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1. I NTRODUCTION

The purpose of this paper is to describe the kernel of the powers three kinds of discrete ana-
logues of the Cauchy-Riemann operator on subsets ofZ[i]. Members of the kernels are called
q-polyanalytic functions (or polyanalytic functions of orderq). We also propose, based upon
previous work choices of multiplication together with associated pseudo-powers and we de-
velop a proof-tool and use it to e.g. investigate a question posed by Kiselman [12].

Some of the pioneers of the investigation of analogues of complex analytic functions onZ[i]
were Isaacs [8], [9], Ferrand [7] and Duffin [4],[5].

In Isaacs [8] themonodiffric functions of the first kindon a the discrete complex plane, where
defined square-wise as those that where annihilated by a certain first order linear difference op-
erator, in particular a complex-valued functionf on Z[i], is monodiffric of the first kind on a
square with vertices{z, z + 1, z + i, z + i+ 1}, whose lower left point isz ∈ Z[i], if and only
if f satisfies,

(1.1) f(z + 1)− f(z) =
f(z + i)− f(z)

i

We shall say thatf is monodiffric of the first kindat z if and only if f satisfies equation 1.1. In
this paper we shall say that a functionf in the discrete complex plane ismonodiffric functions
of the second kindat z ∈ Z[i], if and only if

(1.2)
f(z + 1 + i)− f(z)

i+ 1
=
f(z + i)− f(z + 1)

i− 1

Ferrand [7] (who uses a discrete version of Moreras theorem) used the termpreholomorphicfor
the monodiffric functions of the second kind. In this paper we shall say that a functionf in the
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discrete complex plane ismonodiffric functions of the third kindat z ∈ Z[i],

(1.3) f(z + 1)− f(z − 1) =
f(z + i)− f(z − i)

i
The monodiffric functions of the third kind (these where also introduced by Isaacs [8], p.179)
appear less frequently in the literature, and then they are not referred to as monodiffric functions
of the third kind.

In this paper we shall be interested in powers of the operators in equation 1.1, 1.2 and 1.3
respectively. To avoid confusion we point out that in Kurowski [14], the functions that we here
call monodiffric of the third kind, are called monodiffric of the second kind. We have chosen
not to adapt that terminology and instead use the terminology used by e.g. Kiselman [11], [12],
regarding monodiffric functions of the first and second kind. We shall in Section 6 motivate
why monodiffric functions of the third kind deserve attention of their own.

Definition 1.1 (q-polyanalytic functions (polyanalytic functions of orderq)). Define for complex-
valued functionsf onZ[i],

(1.4) L1f(z) := f(z + 1)− f(z) + i(f(z + i)− f(z))

(1.5) L2f(z) := f(z) + if(z + 1)− f(z + 1 + i)− if(z + i)

(1.6) L3f(z) := f(z + 1)− f(z − 1) + i(f(z + i)− f(z − i))

We define, for a given positive integerq, and a fixedj ∈ {1, 2, 3}, a complex-valued function
f : Z[i] → C to be:
q-polyanalytic(or polyanalytic of orderq) of the first kindat z ∈ Z[i] if

(1.7) Lq
1f(z) = 0

q-polyanalytic(or polyanalytic of orderq) of the second kindat z ∈ Z[i] if

(1.8) Lq
2f(z) = 0

andq-polyanalytic(or polyanalytic of orderq) of the third kindat z ∈ Z[i] if

(1.9) Lq
3f(z) = 0

If the condition holds true at each point of a subsetS ⊆ Z[i] where the defining operator is
defined, then we say thatf is q-polyanalytic (or polyanalytic of orderq) of the first, second or
third kind, respectively onS and when it is clear from the context whatS is we simply say that
f is q-polyanalytic (or polyanalytic of orderq) of the first, second or third kind respectively.

