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1. INTRODUCTION

The purpose of this paper is to describe the kernel of the powers three kinds of discrete ana-
logues of the Cauchy-Riemann operator on subsefibf Members of the kernels are called
g-polyanalytic functions (or polyanalytic functions of ordgr We also propose, based upon
previous work choices of multiplication together with associated pseudo-powers and we de-
velop a proof-tool and use it to e.g. investigate a question posed by Kiselman [12].

Some of the pioneers of the investigation of analogues of complex analytic functidhg]on
were Isaacs [8]/]9], Ferrandl[7] and Duffin [4],[5].

In Isaacs([3] themonodiffric functions of the first kinan a the discrete complex plane, where
defined square-wise as those that where annihilated by a certain first order linear difference op-
erator, in particular a complex-valued functigron Z|:], is monaodiffric of the first kind on a
square with vertice$z, z + 1,z + i,z + i + 1}, whose lower left point is € Z][], if and only

if f satisfies,

1) fz+1) - () = LEHD 2T

1

We shall say thaf is monodiffric of the first kindat = if and only if f satisfies equatidn 3.1. In
this paper we shall say that a functignn the discrete complex planenisonodiffric functions
of the second kindt > € Z[i], if and only if

fe+1+i)—f(z2) flz+19)—f(z+1)

1-2 P
(1.2 1+ 1 1—1

Ferrand[[¥] (who uses a discrete version of Moreras theorem) used thpretolomorphidor
the monodiffric functions of the second kind. In this paper we shall say that a funttiothe
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discrete complex plane rmonodiffric functions of the third kinat > € Z]i],

(1.3) fetl) - flz—ny = L) = FE=0)

1
The monodiffric functions of the third kind (these where also introduced by Isaacs [8], p.179)
appear less frequently in the literature, and then they are not referred to as monodiffric functions
of the third kind.

In this paper we shall be interested in powers of the operators in eqpatidn 1.1, 1.2Jand 1.3
respectively. To avoid confusion we point out that in Kurowski [14], the functions that we here
call monodiffric of the third kind, are called monodiffric of the second kind. We have chosen
not to adapt that terminology and instead use the terminology used by e.g. Kiselman [11], [12],
regarding monodiffric functions of the first and second kind. We shall in Secfion 6 motivate
why monodiffric functions of the third kind deserve attention of their own.

Definition 1.1 (¢-polyanalytic functions (polyanalytic functions of ordg). Define for complex-
valued functionsf onZi],

(1.4) Lif(2) == f(z+1) = f(2) +i(f(z +1i) = f(2))
(1.5) Lof(2) == f(z) +if(z+1) — f(z+ 1 +1i) —if(z+1)
(1.6) Lyf(z) = flz+1) = f(z = 1) +i(f(z +1i) — f(z — 1))

We define, for a given positive integerand a fixedj € {1,2,3}, a complex-valued function
f: Zli] — Cto be:
g-polyanalytic(or polyanalytic of order;) of the first kindat z € Z[:] if

(L.7) Lif(z) =0

g-polyanalytic(or polyanalytic of order;) of the second kindt z € Z[i] if
(1.8) L3f(2) =0
andg-polyanalytic(or polyanalytic of order;) of the third kindat = € Z[i] if
(1.9) Lif(z) =0

If the condition holds true at each point of a subSe€ Z[i| where the defining operator is
defined, then we say thditis ¢-polyanalytic (or polyanalytic of ordej) of the first, second or

third kind, respectively oy and when it is clear from the context whais we simply say that

f is g-polyanalytic (or polyanalytic of ordey) of the first, second or third kind respectively.

Remark 1.1. Obviously a complex-valued function is monodiffric of thgh kind atz € Z][i],

if and only it is1-polyanalytic (or polyanalytic of ordel) of the j:th kind atz € Z[i|, wherej €

{1, 2, 3}. The use of;-monodiffric is already taken in the literature, see Tu [18], p.237, where,
for a givenp € (0, 1], a complex-valued functiofion D := {z € C: (Rez € jN) A (Imz €

jN)}, is defined to be-monodiffricatw € Dif f(w) = (i—1) f(w)+ f(w+ip)—if(w+p). The
termn-analytic (as a variant to polyanalytic of ordey has been present in classical complex
analysis for the members of the kerneFbfat least since 1970, see e.g. Bosch & Kraijkiewvicz

[2] and more recent work by e.g. Ramazanovi [16]/ [17], Cuckovic &[Le [3] and Fedorovskiy
[6]. The term polyanalytic seems more useful only to describe the general case when the order
is not of particular interest. The tergaanalytic would be preferred by the author also in the
context of this paper, but we have been informed that it is, in discrete analysis, used with other
meaning. The term polyanalytic of orderunder the given circumstances of this article, has
two direct draw-backs. The first being that when specifying the kind, possible phrasings like
polyanalytic of orderg of the j:th kind, are longer (thap-polyanalytic of the;:th kind) and
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can be ambiguous. Furthermore, as in the case in the analogous theory in classical complex
analysis, authors like Avanissian & Traoré [1] worked with generalizations to higher complex
dimension (in the sense that the orgenust be replaced by a multi-indey it is most likely

that generalizations will be studied on powersZof] in the discrete theory, in which case one
must replace the ordet by a multi-index, and a short and distinct terminology would then be
a-analytic ora-polyanalytic.

For a formalistic motivation of the monodiffric functions of the third kind, we shall in Section
start from more basic structures and construct the archetype for the operator and in doing so
we believe adjacency is useful in motivating the defined operators and furthermore some level of
structure such as multiplication is a priori not required. We shall in Section 6 motivate the first
order linear operator given by equation|1.3 by analogy to the differential geometric definition
of holomorphic functions and we believe that its powers will be natural analogu@s dh
Section B we shall solve for thepolyanalytic functions (or polyanalytic functions of order
q) of the three kinds respectively. In Sectjgn 4 we propose, based upon previous work, some
natural multiplicative structures for the function spaces @&|éf; for each of the three kinds of
analytic functions. In relation to pseudo-powers associated to such multiplicative structures, we
investigate a question posed by Kiselman [12].

2. INITIAL COMPARISON BETWEEN THE SECOND AND THIRD KIND

Kiselman [11], Sec 3, has astutely pointed out that at the level of ideas the operators defined
by equation 1.2 and 1.3 are quite similar. Kurowski [13], p.1, makes a remark that we interpret
to be of similar sort to Kiselman’s point. It is clear however that the solution spaces defined
by the operatord.,, L3 are not, in any formal rigorous way, equivalent. This can easily be
displayed by example. See Proposifion 5.1 for a more comprehensive result regarding any pair
amonglLy, Lo, L.

Example 2.1.Letz € Z[i],and letV := {z, 2+1, 24+2, 242414, 2+ 2+ 21, 2+ 1424, 2+ 2i, 2+
1,z+1+1}. Now relative tdl/, the points:, 2+ 1, 2+ 1 + 1, z + 7, are the only points wheré,
is defined whereas+ 1 + i is the only point wheré 5 is defined. To this end, sétz+2+1i) =
L f(z+1) = f(24+1+4+2i) = f(z+ 1) = 0 (making sure thal.; f(z + 1 + i) # 0) and set
f(z+1+1) = 0. Then there are four undefined valugs), f(z +2), f(z + 2+ 27), f(z + 2i),
and we invoke four conditions, f(z) = Lof(z + 1) = Lof(z+1+1) = Lof(z 4+ i) = 0,
giving,

10 0 0 £(2)

0i 0 0 fiz+2) |
00 =1 0| |f(z+2+2i)
00 0 —i|l]| flz+2)

—if(z4+ 1)+ f(z+14+10)+if(z+1) 0
—fz4+1)—if(z+2+0)+if(z+147) 1
—flz+1+19) —if(z+2+1) +if(z+ 1+ 29) 1
—flz4+10) —if(z+1+4) + f(z+ 1+ 210) 0
Which gives,

f(2) 10 0 0f]0 0
f(z+2) | |0 i 0 Of|1] |4
f(z+ 2+ 2i) 00 —1 0] {1  |-1
f(z+2i) 00 0 4|0 0

Thus, we have a complex-valued functibpon V' such thatl, f(2) = Lof(z + 1) = Lo f(z +
1+id)=Lof(z+1i)=0butLsf(z+1+1i) #0.
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We choose = 0. Setf(w) =0, forall w € V' whereV’ = {z =z +iy € Z[{]\V: z-y = 0}.

This uniquely defines an extension fothat satisfiesL, f = 0 at all points ofZ[i]. Indeed
consider the point2+ k) +i wherek = 1. The valuef(2+ k+1) is uniquely determined by the
value a+k, 2+k—1, (2+k—1)+i which are all known fok = 1. Once the value af(2+%+i)

is determined the process can be repeated by replacingh & + 1, thus uniquely determining
fonthe sel/ U{y = 1,z > 3}. Obviously we can then iteratively repeat the process row-wise
until we havef uniquely determined on the upper right quadrant. Analogously, we have the
unique extension of that satisfied., f = 0, to each the three remaining quadrants by the same
iterative process (See Section 3 for a formalization of this process). This yields an extension
of f that is an entirel-polyanalytic of the second kind, and clearly no extensioyi oén be
1-polyanalytic of the third kind at + 1 + 7. Propositior{ 5.]L below gives a more comprehensive
result on these matters.

