, satisfying z, € Es, |z,| =, ¢ Ey and|f (z,)| = M (74, f)

exp (o |z]") < zal [T (220l , I [+ (K = 1) exp (8] 20]")]

(2.16) +0(1)

(2.15) < exp (T‘Z(FH_& — 7)) =0 (r, — +00),
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asz, — oo. Now settl = {|z,| : z, € Ex}\E; C [0,4+00), thendens E > 0 and
(2.17) exp (art) < dr, exp (Br2) [T (2r,, £)]*
as|z,| = r, — 400 in E, whered (> 0) is some constant. Therefore,

(2.18) o5 (f) = Tim loglog T (rn, f)

Tn—+00 log 7,

Lemma 2.4. ([5]) Let f be an entire function of order, where0 < o < 1/2, and lete > 0 be
a given constant. Then there exists aBet [0, +oo) with dens E' > 1 — 20 such that for all
z satisfying|z| = r € E, we have

(2.19) |/ (2)] = exp (r77°).

Lemma 2.5. ([9]) Let f be a meromorphic function for whiel{ f) = p > 1 ando, (f) = o,
and letk > 1 be an integer. Then for any> 0,

(2.20) m (r, #) = O (exp,_o77%°),

outside of a possible exceptional ¢ebf finite linear measure
To avoid some problems caused by the exceptional set we recall the following Lemma.

Lemma 2.6. ([1], [9]) Letg : [0,400) — R andh : [0,+00) — R be monotone non-
decreasing functions such thai{r) < h(r) outside of an exceptional sét of finite linear
measure. Then for any > 1, there exists,, > 0 such thaty (r) < h (ar) for all r > 7.

3. PROOF OF THEOREM [1.3

Letmax{o, (4;) (j#s),0,(F)} = B < 0,(As) = a. Suppose thaf is a transcendental
solution of [1.2) witho = 5, (f) < +oc. It follows from (1.2) that

F(2) f(m j%kfl) f(&+n
As (Z) = f(s) —W—Ak_l (Z)W—...—As_i_l (Z)W
(s—1) /
(3.1) Al —can L a0 L
Applying Lemmd 2.b, we have
(j+1)
(3.2) m <r, / ;1 ) =0 (exp, o) (j=0,..,k—1),

holds for allr outside a sety C (0, +oc) with a linear measure: (F) = § < +oo. Since
N (r, fUtD) < (j+2) N (r, f),itholds forj = 0, ...,k — 1 that

T (7“7 f(j+1)) —m (r’f(jJrl)) +N (747f(j+1))

U+ .
gm('r, 7 )—l—m(r,f)—l—(j—i—Q)N(r,f)

. fU+U
(3.3) <G+2)T(r, f)+m (7“, —) .

f
By (3.3), we can obtain froni (3.1) and (B.2) that

T(r,A) ST (r,F)+cT (r, f) + Y T (r,Ay)
J#s
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(3.4) + O (expp_2 TU+€) (r¢ E),

wherec is a constant. Since, (A,) = «, there existr,, } (r,, — +oc) such that
log, T (7, A,

(3.5) i 28T )

/ log !
r),—+00 gry,

Sincem (E) = § < +o0, there exists a point, € [r,,r, +J + 1] — E. From

(3.6) log, T (ry, As) . logplj(rn,As) _ | long(rn,As) |
log r, log(r, +d+1) logr, +log(1+(6+1)/r)
we get
1 T naAs
(3.7) im 8L mA)

P log ry,

So for any giver (0 < 2¢ < a — f3), and forj # s

(3.8) T (rn, Aj) < exp,_ 1™, T (ry, F) < exp,_q 7'

and

(3.9) T (rn, As) > exp, T ©

hold for sufficiently large-,,. By (3.4), (3.8) and[(3]9) we obtain for sufficiently large
(3.10) exp,_y e < kexp,_y i+ T (r, f) + O (exp,_p r07°) .
Therefore,

log, T' (1,
(3.11) e T /) o

rm—+oo  logry,

and since: > 0 is arbitrary, we get, (f) > o0, (4,) = a. This proves Theorefn 1.3.

4. PROOF OF THEOREM [1.4
Settingmax {o, (4;) (j # s),0, (F)} = (3, then for a giverx > 0, we have

(4.1) T(r,Ay) < exp,y 177 (j#5), T(r, F) < exp, 7%
for sufficiently larger. Now we can write from[(1]2)
F(z k) f=1) fs+D)
As (Z) = % — W — Ak (Z) W — .= A (Z) W
fe f f

Hence by[(3.B) and (4.2) we obtain that

kol FUHD
(4.3) T(r,A) <T(r,F)+cT(r, f)+ > m ( ) +) T (r 4)),

=0

wherec is a constant. 16 = o, (f) < +o0o, then

U+
S

(4.4) m (7", > =0 (expp_2 r”“) (1=0,...,k—1)
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holds for allr outside a se? C (0,+o0) with a linear measuren (E) = § < +oo. For
sufficiently larger, we have

(45) T (7", f) S epr—l 7,.0'4’5.
Thus
(4.6) T (r,As) < kexp, rfre 4 cexp,_1 777 + O (exp,_, 77°)

for r ¢ E and sufficiently large. By Lemmd 2.p, we have for any > 1

4.7) T (r,As) < kexp, ; (ar)?*e + cexp, 1 (ar)”™ + O (exp,_, (ar)”™)
for sufficiently larger. Therefore,

(4.8) op(As) <max{f+¢, 0 +¢e} < +o0.

This contradicts the fact that, (A;) = +oo.

5. PROOF OF THEOREM [1.5

Let 5 < o (Ap) and letf be a solution of{(1]2). Suppose thak o < o (A) and that there is
asetEs C [0, +o0) of lower density 1 satisfying (1].5). Set

(5.1) E, = {z |z =r e Egand|A; (z)| = |rr|11n\Aj ) (=12.k— 1)} .

Thenden$|z|: z € E; } =1 and

(5.2) |Aj (z)] <exp (r?) (j=1,2,..,k—1)

for all = € E). Also, from Lemmd 2.4, there is a sEt C [0, +o0) of positive upper density
such that for alk satisfying|z| € E,, we have

(5.3) |Ag (2)| > exp (r?).

Now let E = {z € F; : |z| € E»}. Then with a set” and the numbety, A, (2), ..., Ax_1 (2)
andF (z) satisfy the hypothesis of Lemrha .3 respectively. Hence we conclude by Liemma 2.3
that every solutiory of equation|(1.2) satisfies(f) = +oc and
———loglog T'(r, f)

4 = Tim =20
(5.4) o> (f) = lim ==
with at most one exceptional solutignsatisfyingo (fy) < +oco. Thus the result of the theorem
follows sincea is arbitrary.

>«

Next, we give an example that illustrates Theofen 1.5.

Example 5.1.Let P, (2),..., Pr_1 (2) be nonconstant polynomials, and lgt(z),..., hx_1 (2) be
entire functions satisfyingr (h;) < degP; (j = 1,....,.k —1). Let A, (2), F () # 0 be entire
functions, wherd) < o(4,) < 1/2 ando (F) = o < +oc. Then, by Theoretn 1.5, every
solution f of the equation

(5.5) P A (2) e O o hy () PO 4 Ay (2) f = F(2)

is of infinite order ando, (f) > o (A4y) with at most one exceptional solutigi satisfying
o (fo) < +oo since

(k—1)

min |h; (2) e -0 (j=1,..,k—1)

|2|=r

asr — +o00.
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