Remark 1.1. Obviously a complex-valued function is monodiffric of thej:th kind atz ∈ Z[i],
if and only it is1-polyanalytic (or polyanalytic of order1) of thej:th kind atz ∈ Z[i],wherej ∈
{1, 2, 3}. The use ofq-monodiffric is already taken in the literature, see Tu [18], p.237, where,
for a givenp ∈ (0, 1], a complex-valued functionf onD := {z ∈ C : (Re z ∈ jN) ∧ (Im z ∈
jN)}, is defined to bep-monodiffric atw ∈ D if f(w) = (i−1)f(w)+f(w+ip)−if(w+p). The
termn-analytic (as a variant to polyanalytic of ordern) has been present in classical complex
analysis for the members of the kernel of∂

n
at least since 1970, see e.g. Bosch & Kraijkiewvicz

[2] and more recent work by e.g. Ramazanov [16], [17], Cuckovic & Le [3] and Fedorovskiy
[6]. The term polyanalytic seems more useful only to describe the general case when the order
is not of particular interest. The termq-analytic would be preferred by the author also in the
context of this paper, but we have been informed that it is, in discrete analysis, used with other
meaning. The term polyanalytic of orderq, under the given circumstances of this article, has
two direct draw-backs. The first being that when specifying the kind, possible phrasings like
polyanalytic of orderq of the j:th kind, are longer (thanq-polyanalytic of thej:th kind) and
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can be ambiguous. Furthermore, as in the case in the analogous theory in classical complex
analysis, authors like Avanissian & Traoré [1] worked with generalizations to higher complex
dimension (in the sense that the orderq must be replaced by a multi-indexα) it is most likely
that generalizations will be studied on powers ofZ[i] in the discrete theory, in which case one
must replace the orderq, by a multi-index, and a short and distinct terminology would then be
α-analytic orα-polyanalytic.

For a formalistic motivation of the monodiffric functions of the third kind, we shall in Section
6 start from more basic structures and construct the archetype for the operator and in doing so
we believe adjacency is useful in motivating the defined operators and furthermore some level of
structure such as multiplication is a priori not required. We shall in Section 6 motivate the first
order linear operator given by equation 1.3 by analogy to the differential geometric definition
of holomorphic functions and we believe that its powers will be natural analogues of∂

q
. In

Section 3 we shall solve for theq-polyanalytic functions (or polyanalytic functions of order
q) of the three kinds respectively. In Section 4 we propose, based upon previous work, some
natural multiplicative structures for the function spaces overZ[i], for each of the three kinds of
analytic functions. In relation to pseudo-powers associated to such multiplicative structures, we
investigate a question posed by Kiselman [12].

2. I NITIAL COMPARISON BETWEEN THE SECOND AND THIRD KIND

Kiselman [11], Sec 3, has astutely pointed out that at the level of ideas the operators defined
by equation 1.2 and 1.3 are quite similar. Kurowski [13], p.1, makes a remark that we interpret
to be of similar sort to Kiselman’s point. It is clear however that the solution spaces defined
by the operatorsL2, L3 are not, in any formal rigorous way, equivalent. This can easily be
displayed by example. See Proposition 5.1 for a more comprehensive result regarding any pair
amongL1, L2, L3.

Example 2.1.Letz ∈ Z[i], and letV := {z, z+1, z+2, z+2+i, z+2+2i, z+1+2i, z+2i, z+
1, z+1+ i}. Now relative toV , the pointsz, z+1, z+1+ i, z+ i, are the only points whereL2

is defined whereasz+1+ i is the only point whereL3 is defined. To this end, setf(z+2+ i) =
1, f(z + i) = f(z + 1 + 2i) = f(z + 1) = 0 (making sure thatL3f(z + 1 + i) 6= 0) and set
f(z+1+ i) = 0. Then there are four undefined valuesf(z), f(z+2), f(z+2+2i), f(z+2i),
and we invoke four conditionsL2f(z) = L2f(z + 1) = L2f(z + 1 + i) = L2f(z + i) = 0,
giving, 

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i




f(z)
f(z + 2)

f(z + 2 + 2i)
f(z + 2i)