2.1. A note on integrals. A polygon I', in the complex plan€ consists of a set oV edges
lag, al], a1, as], ..., [an—1,a0], Wherea;,j = 0,..., N are given points irC. In particular it
is determined by the ordered set of verti¢es, . ..,ay) € CV. A function f defined onl" is
calledpiecewise affiné f is affine on each segmejat, a; ] with the possible exception of the
points that belong to two or more segmernitss calledclosedif oo = ay. Let f be piecewise
affine on a polygon® determined byay, ..., ayx) € CV. Then (see e.g. Kiselman]12], p.2)

N
1
2.1) [ 1) = 5375 + flag-))as — a0
j=1
Definition 2.1 (Integral of complex functions along polygond)et f be a complex-valued
function on a polygord™ determined byay, ..., ay) € CV. We define the integral of along
I'as
1 N
22) [ 1) = 5375 + fag-)as = a0
j=1

Let f be a complex-valued function dfii]. Letp, € Z[i], and denote by, the closed
polygon defined by the ordered set of verti¢es as, as, as) := (po, po + 1, p0 + 1 + i, po + 1),
i.e. moving counter-clockwise.

It is easy to verify thaff is 1-polyanalytic of the second kind g iff

(2.3) / F(2)dz =0

wheref is the unique piecewise affine function on the closed polyggmsuch thatf (z) = f(z)
for z € {po, po+1, po+i,po+(1+7)}. Indeedfrp0 = (fpo+14+0)+f(po+1))i+(f(po+i)+

f(po+1+0))(=1)+(f (po)+ f (po+9)) (=) + (f (Po+1)+ [ (po)) = (1 =) f (po) + (1 +3) f (po+
1)+(=1=1) f(pot+i)+(i—1) f(po+1+i) = (1=i)(f (o) +if (Po+1)— f (po+1+i)—if (po+1)) =
(1 —14)Laf(po) = 0. (In fact a stronger result holds true, see Remark 2.1).

As we have pointed out the condition of equation 1.2atloes not involve all four adjacent
points top, but it actually involves the poini, + i + 1 which is not adjacent tp, in the usual
sense. Considering the operafgrwhich atz involves precisely the four points+ i,z 4+ 1,
we have the following.

Observation 2.1. Let f be a complex-valued function d¢kii], let p, € Z[i], and denote by,
the closed polygon defined by the ordered set of veriiggs- 1, po + i, po — 1, po — 7). Then,

(2.4) Lsf(po) =0« [ f(z)dz=0

Tpg
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wheref is the unique piecewise affine function on the closed polygnsuch thapg(z) = f(2)
forz € {po +1,p0 +14,p0 — 1, po — i}.

Proof. Using the notation from equatipn 2.3 together with equdtioh 2.1, we have

(25) 2 | f(z)dz=0% (f(po+1i)+ flpo+1))(i — 1)+

o= 1)+ Fpo+ D) (=1 — i) + (Fo — 1) + Flpo — D)1 — i)+
(fpo+1)+ f(po—1))(1+1) =
—2f(po+ 1) +2if(po+ 1) — 2if(po — 1)2f(po — @) =

_ %(Z’(f(po +i) = f(po— 1)+ flpo+1) — f(po— 1)) =

— %Lsf(po) =0« Lsf(po) =0

Definition 2.2 (Zig-zag polygons) A polygon determined by the ordered set of (possibly infi-
nite) points(ao, . . ., an),(0r (ao, - ..)) a; € Z[i], 5 =0,...,N (orj = 0,1,...) is called azig-

zag polygonf a; —a;_1 € {1+i,—1+i},7=1,...,N (orj =0,1,...) some positive integer

N. ltis non-selfintersecting a, # a, for k # [ except possibly fo(k, 1) € {(0, N), (N,0)}. It

is further callecclosedif it has NV — 1 points whereiy = ay. A point of any subset C Z[i]

is called annterior pointif and only if all four of its adjacent points of first order belong.o

The set of interior points is denoted A subset with zig-zag boundary C Z[i] is the union

of a possibly infinite set of points together with their sets of adjacent points of first order, such
that the set of non-interior points can be ordered to yield a non-selfintersecting zig-zag polygon.
Suchw is called adomain with zig-zag boundarfyeach pair of interior points can be connected

by a zig-zag polygon contained inand it is called asimple domain with zig-zag boundaify

each pair of non-interior points can be connected by a zig-zag polygon in the set of non-interior
points. A point is calleaig-zag eveigodd) if it can be connected by a zig-zag polygoritél).

We also calb zig-zag even and we callzig-zag odd.

Obviously no zig-zag even point can be connected to a zig-zag odd point by a zig-zag poly-
gon, in particular a zig-zag polygon consists either entirely of zig-zag even points or entirely of
zig-zag odd points.

Proposition 2.2. Let f be a complex-valued function @ii]. LetQ2 C Z[i] be a simple domain
with zig-zag boundary. The functighsatisfiesL; f(z) = 0 on if and only if for any closed
non self-intersecting zig-zag polygenc () defined by an ordered set of vertices

(2.6) /f@Mz:O

Proof. First of all, a function on a domain with zig-zag boundary satisfigs(z) = 0 on € if

and only if L3 f(z) = 0 onw for any domain with zig-zag boundagy C €2, with finitely many
elements. Hence we only need to prove the statement for the case of finitely many interior
points. We use induction in the numbery,of interior points (see Definitidn 2.2) of the discrete
domain, (2, with I" as its zig-zag boundary, wheieis defined by the ordered set of points
(ag,-..,an—1). The caser = 1 is precisely equation 3.4. Assume> 1 and that the result
holds true for the case of — 1 interior points. Since: is finite we can find an interior point,

zo+1 = x9+1yo, SUCh thay, is minimal and finite. In particular the points—1-+1, zg, 2o+ 1+1

belong tof2 but are not interior points and we can assuqe= z,. We can assume that the
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boundary is traversed counter-clockwise as vanishing of the integral will be independent with
reversed direction. First consider when also the pgjnt 2i is not an interior point of), i.e. T’
contains the ordered subsequenge2i, zo— 1+, zo, 2o+ 1+1. The se€)’ := Q\{zo, z0+1, 20—

1 + i}, is again a domain with zig-zag boundaty, defined by(aq, . . ., an,—3, 20 + 2i, 20 +

1+ 4,an,49,-..,an—1). The only domains i) with boundary~ that is a closed non self-
intersecting zig-zag polygon, such thatloes not also lie i, is either simply the polygon,

Y., defined by(zo + 27, 20 — 1 4 4, 29, 20 + 1 +4) or -y is defined by(bo, ...,z + 21,2 — 1 +
i,20,20 + 1 +1,...,by—1) for some positive integet/ and pointsh; in €', in particular does

not containz, + i. (Note that the case wheftecontainsz, + ¢ cannot occur because the point

2o + 24 IS assumed not to be an interior point). The first case is handled by a translated version
of equatior] 2.4. So assume the second case. Then lettmgthe closed non self-intersecting
zig-zag polygony’ C Q' defined by(by, ..., z0 + 2i,20 + 1 +4,...,by—1) (i.€. the two points

z0 — 1 + 1, zo are removed) we have

2.7) 2(/ /) (F(z0+20) + F(20+ 1 +))(i — 1)—

flzo+20)+ flzo—14+9))(i+ 1)+ (f(z0 — 1+ 1) + f(20))(—1+ @)+
(f(20) + flzo + L +4)) (=1 —4)] =
—2f(20+2i) +2f(20) + 2if(z0+14+10) —2if(20 —141) =

- %(if(zo +2i)) —if(20) + f(20 + 1 +1) — f(z0 — 1 4+1))

2
= —~Laf(z0 +i) =0

But Q' hasn — 1 interior points ¢ + 7 is not part of the set) thus by the induction hypothesis
f f(2)dz = 0 for any closed non self-intersecting zig-zag polygorc 2. This takes care of
the case when, + 2 is not an interior point.

Now assume that,+2i is an interior point of2 (in particular this implies that+3i, z+2i+1
belong tof?).

Then the sef) := Q \ {20, 20 + i} is again a domain with zig-zag boundafy, defined
by (ag,...,20 — 1 4+d,20 +2i,20 + 1 +14,...,ay_1), butQ’ hasn — 1 interior points thus by
the induction hypothesifw, f(2)dz = 0 for any closed non self-intersecting zig-zag polygon
~ C .

It is easy to see that the only closed non self-intersecting zig-zag polyganS2 which
does not also lie i, is one defined by eithéby, ..., 20 — 1 +4,20,20 + 1 +4,...,bp 1) OF
(bo, ..., 20— 142,20 +1,20+142i,...,by—_y) fOr some positive integet/ and points, in
Q.