 =


−if(z + 1) + f(z + 1 + i) + if(z + i)

−f(z + 1)− if(z + 2 + i) + if(z + 1 + i)
−f(z + 1 + i)− if(z + 2 + i) + if(z + 1 + 2i)
−f(z + i)− if(z + 1 + i) + f(z + 1 + 2i)

 =


0
1
1
0


Which gives, 

f(z)
f(z + 2)

f(z + 2 + 2i)
f(z + 2i)

 =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 i




0
1
1
0

 =


0
i
−1
0


Thus, we have a complex-valued function,f , onV such thatL2f(z) = L2f(z + 1) = L2f(z +
1 + i) = L2f(z + i) = 0 butL3f(z + 1 + i) 6= 0.
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We choosez = 0. Setf(w) = 0, for all w ∈ V ′ whereV ′ = {z = x+ iy ∈ Z[i]\V : x ·y = 0}.
This uniquely defines an extension off that satisfiesL2f = 0 at all points ofZ[i]. Indeed
consider the point(2+k)+ i wherek = 1. The valuef(2+k+ i) is uniquely determined by the
value at2+k, 2+k−1, (2+k−1)+iwhich are all known fork = 1.Once the value atf(2+k+i)
is determined the process can be repeated by replacingk with k+ 1, thus uniquely determining
f on the setV ∪{y = 1, x ≥ 3}. Obviously we can then iteratively repeat the process row-wise
until we havef uniquely determined on the upper right quadrant. Analogously, we have the
unique extension off that satisfiesL2f = 0, to each the three remaining quadrants by the same
iterative process (See Section 3 for a formalization of this process). This yields an extension
of f that is an entire1-polyanalytic of the second kind, and clearly no extension off can be
1-polyanalytic of the third kind atz+ 1 + i. Proposition 5.1 below gives a more comprehensive
result on these matters.

2.1. A note on integrals. A polygon, Γ, in the complex planeC consists of a set ofN edges
[a0, a1], [a1, a2], . . . , [aN−1, a0], whereaj, j = 0, . . . , N are given points inC. In particular it
is determined by the ordered set of vertices(a0, . . . , aN) ∈ CN . A function f defined onΓ is
calledpiecewise affineif f is affine on each segment[aj, aj+1] with the possible exception of the
points that belong to two or more segments.Γ is calledclosedif a0 = aN . Let f be piecewise
affine on a polygonΓ determined by(a0, . . . , aN) ∈ CN . Then (see e.g. Kiselman [12], p.2)

(2.1)
∫

Γ

f(z)dz =
1

2

N∑
j=1

(f(aj) + f(aj−1))(aj − aj−1)

Definition 2.1 (Integral of complex functions along polygons). Let f be a complex-valued
function on a polygonΓ determined by(a0, . . . , aN) ∈ CN . We define the integral off along
Γ as

(2.2)
∫

Γ

f(z)dz =
1

2

N∑
j=1

(f(aj) + f(aj−1))(aj − aj−1)

Let f be a complex-valued function onZ[i]. Let p0 ∈ Z[i], and denote byΓp0 the closed
polygon defined by the ordered set of vertices(a1, a2, a3, a4) := (p0, p0 + 1, p0 + 1 + i, p0 + i),
i.e. moving counter-clockwise.

It is easy to verify thatf is 1-polyanalytic of the second kind atp0 iff

(2.3)
∫

Γp0

f̃(z)dz = 0

wheref̃ is the unique piecewise affine function on the closed polygonΓp0 such thatf̃(z) = f(z)
for z ∈ {p0, p0+1, p0+i, p0+(1+i)}. Indeed

∫
Γp0

f = (f(p0+1+i)+f(p0+1))i+(f(p0+i)+

f(p0+1+i))(−1)+(f(p0)+f(p0+i))(−i)+ (f(p0+1)+f(p0)) = (1−i)f(p0)+(1+i)f(p0+
1)+(−1−i)f(p0+i)+(i−1)f(p0+1+i) = (1−i)(f(p0)+if(p0+1)−f(p0+1+i)−if(p0+i)) =
(1− i)L2f(p0) = 0. (In fact a stronger result holds true, see Remark 2.1).
As we have pointed out the condition of equation 1.2 atp0 does not involve all four adjacent
points top0 but it actually involves the pointp0 + i+ 1 which is not adjacent top0 in the usual
sense. Considering the operatorL3 which atz involves precisely the four pointsz ± i, z ± 1,
we have the following.