For each such define the associated closed non self-intersecting zig-zag pol/gan(?’
by (bo,...,20 — 1 +14,20 +2i,20 + 1 +14,...,by—1) in the first case and by, ..., 20 — 1 +
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2,20+ 3i,20 + 1 + 2i4,...,by—1) in the second case. In the first case we have

(28)2</v /) (2)dz = (f(z0+2i) + f(z0 — 1+9))(1+4)+

+ fz0 +2i))(1 — i) — [(f(20) + f(20 — L+ 12))(1 — i)+
(f(Zo+1+Z + f20)) X +9)] = (f(z0+20) + flz0 — 1 +4))(1 + 1)+
(f(z0 +1+14) + f(z0 +20))(1 — @) + (f(20) + flz0 — 1 +4))(i — 1)+
(Flzo + 1+ 0) + F(0)) (=1 — 1) = ~2f(z0) + 2if (20 — 1+ 4) — 20f (20 + 1+ i)

2f(20+2i):%(i(f(zo—i—%)_f(20>)+f(20+1+i)_f(20—1+i)):

f(2)
Zo+1—|—Z)
)

2
ZLgf(ZO + Z) =0

In the second case, 4, + 3: is not an interior point then we can repeat the procedure applied
to the case when, + 2; was not an interior point. I, + 3i is an interior point the same
calculations as in equatipn 2.8, but translated one step imthedirections yields

2.9) (/ /) dz——Lgf(zo+2@) 0

This proves the induction step. This completes the prpof.

Remark 2.1. Kiselman [12] defines a polygon determined by the ordered &gt . ., ay),
a; € Z[i], j = 0,...,N to be a4-curveif a; —a;_y € {£l,+i},j =1,...,Nanditis a
well-known result see e.g. Isaacs [8], p.183, that i§ a monodiffric function of the first kind
then

(2.10) /f(z)dz =

for each closed (non-selfintersecting) 4-cuwwvd@ he corresponding result for monodiffric func-
tions of the second kind also holds true (see e.g. Duffin [5], Corollary 2.1.1).

3. CHARACTERIZING THE SET OF ¢-POLYANALYTIC FUNCTIONS

In this section we shall obtain the kernels of the powers of the opera{ors,, L3 which in
turn give the defining difference equations fepolyanalytic functions ofZi].

For background on solving finite difference equations see e.g. Mickens [15] and Jordan [10].
For this particular section we shall in the interest of conformity with previous literature use
some special notations.

3.1. Firstkind, ¢ = 1. For a complex-valued functiofionZ x Z (or Z[i] in which case we
shall still write f(k, {) instead off (k + il) where(k, ) € Z?*), we use the notation

This implies that a function is monodiffric of the first kind @] if at eachk + il € Z, we have

wherel denotes the identity operator. Hor> 0, this can be is solved by the symbolic method
of Boole (see e.g. Jordan p.616) to yield,

(3.3) Flk, 1) = (iBy — I + i) :izj( )Eggb

J=
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where¢ is an arbitrary function. Hencg(k, 1) is monodiffric onZ[:] if and only if at each point
k + il € Z[i],k > 0, we have,

l

(3.4) Fk,1) = Zz’f (’;) o+ j)

for an arbitraryo.

Obviously, given a functiorf defined for{z € Z[i]: Rez > 0}, and1-polyanalytic of the
first kind, to obtain an extension #:] that is1-polyanalytic of the first kind it is sufficient to
know the values of on{z € Z[i]: Rez < 0}.

Observation 3.1. Let f be 1-polyanalytic of the first kind otZ[i], let = = = + iy denote the
standard coordinate i#[:], and letp, € Z[i]. Then f is uniquely determined by its values on
Dy :={z € Z[i]: Rez = Repo} U{z € Z[i]: (Rez < Repy) A (Imz = Imp,)} Also any
proper subset o’ C D is not a set of uniqueness (in the sense that there are two different
1-polyanalytic functions ofZ[:] that agree o’).

Proof. We can use the same procedure as that in Example 2.1 but appligdristead ofL,
namely start from the sef),. Define iteratively the set®;, j € N, as follows: LetD,, be the
set of all pointss € Z[i] satisfyings € {w,w+ 1,w + i} for somew € Z][i] such that precisely
one point of the sefw,w + 1,w + i} does not belong td;. ThenlJ; D; = Z[i]. f can be
iteratively extended to each, by assigning the value of ats € D; \ D;_, to be determined
by the equatiorf(w + 1) +if(w + i) — (1 + %) f(w) = 0. Obviously replacing the value ¢f
at a point ofD, yields a different extension té[:]. This completes the prooi

Remark 3.1 (Uniqueness of extensian)n the proof of Observation 3.[[, ¥.2,8.4 respectively,
the procedure for obtaining the extensionfdfom its values on the sé?, can only be done in
one way. In particular, the only extension of a function that vanisheSis the function that
vanishes identically ofZ[i]. In other words, if two functiond’y, F» on Z[i], satisfy for some
Jj=1,23,L;F; =0,andL;F, = 0 then

(3.5) Fi|lp, = F|p, & F1 = I}

Definition 3.1. For a fixedj € {1, 2,3}, we say that a seb C Z[i] is aset of uniquenegsvith
respect td_;) if any function f satisfyingL; f = 0 onZ[:i] andf|, = 0 must vanish identically.
It is aminimalset of uniqueness if it does not properly contain any other set of uniqueness.

3.2. Second kind,q = 1. From a purely theoretical perspective we can find two parametrized
independent solutions in the kernel bf as follows. We use Lagrange’s method (see e.g.
Mickens Section 5.3, p.186) in order to find a particular solution that depends on a parameter.
Setf(k,l) := f(k—1,1—1), (k,1) € Z> Obviously, f is 1-polyanalytic if and only iff is
1-polyanalytic. we can write the defining equationsfobeing 1-polyanalytic of the second

kind according to,

(3.6) (E2Ey — I +iE2E, — i) f(k, 1) =0, VY(k1) € Z?

Set¢(Ey, Ey) := EiE, — [ +iE2E, —il. To find a particular solution we look for those of the
form \*i!, and we consider the equatiaf(\, ;1) = 0, i.e.,

(3.7) NMu+ipPA—1—i=0

Denote by\,;(i) the two roots of this equation, which yields the two particular solutions
(Nj(u)*ut, 5 = 1,2. By linearity the sum of all such expressions for all possible values of
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p will also be solutions. LetD;(x) be arbitrary functions of:, j = 1,2. This yields two
independent solutiond {polyanalytic functions of the second kind)

O D)) d Re pud T g, = 1,2
(Re p,Im p) €R?

However from a practical point of view, equatjon|3.8 are rather intractable and intangible and
more work is required to determine whether evésgolyanalytic function of the second kind
corresponds to such a sum. We can instead, as in the cageobfanalytic functions of the first
kind, consider minimal determining sets (minimal sets of uniqueness) in order to describe the
kernel of L,.

Observation 3.2. Let f be 1-polyanalytic of the second kind 6fi], let = = x + iy denote the
standard coordinate iA[:], and letp, € Z[i]. Then f is uniquely determined by its values on
Dy := {z € Z[i]: (Rez — Repp)(Imz — Impy) = 0} Also any proper subset d’ C D is
not a set of uniqueness (in the sense that there are two diffeqiyanalytic functions otZ|:]
that agree o).

Proof. We can easily use the procedure in Exanjplé 2.1 as follows. Start from th&set,
Define iteratively the setB;, j € N, by letting D, be the set of all points € Z[i] satisfying

s € {w+ 1l,w—1,w+i,w— i} for somew € Z[i] such that precisely 1 point of the set
{w,w+1,w+1+i,w+ i} does not belong td;. Then{J; D; = Z[i]. f can be iteratively
extended to eacly; by assigning the value of ats € D, \ D,_; to be determined by the
equationf(w+1) +if(w+1) — f(w+1+1i) —if(w+1i) = 0. Obviously replacing the value
of f at a point ofD, yields a different extension t8|:]. This completes the proo#

3.3. Thirdkind, ¢ = 1. Let f(k,l) = u(k,l)+iv(k,[) be al-polyanalytic function of the third

kind (whereu andv are the real and imaginary parts pfrespectively). We will start by ex-
plaining from a theoretical point of view how one could go about solving for tpelyanalytic
function of the third kind, however as will be clear this approach can be non-tractable in practice
which is why we then give a description of the kernellgfalso in terms of minimal sets of
uniqueness.

For the theoretical perspective we start by noting that(k, /) = 0 is equivalent to the pair of
equations

(3.9) u(k+1,0) —u(k—1,1) =v(k,l + 1) —v(k, ] — 1)

(3.10) w(k, 14+ 1) —u(k,l —1) = v(k —1,1) — v(k + 1,1)
Now equation 3.7]0 yields

(3.11) vk + 1,0 =v(k —1,0) —u(k, L+ 1) +u(k,l — 1)

If we replace(k, ) by (k — 1,1+ 1) and(k — 1,/ — 1) respectively in equatidn 3.]L.1 we get the
pair of equations

(3.12) vk, I+ 1) =v(k—2,0+1) —ulk — 1,1 +2) +u(k — 1,1)
(3.13) vk l—=1) =vk—2,1-1)—ulk—1,0) +u(k — 1,1 — 2)
Now equation§ 3.12 arjd 3]13 combined with equdtiop 3.9 yield

(3.14) u(k+1,0) —u(k —1,0) =v(k — 2,1+ 1) —v(k — 2,1 — 1)+
u(k —1,1—2) —u(k — 1,1+ 2) + 2u(k — 1,1)
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i.e.