Observation 2.1.Let f be a complex-valued function onZ[i], let p0 ∈ Z[i], and denote byΓp0

the closed polygon defined by the ordered set of vertices(p0 + 1, p0 + i, p0 − 1, p0 − i). Then,

(2.4) L3f(p0) = 0 ⇔
∫

Γp0

f̃(z)dz = 0
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wheref̃ is the unique piecewise affine function on the closed polygonΓp0 such thatf̃(z) = f(z)
for z ∈ {p0 + 1, p0 + i, p0 − 1, p0 − i}.

Proof. Using the notation from equation 2.3 together with equation 2.1, we have

(2.5) 2

∫
Γp0

f(z)dz = 0 ⇔ (f(p0 + i) + f(p0 + 1))(i− 1)+

(f(p0 − 1) + f(p0 + i))(−1− i) + (f(p0 − i) + f(p0 − 1))(1− i)+

(f(p0 + 1) + f(p0 − i))(1 + i) =

− 2f(p0 + i) + 2if(p0 + 1)− 2if(p0 − 1)2f(p0 − i) =

− 2

i
(i(f(p0 + i)− f(p0 − i)) + f(p0 + 1)− f(p0 − 1)) =

− 2

i
L3f(p0) = 0 ⇔ L3f(p0) = 0

Definition 2.2 (Zig-zag polygons). A polygon determined by the ordered set of (possibly infi-
nite) points(a0, . . . , aN),(or (a0, . . .)) aj ∈ Z[i], j = 0, . . . , N (or j = 0, 1, . . .) is called azig-
zag polygonif aj−aj−1 ∈ {1± i,−1± i}, j = 1, . . . , N (or j = 0, 1, . . .) some positive integer
N. It is non-selfintersectingif ak 6= al for k 6= l except possibly for(k, l) ∈ {(0, N), (N, 0)}. It
is further calledclosedif it hasN − 1 points wherea0 = aN . A point of any subsetω ⊂ Z[i]
is called aninterior point if and only if all four of its adjacent points of first order belong toω.
The set of interior points is denoted̊ω. A subset with zig-zag boundary, ω ⊂ Z[i] is the union
of a possibly infinite set of points together with their sets of adjacent points of first order, such
that the set of non-interior points can be ordered to yield a non-selfintersecting zig-zag polygon.
Suchω is called adomain with zig-zag boundaryif each pair of interior points can be connected
by a zig-zag polygon contained in̊ω and it is called asimple domain with zig-zag boundaryif
each pair of non-interior points can be connected by a zig-zag polygon in the set of non-interior
points. A point is calledzig-zag even(odd) if it can be connected by a zig-zag polygon to0 (1).
We also call0 zig-zag even and we call1 zig-zag odd.

Obviously no zig-zag even point can be connected to a zig-zag odd point by a zig-zag poly-
gon, in particular a zig-zag polygon consists either entirely of zig-zag even points or entirely of
zig-zag odd points.