(3.15) w(k+1,0) —u(k—1,1) =u(k —3,1) —u(k — 1,1)+
u(k — 1,0 —2) —u(k — 1,1+ 2) 4+ 2u(k — 1,1)
Hence a partial difference equation for a real-valued function in two variables. To solve it we
shall use Laplace’s method of generating functions (see Jdrdan [10], p.607). First let
(3.16) u(k,l) = u(k — 3,1 —2)
so that equation 3.15 becomes

(3.17) a(k+4,142) —a(k+2,042) —a(k, 1 +2) + a(k + 2,1+ 2)—
ik +2,0) +a(k +2,0+4) — 2u(k + 2,1 +2) =0

Let a,, denote the coefficient af(k + r,l + s) in equatior} 3.17, e.gu» = 1,a22 = —1, etc.
Denote the generating function @fy,

(3.18) Ut ty) = ZZ (k, D)t"t!

=0 k=0

Then we can deduced (see Jordan [10], p.608) that, using the notation

(3.19) wlk,ty) =Y ak, )t
=0

we have

(3.20) ZZ%#S (k+rt) — %4k 4+ 7,0) — tha(k +r,1) — - —

s=0 r=0
t7ak+r,s—1)) =0

Now equatior} 3.20 is a linear difference equatiort itfor the functionw(k, ¢,) with ¢, fixed)
with constant coefficients (in the sense that they are independent of the vafjaiflerder4
and it contains already arbitrary functions of

(3.21) ¢;(k) = ak,j—1), j=1,2,3,4
To be clear set
4 4
(3.22) K(t1,k):=> Y anti (Ba(k +r,0) +ta(k +r,1) + - +
s=0 r=0

7 a(k +r, s — 1))

4
(3.23) At) =) aasti™, Blty,r) = Z a1
s=0
and write equatiop 3.20 as
3
(3.24) Alt)w(k +4,t1) + > Bty r)w(k +r,t) = K(t1, k)
r=0
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The general solution to such an equation is given by the Spm+ S, ;, wheresS;,,, is the
general solution to the homogeneous probléfnréplaced by) and.S, ;, is a particular solu-
tion. Since the coefficients of the homogeneous equation are independemthes; ,, can be
obtained via the roots of the characteristic equation

3
(3.25) O(N) = A(t)A" + > B(t1, 1)\ =0
r=0
If there arex different roots, sayq, ..., A, of multiplicities 4, ..., 7. then
(3.26) Shir (k) =Y (Hoa(tr) + Hoo(t)k + -+ + Hor, (1))
o=1

where theH, . (t;) are arbitrary functions of;. A particular solution is usually found by an
Ansatz e.g. using the method of Secfior] 3.2. The expansieriioft; ) into a power-series ity
will yield u(k, 1), the arbitrary functions of; will after expansion yield arbitrary functions of
l. In this way one could determine all possible solutiai{g;, /), to equatior) 3.17. This in turn
yields the starting real partvia equation 3.16. Finally, givemwe have the following.

Observation 3.3. Let f be 1-polyanalytic of the third kindy := Re f,v := Im f. Then f is
uniquely determined by the values©0bnZ|i] together with the values efon a set of the form
{po,po + 1,po +i,po + 1 + i}, for some poinp, € Z[i].

Proof. Let = denote the standard coordinateZfi]. By equatiorj 3.9 and 3.10 we have,
(3.27) v(go +14) = —v(go — 1) — (u(go + 1) — u(go — 1))

(3.28) v(go+1) =v(go — 1) — (ulgo +1) —u(go — 1))

Hence having the two values ofatpy, = ¢o — 1 andpy + 1 = ¢y, we can obtairy on the
setS; := Z[i] N {Imz = Impy}, via equatior 3.28. Similarly we obtainon the setS; :=
Z[i) N {Imz = Impy + 1}, via the values ob atp, + ¢ andpy + 1 + i. Analogously, given
v at the two adjacent points + ¢ and p,, equation| 3.27 yields on the setS; := Z[i] N
{Rez = Repy}, whereas the two adjacent poinig+ 1 + i andp, + 1, yieldsv on the set
Sy = Z[i] N {Re z = Repy + 1}. This process can now be iterated for each subs@jg{ S;,
of the form {wo, w0 + 1, wy + i, wy + 1 + ¢}, for some pointw, € Z[i]. This completes the
proof. g

Now, for the sake of practicality, we can also for thgolyanalytic functions of the third
kind, consider sets of uniqueness in order to describe the kerrigl of

Observation 3.4. Let f be 1-polyanalytic of the third kind oiZ[i], let = = x + iy denote the
standard coordinate i#[i], and letpy, g0 € Z[i] such thaty, (o) is zig-zag even (odd). Then

f is uniquely determined by its values @h := DEVNU DYA where DEVENcan be either
{po} U{po + 5o ((=1)7 + ),k € Z} or {po} U {po + 325 (1 + (~1)%i), k € Z} and DPYd
can be eithefqo} U{qo+ 35 _o((—1)7 +i),k € Z} or {go} U{go+ > (1 + (—1)%4), k € Z}

Proof. Start from the setD,. Define iteratively the set;, ; € N, by letting D, be the set
of all pointss € Z[i] satisfyings € {w + 1,w — 1,w + i,w — i} for somew € Z][i| such that
precisely 3 points of the s¢tv + 1, w — 1, w +i,w — i} belongs taD;. | J; D; = Zli] and f can
be iteratively extended to eadly by assigning the value ¢fats € D;\ D,_; to be determined
by the equatiory(w + 1) — f(w — 1) +if(w + i) —if(w — i) = 0. Obviously replacing the
value of f at a point ofD, yields a different extension t8:]. This completes the proog
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3.4. The set ofg-polyanalytic functions wheng > 1. Now that we have seen for each of the
kernels ofL,, Lo, L3 how to obtain any member by choosing appropriate values on a minimal
set of uniqueness we can use these members in order to solve for the members of the kernels of
LY, L Lifor ¢ > 1. Define the convolution of two complex-valued functiofig onZ[i] by

(3.29) (f9)(z):= Y flw)g(z—w),z € Z[i,

wEZL[E)

Observation 3.5. Assume that we have an operagjracting on complex-valued functions on
Z[i] and satisfyingL;(€;9)(z) = g(z). If f is ag-polyanalytic function of thg:th kind onZ][i],
we havelL!f =0 = L;(L{"'f) = 0sog := LI f, is al-polyanalytic function of thej:th
kind. SinceL,(€;g1) = g1 this means that the functio, := £;¢1 + g2 is 2-polyanalytic of
the j:th kind satisfyingLf.Gg = g1, for any functiong, that is1-polyanalytic of thej:th kind.
Continuing in this fashion we obtain a functichy = £/~ g, + &/ *ga++ - - +&;g4—1 +9,, Where
the g, are arbitraryl-polyanalytic functions of the:th kind, such thaLqu = (0. Hence we can
obtain anyy-polyanalytic function of theg:th kind starting froml-polyanalytic functions of the
j:th kind and we have in the previous section described howpdilyanalytic functions of the
j:th kind can be determined.

Hence in order to determine tlgepolyanalytic functions of thg:th kind forq > 1 we only
need to find the appropriate operatfrsassociated to the operatars, j = 1, 2, 3.

We start withe;. It was resolved by Isaacs|[8], p.194. Defile := {z € Z[i]: 1 — Rez <
Imz < 0}, B_ := {z € Z[i]]: 1 —Imz < Rez < 0}. Define the operatof); as follows:
Q+(2) =0whenRez <0,Q4+(1) =1, Q. (1 +1iy) = 0 for y # 0 and then define recursively
Qi(z)forRez=p+1,p>1,byQ(p+1+iy) = (1 +i)Q(p +iy) —iQ(p +i(y +1)).
Analogously defing)_ such thatQ) _(z) = 0 forImz < 0, Q_(i) = 1, Q_(x +17) = 0
for z # 0 and then recursivel) _(z) for Imz = p+ 1,p > 1, by Q_(z +i(p + 1)) =
(1—-0)Q_(x+ip) +iQ_(x+1+1ip). Kiselman [11], showed in the proof of Theorem 4.2, that
the following operator satisfies the wanted conditions in Observation 3.5,

(3.30) it [ Qe +x(Xf) + Q- (1 —X)f

In the case of the second kind Letlenotes the characteristic function of the 4et:= {Re z+
Imz > 0}, and set

(3.31) Si(z +iy) = "d(z,y), =+iy € Z[i]

whered(z,y), (z,y) € Z?, is defined a® whenz < —1 or wheny < —1, asl when(z,y) =
(0,0), and for(z,y) € N?\ {(0;0)} by the recursion formuld(z,y) = d(z — 1,y) + d(z —

1,y — 1) +d(z,y — 1). Kiselman [12], showed th&f, is a fundamental solution supported in
A = {(Rez > 1) A (Imz > 1)}, and pointed out that there is a natural analogu#& obut
whose supportist_ := {(Rez < 0) A (Imz < 0)} (instead ofA ;) and the existence of which

is proved similarly. Kiselman [12], showed in the proof of Theorem 4.2, that the following
operator satisfies the wanted conditions in Observatign 3.5,

(3.32) Eai fro Sux (Xf)+ S x (L= x)f

Finally in the case of the third kind, define for a complex-valyezh Z]i],
(3.33) Lif(z):=f(z+1)— f(z—=1) —if(z+1i) +if(z — i)
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and denote by, the operator which acts according to

(3.34) A f(2) = (LsoLy)f(2) = f(z+2) + f(2 — 2)+
fz4+2i)+ f(z —2i) —4f(2)

We call this operator thevo-stepdiscrete Laplacian.
Define

(3.35) st [ [ (LLF)

where we choos# to be the following

(3.36) G (m,n) := 2i /027r dip (1 — exp(i(£me £ nip))) (4 — 2cosp — 2cos )

™

satisfying (see van der Pal [20])
(3.37) A(g)%(m +in) = O (m,n)

whered,, ,y = 1if m = n = 0andd, ) = 0, otherwise. Then in light of.3(L;¥) = A9,
we haveLs (€ f)(2) = La(f*(Ls#))(2) = ez Laf () (L9) (z—w) = 3, cppy £ (w)(Ls(L4%) (2~
w)), z € Z[i].