Proposition 2.2. Letf be a complex-valued function onZ[i]. LetΩ ⊂ Z[i] be a simple domain
with zig-zag boundary. The functionf satisfiesL3f(z) = 0 on Ω̊ if and only if for any closed
non self-intersecting zig-zag polygonγ ⊂ Ω defined by an ordered set of vertices

(2.6)
∫

γ

f(z)dz = 0

Proof. First of all, a function on a domain with zig-zag boundary satisfiesL3f(z) = 0 on Ω̊ if
and only ifL3f(z) = 0 on ω̊ for any domain with zig-zag boundaryω ⊆ Ω, with finitely many
elements. Hence we only need to prove the statement for the case of finitely many interior
points. We use induction in the number,n, of interior points (see Definition 2.2) of the discrete
domain,Ω, with Γ as its zig-zag boundary, whereΓ is defined by the ordered set of points
(a0, . . . , aN−1). The casen = 1 is precisely equation 2.4. Assumen > 1 and that the result
holds true for the case ofn − 1 interior points. Sincen is finite we can find an interior point,
z0+i = x0+iy0, such thaty0 is minimal and finite. In particular the pointsz0−1+i, z0, z0+1+i
belong toΩ but are not interior points and we can assumean0 = z0. We can assume that the
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boundary is traversed counter-clockwise as vanishing of the integral will be independent with
reversed direction. First consider when also the pointz0 + 2i is not an interior point ofΩ, i.e.Γ
contains the ordered subsequencez0+2i, z0−1+i, z0, z0+1+i. The setΩ′ := Ω\{z0, z0+i, z0−
1 + i}, is again a domain with zig-zag boundary,Γ′, defined by(a0, . . . , an0−3, z0 + 2i, z0 +
1 + i, an0+2, . . . , aN−1). The only domains inΩ with boundaryγ that is a closed non self-
intersecting zig-zag polygon, such thatγ does not also lie inΩ′, is either simply the polygon,
γ̂z0

, defined by(z0 + 2i, z0 − 1 + i, z0, z0 + 1 + i) or γ is defined by(b0, . . . , z + 2i, z0 − 1 +
i, z0, z0 + 1 + i, . . . , bM−1) for some positive integerM and pointsbj in Ω′, in particular does
not containz0 + i. (Note that the case whereγ containsz0 + i cannot occur because the point
z0 + 2i is assumed not to be an interior point). The first case is handled by a translated version
of equation 2.4. So assume the second case. Then lettingγ′ be the closed non self-intersecting
zig-zag polygonγ′ ⊆ Ω′ defined by(b0, . . . , z0 + 2i, z0 + 1 + i, . . . , bM−1) (i.e. the two points
z0 − 1 + i, z0 are removed) we have

(2.7) 2

(∫
γ′
−
∫

γ

)
f(z)dz = (f(z0 + 2i) + f(z0 + 1 + i))(i− 1)−

[(f(z0 + 2i) + f(z0 − 1 + i))(i+ 1) + (f(z0 − 1 + i) + f(z0))(−1 + i)+

(f(z0) + f(z0 + 1 + i))(−1− i)] =

− 2f(z0 + 2i) + 2f(z0) + 2if(z0 + 1 + i)− 2if(z0 − 1 + i) =

− 2

i
(if(z0 + 2i))− if(z0) + f(z0 + 1 + i)− f(z0 − 1 + i))

= −2

i
L3f(z0 + i) = 0

But Ω′ hasn − 1 interior points (z + i is not part of the set) thus by the induction hypothesis∫
γ′
f(z)dz = 0 for any closed non self-intersecting zig-zag polygonγ′ ⊆ Ω′. This takes care of

the case whenz0 + 2i is not an interior point.
Now assume thatz0+2i is an interior point ofΩ (in particular this implies thatz+3i, z+2i±1

belong toΩ).
Then the setΩ′ := Ω \ {z0, z0 + i} is again a domain with zig-zag boundary,Γ′, defined

by (a0, . . . , z0 − 1 + i, z0 + 2i, z0 + 1 + i, . . . , aN−1), butΩ′ hasn − 1 interior points thus by
the induction hypothesis

∫
γ′
f(z)dz = 0 for any closed non self-intersecting zig-zag polygon

γ′ ⊆ Ω′.
It is easy to see that the only closed non self-intersecting zig-zag polygonγ ⊆ Ω which

does not also lie inΩ′, is one defined by either(b0, . . . , z0 − 1 + i, z0, z0 + 1 + i, . . . , bM−1) or
(b0, . . . , z0− 1 + 2i, z0 + i, z0 + 1 + 2i, . . . , bM−1) for some positive integerM and pointsbj in
Ω′.

For each suchγ define the associated closed non self-intersecting zig-zag polygonγ′ ⊆ Ω′

by (b0, . . . , z0 − 1 + i, z0 + 2i, z0 + 1 + i, . . . , bM−1) in the first case and by(b0, . . . , z0 − 1 +
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2i, z0 + 3i, z0 + 1 + 2i, . . . , bM−1) in the second case. In the first case we have

(2.8) 2

(∫
γ′
−
∫

γ

)
f(z)dz = (f(z0 + 2i) + f(z0 − 1 + i))(1 + i)+

(f(z0 + 1 + i) + f(z0 + 2i))(1− i)− [(f(z0) + f(z0 − 1 + i))(1− i)+

(f(z0 + 1 + i) + f(z0))(1 + i)] = (f(z0 + 2i) + f(z0 − 1 + i))(1 + i)+

(f(z0 + 1 + i) + f(z0 + 2i))(1− i) + (f(z0) + f(z0 − 1 + i))(i− 1)+

(f(z0 + 1 + i) + f(z0))(−1− i) = −2f(z0) + 2if(z0 − 1 + i)− 2if(z0 + 1 + i)+

2f(z0 + 2i) =
2

i
(i(f(z0 + 2i)− f(z0)) + f(z0 + 1 + i)− f(z0 − 1 + i)) =

2

i
L3f(z0 + i) = 0

In the second case, ifz0 + 3i is not an interior point then we can repeat the procedure applied
to the case whenz0 + 2i was not an interior point. Ifz0 + 3i is an interior point the same
calculations as in equation 2.8, but translated one step in theIm z-directions yields

(2.9) 2

(∫
γ′
−
∫

γ

)
f(z)dz =

2

i
L3f(z0 + 2i) = 0

This proves the induction step. This completes the proof.

Remark 2.1. Kiselman [12] defines a polygon determined by the ordered set(a0, . . . , aN),
aj ∈ Z[i], j = 0, . . . , N to be a4-curveif aj − aj−1 ∈ {±1,±i}, j = 1, . . . , N and it is a
well-known result see e.g. Isaacs [8], p.183, that iff is a monodiffric function of the first kind
then

(2.10)
∫

γ

f(z)dz = 0

for each closed (non-selfintersecting) 4-curveγ. The corresponding result for monodiffric func-
tions of the second kind also holds true (see e.g. Duffin [5], Corollary 2.1.1).

3. CHARACTERIZING THE SET OF q-POLYANALYTIC FUNCTIONS

In this section we shall obtain the kernels of the powers of the operatorsL1, L2, L3 which in
turn give the defining difference equations forq-polyanalytic functions onZ[i].

For background on solving finite difference equations see e.g. Mickens [15] and Jordan [10].
For this particular section we shall in the interest of conformity with previous literature use
some special notations.

3.1. First kind, q = 1. For a complex-valued functionf on Z × Z (or Z[i] in which case we
shall still writef(k, l) instead off(k + il) where(k, l) ∈ Z2), we use the notation

(3.1) E1f(k, l) := f(k + 1, l)− f(k, l), E2f(k, l) := f(k, l + 1)− f(k, l)

This implies that a function is monodiffric of the first kind onZ[i] if at eachk+ il ∈ Z, we have

(3.2) E1f(k, l) = (iE2 − I + i)f(k, l)

whereI denotes the identity operator. Fork ≥ 0, this can be is solved by the symbolic method
of Boole (see e.g. Jordan p.616) to yield,

(3.3) f(k, l) = (iE2 − I + i)kφ(l) =
k∑

j=0

ij
(
k

j

)
Ej

2φ(l)
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whereφ is an arbitrary function. Hencef(k, l) is monodiffric onZ[i] if and only if at each point
k + il ∈ Z[i], k ≥ 0, we have,

(3.4) f(k, l) =
l∑

j=0

ij
(
k

j

)
φ(l + j)

for an arbitraryφ.
Obviously, given a functionf defined for{z ∈ Z[i] : Re z ≥ 0}, and1-polyanalytic of the

first kind, to obtain an extension toZ[i] that is1-polyanalytic of the first kind it is sufficient to
know the values off on{z ∈ Z[i] : Re z < 0}.