Now given a fixedw € Z[i], we have(L3;(L9)(z — w)) = A9 (2 — w) and the two-step
Laplacian commutes with translatio),: z — z — w, .. A7, 0 9 (2) = Ty 0 (A2)¥)(2).
ThusA ¥ (2 —w) equalsl if z = w and0 otherwise. Henc€; satisfies the wanted conditions
in Observation 315.

Remark 3.2. In this paper we are considering homogeneous equations of thelfofm= 0,
where; € {1,2,3} andq a fixed positive integer. We mention, as a remark, thatTu [19],
p.46, presented the following statement: hdie a positive integer, let, . . ., ¢, be arbitrary
constants and let;, - - - ,a, be distinct roots ofi® 4 ¢,_1a" ' + --- + cia + ¢y = 0. Then

the general solution tQ 7, ¢ LiF = 0is F(z) = 30 Be®*, Byi = 1,--- ,n, are
arbitrary constants and* = (1 + a)*(1 + ia)¥, for z = x + iy, anda € C.

Clearly any equation of the forqé;L?F = 0 would have associated todt,_; = 1,¢; = 0,5 <

n —1,i.e.the equation™ + 1 -a"~! = a"(a + 1) = 0, which has distinct roots only in the
caseofn =1o0rn = 2.

If n =1,¢c0 = 0thena; = 0is the only root ofa + ¢y = 0, and we are considering (up to
multiplication by the constarit/2) precisely the equation for monodiffric functions of the first
kind, L, f = 0. However the functiory_!_, B,e%* = B;1°t = B,.

If n = 2 then the roots are, = 0 anda, = —1, thus giving the functiorf’(z) = Bye%* +
Bye™1* which, forz # 0, can be evaluated aB8,1*¥ + By - 0 - (1 — 7)Y = B;. Obviously
a complex constant is not the general solutior.tg = 0 or L2 f = 0. We conclude that the
statement in Tu [19] is not meant to apply to equations of the fbfrh = 0 for any positive
integerq.

4. SOME NATURAL MULTIPLICATIONS AND PSEUDO -POLYNOMIALS

We believe that from an algebraic perspective it makes sense that some notion of multiplica-
tion is used such that the corresponding notion of (pseudo-)polynomial wiHdmdyanalytic,
and that the multiplication would need to be given by a binary relation, distributive over addi-
tion. Obviously being both left and right distributive as well as associative and abelian would
be satisfying properties as well, however such requirements are overly restrictive given the cir-
cumstances. Multiplicative structures that are non-associative do occur in modern research but
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non-distributive ones seem to be rare which is why we have required, at minimum, distributiv-
ity. Natural analogues of polynomials in the function spaces that satisfy our above requirements,
more or less exist in the literature, for the case of monodiffric functions of the first and second
kind already. We shall similarly introduce such analogueslfpolyanalytic functions of the

third kind.

4.1. First kind. The analogues of polynomials that we endorse, when it comes to multipli-
cation in the function spaces, are finite linear combinations of what is called pseudo-powers,
219, j € N. In the case ol -polyanalytic functions of the first kind, these where introduced by
Isaacs([9] using a multiplication, between the coordinate functieny — z + iy, and another
complex functionf: Z[i] — C, according to,

(4.1) (z +1y) O1 f(z +iy) == af((x — 1) +dy) +iyf(z +i(y — 1))

andc ®; f := cf for constants € C.
For two complex-valued functiong g onZ[i] we define

(4.2) (901 f)(@ +iy) :==Reg(z +iy) f((z — 1) +iy)+

ilmg(x+iy)f(z+ily — 1))
andc @, f := c¢f for constants € C.
Example 4.1.We have:? = (2% —y?) +2izy, sothat: © 22 = z((z —1)3 — (z — 1)y* + 2iy(z —
1)) +iy(x? — (y — 1)?) + 2ix(y — 1)) whereas:? ©; z = (22 — y?)(z — 1 + iy) + i2zy(z +
i(y — 1)) which implies: ®; 22(2) = 2 — 4i # 4 = 2? ®; 2. Hence the multiplicatior; is not
commutative. Furthermore note that), z = x(x — 1 +iy) +iy(z +i(y—1)) = (2> —x+y —
y?) +i2zy, thus(z ©1 2) ©1 2 = (2® —z +y — y?)(x — 1 +4y) + 2zy(x +i(y — 1)) whereas
201(2012) = z((z—1)*—a+1+y—y*)+i2(z—1)y) +iy (2 —z+y—1-(y—1)*)+i2z(y—1)),
giving (2 ©®1 2) ©®1 2(—1) = =4 # =14+ 1+1) +i2 = 2 O (2 ©®1 2)(—1). Hence®, is
non-associative.

The multiplication®, is obviously distributive over addition but as we have seen not abelian,
and therefore yields two different kinds of pseudo-powers which we shallefalnd right
polynomials respectively. The left pseudo-monomials are defined recursively according to

(4.3) LOhi=1, Ao =50 20 e,
whereas the right pseudo-powers are defined according to
(4.4) 00T =1 GTLOLT — S0 g s e Ty

By distributivity we obtain natural extension to left (rigipgeudo-polynomial, |eft (P, right)
of degreeN, according to

N N
(4.5) P left(2) = ez (Pyright(2) = ) 2"
j=0 Jj=0

where thec; are complex constants.
We call complex multiples of pseudo-powepsgudo-monomials

Proposition 4.1. Let f be al-polyanalytic function of the first kind df[i]. Thenz ®; f(z) is
a 1-polyanalytic function of the first kind df(:].
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Proof. Denotex = Re z,y = Im 2. We have: ©; f(z) = 2 f(x — 1 +1y) +iyf(z +i(y — 1)).
Thus

(4.6) L(z®1 f(2) = (+1)f(2) = fle—1+iy) +iyfla+1+i(y—1))—
wfle+ily—1) +izaf(r—14+i(y+1) —af(z —1+idy) +ily+ 1) f(2)—
yfle+ily—D]=azf(z)+ f(2) —2f(z = 1) +iyf(f+1—i)-
iwyf(z—i)+ixf(z—1+14) —izf(z—1) —yf(z) — f(2)+
yf(z—1) =y(=f(z) + flz =) +i(f(z+1—i) = f(z — 1))+
o(f(z) = fe=1)+i(f(z—1+1) = f(z—1)) =
—%Llf(z—i)erLlf(z—l) =0

This completes the proog

Since the pseudo-powers®: are defined iteratively and obviousfyz) = z is 1-polyanalytic
of the first kind, we immediately have the following.

Corollary 4.2. The pseudo-power-©1! is, for each;j € N, a 1-polyanalytic function of the
first kind.

4.2. Second kind. Also in the case of-polyanalytic functions of the second kind, there exists
in previous literature a natural multiplication (see e.g. Duffin & Petersson [5], p.626) that we
endorse. We define the following binary relation,, on the space of complex valued functions
onZlil,

(4.7) (9 ©2 f)(z) = f(w)dw

Yg(2)
wherey,, is a 4-curve with initial poinzy = 0 and end pointiy = g(z) for some positive
integer N. As a direct consequence of equatjon 2.10 (path-independence), the niynber
f)(z) is independent of the choice of different, non-self-intersecting 4-curyethat share
initial and end point. Clearly;», is distributive over addition. It is however not abelian or
associative.

Example 4.2. That®, is not abelian takef (z) = 22, g(z) = 2 and calculate2(g ®, f)(—1) =
(1+0)(—=1-0) = —1,wherea2(f ®29)(—1) = (1—-0)(1—0) = 1. Itis not associative which
can be seen by setting((z) := 2(g ®2 g)(z), and noting thatd(—1) = (-1 +0)(—1—0) = 1,
A(0) = 0,and((g ©2 g) ®2 g)(=1) = (1 = 0)(1 = 0) = 1, whereas(g ©, (g ©2 9))(—1) =
(A(=1) + A(0)) (=1 —0) = —1.

The multiplication®, therefore yields two different kinds of candidates for so catieeludo-
monomialsnamely we introduce the left pseudo-powers

(4.8) PAC 1, AR N O z(j)’l,j S/
whereas the right pseudo-powers are defined according to
(4.9) ZO0r =1 U = 0o, 2 e Zy

Up to multiplication byj, the left pseudo-monomials can be found in e.g. Duffin & Petersson
[5], p.626, there denoted’) (which means thatzU+1! =: 20) for j > 0) and they are known

to bel-polyanalytic of the second kind, see e.g. Theorem 2.6, Duffin & Petersson [5] (note that
the the reason the multipledoes not appear in our definition is that our definition arises as a
consequence of a more general multiplication whereas'thare stand-alone definitions). Itis

AJMAA Vol. 15, No. 1, Art. 4, pp. 1-26, 2018 AJMAA


http://ajmaa.org

POLYANALYTIC FUNCTIONS ON SUBSETS OFZ [1] 17

precisely thdeft pseudomonimials that we endorse (as natural analogues of poweis tife
case of holomorphic functions) in the casel giolyanalytic functions of the second kind.

4.3. Third kind. Letwv; be a zig-zag even point and kgt (v;) be a zig-zag even (odd) pointin
Zli]. LetT'y,, (I'1 ,,) be a zig-zag polygon staring @t1) with end pointv, (v2). Obviously for
any zig-zag polygoriT+(F ) from a pointa(b) to a pointh(a) we have for any complex-valued
function f onZ[i], [._ f — Jr+ f(2)dz. As a consequence of Proposn.z 2 (zig-zag
path- mdependence) the numbers

(4.10) (even)/vl fw)dw = f(w)dw, (Odd)/v2 fw)dw = f(w)dw
0 1

FO,vl Fl,’U2

are independent of the choice of zig-zag polydan, (I'y.,) as long as they are zig-zag poly-
gons starting ai(1) with end pointv; (v2). Define, for each functiorf: Z[i] — C, the number

‘ (even)[” f(w)dw , if z is zig-zag even
(4.11) /Zig zag, | (= { (odd) [ J( dw , if = is zig-zag odd

Obviously, by zig-zag path-independence we can now define integration along an arbitrary
zig-zag polygon’, with starting pointz, and end point. (for a positive integerV) namely

Jo fw)dw = fzig-zagaN f(w)dw — fzig-zagao f(w)dw.

Proposition 4.3. The functionF'(z) := f2|g -zag f(w)dw is 1-polyanalytic of the third kind
wheneverf is.

Proof. Without loss of generality, assumas zig-zag even. we chose paths frem 1 to z + 1
namely(z — 1,z —i,z+1),and fromz —itoz +i (2 — i,z — 1, 2 + i), and as a consequence
of Proposition) 2.R (zig-zag path-independence) we can write

4.12 dw = du — y
o 2/Zi9'zang(w) v </Zi9'zagz+1f(w) N /zig-zagmf(w) w) "
" </zig-zagz+i flw)dw = /zig-zagzi ﬂw)dw)
-7 (/zig-zagz+1 Flw)d = /zig-zagz_l f(w)dw> *

” /zig-zagzﬂf(w) v /Zig'zagz—iﬂw) w)

fE+D)+fE=O)((z+1) = (=) + (f(z=)) + flz =)z —1) = (2 = 1))+
i(flz+i)+fE=D))(z+9) - (-1))+i(f(z-1)+ flz=))((z—1) = (z—1)) =
(f+D)+ flz=9)A+0)+(flz—9)+ flz— 1)1 -0+
(f(z+z)+f(z—1))<1 i)+ +i(f(z = 1)+ flz —i)(-1+1i) =
A+ fE+D)+ (= =DfE-1D)+E-1f(z+)+ A =i)f(z—1i) =
I+ (fz+1) = flz=1)+i(1+i)f(z+i) —i(l+3)f(z —1i) =
(L+1) - Ly(f(2)) =0

This completes the prooi
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We define the following binary relationy;, on the space of complex valued functions on

(4.13) 9o NE= [ S

Again, ®; is distributive over addition but not abelian and not associative (see expmple 4.3, and
therefore yields two different (see Example|4.3) kinds of monomials,

(4.14) A0 =1 S0 = oy M ez,
whereas the right monomials are defined according to
(4.15) 0=, LM =Gl og 2 ez,

By Proposition 4.3 the pseudo-polynomials obtained via the left-monomials grpallyanalytic
of the third kind.

Example 4.3. To see that>; is non-abelian take(z) ®3 f(z) at the pointz = 1 + ¢, where
f(z) = 2%,9(z) = 2. We haveg(z) ©3 f(z) = fZig'Zagz w?dw, whereasf(z) ©3 g(z) =
fzig_zagZQ wdw. Hence at: = 1+ we have:? = 2i sothatf(z) ©®3¢9(z) = (1 +4)*+0)(1+
i—0)=(1+14)?=2i,andg(z) ®3 f(z) = Jzig-zagy wdw = (20 + (1 +14))(2i — (1 +1)) +
(L44) +0)((1+14) —0) = (2i + 1)(i — 1) + (1 +4)? = =3 +1i # f(2) @3 9(2).

To see that); is non-associative, set(z) := g(z) ®39(z) = fzig-zagz wdw. Then(g(z) ®3
9(2) @3 9(2) = Jyig-zague wdw = (Alay) + Alay—1))(ay — ax_1) + - + (A(ar) +
Alap))(a1 — ao), for a zig-zag polygon with ordered set or vertides, . . ., ap), wherea;; €
{a; £ (1 +1),a; £ (1 —i)}. Choosez = 1 + i. Then we have a path of integration with only
two vertices namely; = 1+ 4,ap = 0. Nowg(z) @3 (9(z) ®3 g(2)) = fzig-zagz A(w)dw.
Letl'y, := (basw: - - -, bow), b€ @ zig-zag polygon of minimal length such that, = w. Then
A(w) = (A(barw) + A(brr—1,w)) (barw — bnr—1,w) - + (A(b1,w) + A(bo,w) ) (b1, — bo,w ), NOW
we haved(0) = 0, A(1 +1) = fzig-zagm wdw = (14 1)? = 2i. Hence(g ©3 (g ®3 ¢))(1 +
i) = fzig-zagHiA(w)dw = (A1 +14) + A0))(1 +7—0) = 2i(1 +14) = 2i — 2, whereas

((g®39) @39)(1+1) = fzig_zagA(Hi) wdw = fzig_za@i wdw = ((14+11)+0)((1+14) —0) +
2+ (1+0)2i—(1+i) =1+ +@i+1)(i—1)=—4# (g O3 (93 9))(1+1).

Remark 4.1. Note the slight difference in notation for the pseudo-monomi&ls and 2V
used to separate between the case of the second and third kind respectively.

5. THE SETS OF SECTION [SJUSED AS A PROOFTOOL

5.1. Pairwise inequivalence of the three kinds.Here is a proposition that illustrates one way
that the minimal sets of uniqueness from Sedifipn 3 can be useful.

Proposition 5.1. Denote forj = 1,2, 3, by Ker(L;) the set of complex-valued functionsji|
that are annihilated by_;. Then KefL;,)\KerL, # 0 for k # I.

Proof. By Observatio 3]1 the séd = {z: 0 < Rez < 1} is a minimal determining set
for functions annihilated by ;. Define f on D according tof(0) = 1, f(1) = —i, f(i +

1) = f(z) = 0, and f(z) = 0 otherwise. Then we know thgt has a unique extension (see
Remarl{ 3.L) tdZ[i| which is 1-polyanalytic of the third kind. Howevek,f(0) = 2 # 0 and

L, f(0) = —2i—1 # 0. This takes care of the cases K&s)\Ker(L;) and KeK L;)\Ker(Ls). By
Observatiot 3]2 we know thd? = {z € Z[i]: RezImz = 0} is a minimal set of uniqueness
for any functionf satisfyingL,f = 0. On the other hand, by Observation|3.1, we know that
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D' :=D\{z € Z[i]: (Rez=0)A (Imz > 0)} is a minimal determining set for any function
f satisfyingL, f = 0. Defining a functiong on D according tog(z) = f(z) for = € D’ and
g(z) = f(z) + 1for z € D\ D', we know thatg determines uniquely an extensionZ|
that is annihilated by.,. On the other hang cannot be annihilated by, because it does
not coincide with the unique extension from the g&tfor functions that are annihilated by
L,. Furthermore define a functionon D’ according toh(—i) = 1 andh(z) = 0 otherwise.
Then by Observatioh 3.4 has unique (see Remdrk 3.1) extensiorZ{d that is annihilated
by L,. HoweverL;h(0) = —i # 0. Furthermore we know that the extension/okatisfies
g(—i+ 1) = 1+, hencelyh(—i) = 1 +i(1 + i) = ¢ # 0. This takes care of the cases
Ker(Ly) #Ker(L,), Ker(L,) #Ker(L3) and Ke(L,) #Ker(L,) respectively. Finally define the
functionG(z) on D according toG(1) = 1,G(—1) = —1,G(i) = 0,G(—i) = 0 andG(z) =0
otherwise. By Observatidn 3.2; determines uniquely an extensionZ@] that is annihilated
by L, but by constructionL;G(0) = 2 # 0. This takes care of the case Kép) #Ker(Ls),
This completes the prooi

5.2. A question posed by Kiselman.A complex function orf[i], is said to have a represen-
tation in terms of gpseudo-power (Maclaurin) serigsthere is a serie"> ¢;2)!, where

thec; are complex constants, which pointwise coincides with the given complex function. Let
P denote the set of complex-valued functionsZjn| which can be expressed in terms of a
Maclaurin series. Kiselman [12], Sec 3, p.5, posed the question whether or not each function
that is annihilated by., on Z[i] has a pseudo-power (Maclaurin) series expansion in terms of
pseudo-powers associated to the functions annihilate;lmn Z:] (these pseudo-powers are,

up to multiplication by their integer powers, given in Secfipn 4). Given our previous work, we
may make a small statement regarding Kiselman’s question.