Observation 3.1. Let f be1-polyanalytic of the first kind onZ[i], let z = x + iy denote the
standard coordinate inZ[i], and letp0 ∈ Z[i]. Thenf is uniquely determined by its values on
D0 := {z ∈ Z[i] : Re z = Re p0} ∪ {z ∈ Z[i] : (Re z < Re p0) ∧ (Im z = Im p0)} Also any
proper subset ofD′ ⊂ D is not a set of uniqueness (in the sense that there are two different
1-polyanalytic functions onZ[i] that agree onD′).

Proof. We can use the same procedure as that in Example 2.1 but applied toL1 instead ofL2

namely start from the set,D0. Define iteratively the setsDj, j ∈ N, as follows: LetDj+1 be the
set of all pointss ∈ Z[i] satisfyings ∈ {w,w+ 1, w+ i} for somew ∈ Z[i] such that precisely
one point of the set{w,w + 1, w + i} does not belong toDj. Then

⋃
j Dj = Z[i]. f can be

iteratively extended to eachDj by assigning the value off at s ∈ Dj \Dj−1 to be determined
by the equationf(w + 1) + if(w + i)− (1 + i)f(w) = 0. Obviously replacing the value off
at a point ofD0 yields a different extension toZ[i]. This completes the proof.

Remark 3.1 (Uniqueness of extension). In the proof of Observation 3.1, 3.2,3.4 respectively,
the procedure for obtaining the extension off from its values on the setD0 can only be done in
one way. In particular, the only extension of a function that vanishes onD0 is the function that
vanishes identically onZ[i]. In other words, if two functionsF1, F2 on Z[i], satisfy for some
j = 1, 2, 3, LjF1 ≡ 0, andLjF2 ≡ 0 then

(3.5) F1|D0 = F2|D0 ⇔ F1 ≡ F2

Definition 3.1. For a fixedj ∈ {1, 2, 3}, we say that a setD ⊂ Z[i] is aset of uniqueness(with
respect toLj) if any functionf satisfyingLjf ≡ 0 onZ[i] andf |D ≡ 0 must vanish identically.
It is aminimalset of uniqueness if it does not properly contain any other set of uniqueness.

3.2. Second kind,q = 1. From a purely theoretical perspective we can find two parametrized
independent solutions in the kernel ofL2 as follows. We use Lagrange’s method (see e.g.
Mickens Section 5.3, p.186) in order to find a particular solution that depends on a parameter.
Set f̃(k, l) := f(k − 1, l − 1), (k, l) ∈ Z2. Obviously, f̃ is 1-polyanalytic if and only iff is
1-polyanalytic. we can write the defining equations off being1-polyanalytic of the second
kind according to,

(3.6) (E2
1E2 − I + iE2

2E1 − iI)f̃(k, l) = 0, ∀(k, l) ∈ Z2

Setφ(E1, E2) := E2
1E2− I + iE2

2E1− iI. To find a particular solution we look for those of the
form λkµl, and we consider the equation,φ(λ, µ) = 0, i.e.,

(3.7) λ2µ+ iµ2λ− 1− i = 0

Denote byλj(µ) the two roots of this equation, which yields the two particular solutions
(λj(µ))kµl, j = 1, 2. By linearity the sum of all such expressions for all possible values of
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µ will also be solutions. LetDj(µ) be arbitrary functions ofµ, j = 1, 2. This yields two
independent solutions (1-polyanalytic functions of the second kind)

(3.8) f̃j(k, l) :=

∫
(Re µ,Im µ)∈R2

Dj(µ)(λj(µ))kµldReµd Imµ, j = 1, 2

However from a practical point of view, equation 3.8 are rather intractable and intangible and
more work is required to determine whether every1-polyanalytic function of the second kind
corresponds to such a sum. We can instead, as in the case of1-polyanalytic functions of the first
kind, consider minimal determining sets (minimal sets of uniqueness) in order to describe the
kernel ofL2.