Proposition 5.2. (i)=-(ii) where:
(i) There exists no Maclaurin series of the fofz) = > 7 ;244 where the:; are complex

constants, such that # 0 but P vanishes on the coordinate axes excet. at
(i) Ker(Lsy) # P

Proof. Since we already know from Sectiph 4 thatCKer(L,), it is sufficient for obtaining
validity of (i), to prove that KefL.) has a minimal set of uniqueness which properly contains
a set of uniqueness with respectRo

Let us first look at some conditions we know each membeP ahust satisfy. Recall that
by Observatiof 3]2, a complex-valued functiBron Z[i] is uniquely determined (see Remark
[3.1) by its values on the set

(5.1) D:={z€Z[i]: RezImz =0}

i.e. any arbitrary choice of complex values brwill render an extension function that is anni-
hilated byL, onZ][i].

Let P(2) = > 272, d;z" where thed; are complex constants We split the Maclaurin series
P into 4 sums

(5.2) P=P+P,+ P+ P

whereP; and P, both consist only of even pseudo-powers according to
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(5.3) Pi(z) := Z d4jz(4j),l7 Py(z) = Zd4j+22(4j+2)’l
Jj=0 j=0
and P; and P, both consist only of odd pseudo-powers according to
(5.4) Ps(z) := Z dyj1 290 Py(z) = Z dyj 13231
Jj=0 j=0

Introduce the following notation for the restrictionsfo
(55) Dk :Pk’|D7 k= 1727374

Forx := Re z,y := Im z, we will show that

(5.6) 2M]y (=) = (=120 o ()

This can be done by induction as follows. Foe= 1 this is trivial. Assume equatidn 5.6
holds true forj = n — 1. Let~, denote the 4-curve on theaxis, starting ab and with end
pointt + i0. Recall that ifG(x) := G(z + 0¢) is a complex function on the-axis then

(5.7) 2/ Gt)=(GO)+G(1)(1—0)+---+

x

(Glx—1)+G(z))(x—(xr—1)) =G(0) + G(x) + 2 i G(t)
and

(5.8) 2/ Gt) = (GO)+G(=1))(=1—=0)+---+

—x

—(z—-1)
(G(=(z =) + G(=2)) (=2 = (=z + 1)) = =G(0) = G(==x) = 2 G(=1)

t=—1
Hence

(5.9) G(t) = £G(—1),0 <t < => / G(t) = i/ G(t)

T

Now writing the left hand side of equatipn 5.6 fpe= n as

(5.10) 2, o(—x) = / 20D (8)dt

—x

the induction hypothesis (provided by equafionrj 5.6jfet n — 1) implies that the integrand in
the right hand side of equati¢n 5]10 satisfies one of the options (depending)upitie left
hand side of equatidn 5.9, which implies

(5.11) / D)t = / (=1 1a=D| (=)t

Y-z V-
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Finally note that

(5.12) 2/ G(—t) = (GO0)+G(1)) (=1 —=0) +---+

—x

r—1

(G(z—-1)+G) (-2 —(—z+1)) = —-G(0) — G(z) — 2ZG(t)

t=1

which applied to equatign 5.]L1 gives
(5.13) / (=)D g (—t)dt = (1) (1) / 2o (t)dt
Y

—x T

This completes the induction step and thus proves equatipn 5.6.

By equatiorj 5.6
(5.14) pi(=z) =pi(z), pa(—2)=pa(z), TEZ
(5.15) ps(—x) = —ps(x), pa(—2) = —pa(z), v EZ

Also the counterpart to equatipn b.6 for thexis instead of the-axis can be verified anal-
ogously

(5.16) M omo(—iy) = (=17 2D o (i)

which yields
(5.17) pi(—1y) = pi(iy), po(—iy) = paliy), y€Z
(5.18) p3(—1y) = —p3(iy), pa(—iy) = —pa(iy), yE€Z

Next we note that if; denotes the 4-curve on theaxis, starting ab and with end point
0 + it, then

(5.19) 2/ z2=0+i-1)(G-1—-0)4---+

(i(t = 1)) + it) (it — i(t — 1)) :m/ :

(where~,, as before, denotes the 4-curve on thaxis, starting ab and with end point + :0)
which after repeated application implies

(520) Z(j)’l‘yzo(ito) = ijZ(j)’l|x:0(t0), ty € Z
By equationf 5.20

(5.21) pi(it) = pi(t), pa(it) = —pa(t), tE€Z

(5.22) p3(it) = ips(t), pa(it) = —ipa(t), t€Z

Now consider the case when we additionally require

(523) P‘D\{O} = O, P(O) 75 0
which implies
(5.24) (p1+p2+p3+pa)(te) =0, x€Zy
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(5.25) (pr +p2 +ps +pa)(Eiy) =0, yeZy
and sinceP(0) = p1(0),
(5.26) (p2 +ps +pa)(0) =0

For a fixedt € Z. , equation§ 5.1%,5.15,5J17,5|[18,5/21,%.22]5.24,5.25 render a homogeneous

system of equations were the left hand side takes the matrix form

-1 0 0 010 00 0 0 0000CO00
0 -1 0001 0 0 0 0 00000O0]|7[mpm@®]
0 0 1 0001 0 0 0 000000 pa(t)
0 0 010001 0 0000000 ps(t)
0 0 0 000 O0OO0-10001000 pa(t)
0 0 0 000 00 0 —=1000710 0]/ /|p(=t)
0 0 0000 00 0 0 100010/ /[p(=0)
0 0 0000 00 0 0 01000 1] /|ps(=2
(5.27) -1 0 0 000 0 0 1 0 000000/ |ps=0
' O 1 0000 O0O0OO0O 1 000000 pa(it)
0 0 — 000 0 0 0 0 100000/ pit)
0 0 0 000 —0 0 0 0000 10/|/[psi
0 0 0 300 00 0 0 01000 0/|/|psit)
0 0 0 000 0 i 0 0 00000 1] |p(=it)
1 1 1 100 00 0 0 00000 0] |p—it)
00 0011 1 1 0 0 00000 0] |ps(—it)
0 0 0 000 00 1 1 11000 0] |pa—it)]
0 0 000000 O 0 O0O0T1T1 11,

The matrix of the homogeneous system of equatiops i) 5.27 has rank 16 thus the only solution
is the zero vector. Sincec Z, was arbitrary, this implies that, = 0 on D \ {0} for k =
1,2, 3,4, and because each correspondifigs annihilated by., together with the fact thab
is a minimal determining set for functions annihilatedbyand equatioh 5.26, implies that

(5.28) P.=0 k=234
For the Maclaurin serieB) (z) = >°2 d;z*)", we have,

If there does not exist such/ satisfyingP; (0) # 0 then P, vanishes orD and therefore (as
a consequence ¢ CKer(L;) and D being a set of uniqueness) vanishesZi). But that in
turn implies that? = P, + P, + P; + P, vanishes otZ[i]. SinceP was an arbitrary member of
P that vanished oD \ {0}, we conclude that the latter set is a set of uniqueness with respect
to P and is also properly contained i which is a minimal set of uniqueness with respect to
Ker(Ly).

This completes the prook

Note that the proof involves examining whether or not a minimal determining set- for
polyanalytic functions of the second kind turns out to contain,@®persubset, a determining
set with respect to the space of Maclaurin series. We know in turn, that for certain subset of
the set of pseudo-power (Maclaurin) series, much smaller determining sets are known as the
following Theorem shows.
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Theorem 5.3(Duffin & Petersson [5], p.637)Any member of the set of pseudo-power (Maclau-
rin) seriesy_* %jz(m, where theu; are complex constants, such that sup |ja;|'/7 < 2,
is uniquely determined by its values on the non-negative real axis.

We point out that a problem that is associated to determining sets is that of determining sets
relative to a given subset dL[:], by which we mean the following. L&2 C Z[:] be a finite
discrete domain whose boundaty,is a non-selfintersecting closed polygon. ket {1,2, 3}.

A natural question is: What are the minimal subBet 2 such thatf|, = 0 = f = 0, for all
1-polyanalytic functionsf of the j:th kind, on(2. Having seen the proofs of Observatjon|3.1,
[3.3,[3.4, the following is almost self-evident:

If fis 1-polyanalytic of thel:th kind or of the second kind on, thenf|, =0= f =0. This

is an appealing feature that is lacking for theolyanalytic functions of the third kind. If is
1-polyanalytic of the third kind o) and~ is a closed non-selfintersecting zig-zag polygon that
contains a zig-zag even (odd) point, thén = 0 = f(z) = 0 for all zig-zag even (odd) points
of 2. Weaker yet is the case wheris 1-polyanalytic of the third kind o, and~ is a general
4-curve.

Example 5.1.LetQ := ((v2K + 1 —14) U (e™/*/2K)) N Z[i], whereK = {z € C: |Rez| <
1,|Im z| < 1}. Then the boundary &1 is the closed zig-zag polygondetermined by—2, —1—
i,—2i,—2i+1,—-2i+2,—i+2,2,141,2i,—1 414, —2). Prescribing a complex-valuetion
to be0 on~, the condition that_; f = 0 only induces the value g¢fat 0, which means that we
can for instance choosg(1) arbitrarily and still be able to extend to a solution forLs; f = 0
onf2.

6. A MOTIVATION FOR THE DEFINITION OF ¢-POLYANALYTIC FUNCTIONS OF THE
THIRD KIND

We believe that adjacency is useful in motivating the defined operators and furthermore some
structure such as multiplication is a priori not required. For this reason we formalize our work
using so called Gaussian structures. Recall that the notéfiorusually implies theing of
Gaussian integers (in particular with a priori given multiplication) and with no graph structure
(i.e. no adjacency).

Definition 6.1 (Gaussian structure) et G be an additive abelian group. Also equipx G with
the additive group structure

(6.1) (p1,p2) + (q1, ¢2) = (1 + @1, P2 + ¢2)
(p1,p2), (q1,¢2) € G x G. Define for eachvy, v2) € G x G,
(62) \7 = (Ul7v2) = (_UQavl)‘

Let G also be a directed graph with adjacency relatigh Define an extensiony, of the
adjacency relation-, by defining for any pair of pointg, g € G x G such thatp = (py, p2),
p#q q~p<sp=q+ T ((s1 —p1,0)) for somej € Z, and somes; ~¢g p;. The
structureg, so obtained is called th@aussian structure induced l6y. WhenG = Z, we shall
denote the Gaussian structure®@y

It is clear that lettingG = Z with adjacency being determined by ¢ p, ¢ # p) <
(p € {¢£1}), andZ? assumed to have the natural addition induced.bye obtain a Gaussian
structure which aside from its graph properties, can, when equipped with the usual multiplica-
tion, be identified withZ[i]. Indeed, we havé&’ x G = Z?, and the map/ can be identified
with 90 degree clockwise rotation in the plane. However we are introducing graph properties
(which are not a priori part of the definition of the Gaussian structure inducéf) kshich in
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the particular example dk[i|, impliesz ~ w, andz # w, thenz; = w; £i0rz = wy £ 1

and each point has precisely four adjacent points except itself. We may obviously introduce
multiplication (z1, z3) - (wy,wsy) 1= (21w — 29we, 21wy + 22wy ), and thus be able to identify

the Gaussian structurgy, induced byG = Z with Z[i] but with additional graph structure as
above. Note however that we have not introduced a multiplication in our definitions.

Definition 6.2 (¢-polyanalytic functions of the third kind on Gaussian structurégf g € Z,

and letG be a Gaussian structure induced by a gréufin particular we have an adjacency
relation~ onG x G3). SinceG is directed we can assign to each ordered pair of adjacent points,
s,t, sy = 1 (A5 = —1) if the ordered pair is of positive (negative) direction. We define a
complex-valued functiorf: G — C to beg-polyanalytic of the third kinétp € G if and only

if, Ly f(p) = 0, whereLs f(p) = iZqu7q27ép2 J(@) - Apoge + Zqu,ql;Apl (@) Aprar-

In practice, we shall be working in the case where the inducing gé@upZ and in such
cases the other two kinds dfpolyanalytic functions have equally natural formulations.

Definition 6.3. Let ¢ € Z, and letG; be the Gaussian structure inducedzy We define a
complex-valued functiorf: G — C to be g-polyanalytic of thej:th kind atz € G if and only

if, Lif(z) =0,j=1,2,3,whereL, f(z) := f(z+1) — f(2) +i(f(z +1i) — f(2)), Laf(2) :=
fz+) = f(z—1)+i(f(z4+i)— f(z—1)), Lsf(2) := f(z+14+0)— f(z)+if(z+i)—if (z+1). If
the condition holds true at each point of a sulis€t G, where the defining operator is defined,
then we say thaf is ¢-polyanalytic of thej:th kind on.S and when it is clear from the context
what.sS is we simply say thaf is ¢-polyanalytic of thej:th kind.

Definition 6.4 (Order of adjacency)Let G be a graph, with the adjacency relatien Let
p € G. Denote adjp, 0) := {p}, and define adp, 1) as the set of point§r € G: r ~ p} \ {p}.
Iteratively define for each € Z., adj(p,k + 1) = {z € G: z ~ ¢ for someg € adjp,k)} \

U;‘:ll adj(p, 7). The set adjp, k) will be called the set of points that aa€ljacent of ordef: to p.

From the perspective of graph theory, it may be notable that when applied to Gaussian struc-
tures, the defining operator fo+polyanalytic functions of the second kind invokes second order
adjacency when defining a discrete analogue of a first order operator and we note that the defi-
nition of 1-polyanalytic functions of the first kind does not does not use all first order adjacent
point. In both cases, we find ourselves with rather skewed powers of the given operators in the
sense that the:th power of the operator at a poiat will involve points which lie unsymmet-
rically aboutz. This is not the case for the operator appearing in equation 1.3. We shall now
give yet another motivation far-polyanalytic functions of the third kind, from the perspective
of differential geometry.

Let M be a complex one-dimensional manifold, andflet\V/ — C be a differentiable func-
tion. It is well-known thatf is holomorphic onV/ if and only if df is C-linear. Letz = x + iy,
denote the standard complex coordinate@rand letp € M. If J is the complex structure
map on)M then a basis fo¥,M is given byv = a%, Ju = a%- Obviously, ifdf is C-linear then
dpf(Jv) = id,f(v), for v = 2. Conversely, ifd, f (iv) = id,f(v) thend,f(Av) = Ad,f(v),
and identifying the complex structure mapwith multiplication by, we see that for all
w e T,M,d,f(Aw) = M, f(w), i.e.d,f is C-linear.

Obviously, the real-linearity af, f together with the above implies thAsatisfies the Cauchy-
Riemann equations atif and only if

(6.3) dyf(v) +id,f(iv) =0, VYveT,M
and by definitioni, f is R-linear so that,
(6.4) 2d,f(v) =d,f(v) —dpf(—v), VYveT,M
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Hence

(6.5) d,f isC-linear<
2d, f (v) + i2dp f (iv) = 0 < (dpf (v) — dp f(—v)) + i(dp f(iv) = dp f(=iv)) = 0

Itis an analogue of these equations that we shall use to define a symmetric discrete operator
whoseg:th powers will be analogous to the powér's

Recall that if M is ann-dimensional smooth real manifold apde M, then we can define
the set of tangent vectors at(or tangent space at) as the set of vectors such that there
exists a differentiable curve: (—e,e) — M, somee > 0, v(0) = p, such thaty = %(0),
and acts on the set of differentiable functions, defined on a neighborhgadactording to
v(g) = %(O), for differentiablef: U — C, p € U, U an open neighborhood ¢f in
M. The tangent space atis denotedl,,M/. Also for differentiablef: A/ — C, we define the

differential mapd, f : T,M — C, asd. ) f(2L(0)) = a(giv) (0).

Definition 6.5. Let G be a graph and let € G. A pathI throughp in G is an ordered set of
pointsI'(j) = z; € G, j = —my, ..., my, fOr nonnegative integers;, m», such that; ~ z,,4,
j=-my,...mg—1,andp € {I'(j),7 = —my + 1,...,my — 1}. When the base point is not
essential to the argument being made we shall simply use thepgimng.

For eachp € G, denote7,G = {v € G: v = ¢ — p, ¢ ~ p}. This is the set ofangents.
Obviously, the cardinality of,,G may vary dependent upon the base ppint

Let f be a magy — D, for an additive abelian group.

For eactp € G, we have amag, f: 1,G — D, according taw = (¢ — p) — f(q) — f(p).
So there exists a path containingp andq such thatd,f(v) = f(I'(jo + 1)) — f(p) where
I'(jo) = 0.

Definition 6.6 (1-polyanalytic functions of the third on Gaussian structurést G be the
Gaussian structure induced 6y whereG is an additive group.

Let R be an additive abelian group and lebe a functiong — R?, where R? is equipped
with the component wise addition.

f is called al-polyanalytic function of the third kind (with respect to the Gaussian structure
g, atp), if (using the notation of Definitioh 6]5) we have

(6.6) dpf(v) —dpf(—v) + T (dpf(Tv) — dpf(=Tv)) = 0,v € T,G
Where7', is defined by7'(A, B) = (—B, A), andJ (v1, v2) = (—vq, v1).

From the definitions it is clear that this coincides with the casedlyanalytic functions of
the third kind from Definitioi 62, whene.® = R, G = Z.

Remark 6.1. Note that in defining our natural discrete analogiig) ©f the Cauchy-Riemann
operator, we have not needed to introduce a multiplicative structure on the domain space (the
Gaussian structure), it has been sufficient with a group structure where we on the other hand
have required that there exist adjacency (i.e. an additional graph structure).
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