Observation 3.2.Let f be1-polyanalytic of the second kind onZ[i], let z = x+ iy denote the
standard coordinate inZ[i], and letp0 ∈ Z[i]. Thenf is uniquely determined by its values on
D0 := {z ∈ Z[i] : (Re z − Re p0)(Im z − Im p0) = 0} Also any proper subset ofD′ ⊂ D is
not a set of uniqueness (in the sense that there are two different1-polyanalytic functions onZ[i]
that agree onD′).

Proof. We can easily use the procedure in Example 2.1 as follows. Start from the set,D0.
Define iteratively the setsDj, j ∈ N, by lettingDj+1 be the set of all pointss ∈ Z[i] satisfying
s ∈ {w + 1, w − 1, w + i, w − i} for somew ∈ Z[i] such that precisely 1 point of the set
{w,w + 1, w + 1 + i, w + i} does not belong toDj. Then

⋃
j Dj = Z[i]. f can be iteratively

extended to eachDj by assigning the value off at s ∈ Dj \ Dj−1 to be determined by the
equationf(w+ 1) + if(w+ 1)− f(w+ 1 + i)− if(w+ i) = 0. Obviously replacing the value
of f at a point ofD0 yields a different extension toZ[i]. This completes the proof.

3.3. Third kind, q = 1. Let f(k, l) = u(k, l)+iv(k, l) be a1-polyanalytic function of the third
kind (whereu andv are the real and imaginary parts off respectively). We will start by ex-
plaining from a theoretical point of view how one could go about solving for the1-polyanalytic
function of the third kind, however as will be clear this approach can be non-tractable in practice
which is why we then give a description of the kernel ofL3 also in terms of minimal sets of
uniqueness.
For the theoretical perspective we start by noting thatL3f(k, l) = 0 is equivalent to the pair of
equations

(3.9) u(k + 1, l)− u(k − 1, l) = v(k, l + 1)− v(k, l − 1)

(3.10) u(k, l + 1)− u(k, l − 1) = v(k − 1, l)− v(k + 1, l)

Now equation 3.10 yields

(3.11) v(k + 1, l) = v(k − 1, l)− u(k, l + 1) + u(k, l − 1)

If we replace(k, l) by (k − 1, l + 1) and(k − 1, l − 1) respectively in equation 3.11 we get the
pair of equations

(3.12) v(k, l + 1) = v(k − 2, l + 1)− u(k − 1, l + 2) + u(k − 1, l)

(3.13) v(k, l − 1) = v(k − 2, l − 1)− u(k − 1, l) + u(k − 1, l − 2)

Now equations 3.12 and 3.13 combined with equation 3.9 yield

(3.14) u(k + 1, l)− u(k − 1, l) = v(k − 2, l + 1)− v(k − 2, l − 1)+

u(k − 1, l − 2)− u(k − 1, l + 2) + 2u(k − 1, l)

AJMAA, Vol. 15, No. 1, Art. 4, pp. 1-26, 2018 AJMAA

http://ajmaa.org


POLYANALYTIC FUNCTIONS ON SUBSETS OFZ [i] 11

i.e.

(3.15) u(k + 1, l)− u(k − 1, l) = u(k − 3, l)− u(k − 1, l)+

u(k − 1, l − 2)− u(k − 1, l + 2) + 2u(k − 1, l)

Hence a partial difference equation for a real-valued function in two variables. To solve it we
shall use Laplace’s method of generating functions (see Jordan [10], p.607). First let

(3.16) ũ(k, l) := u(k − 3, l − 2)

so that equation 3.15 becomes

(3.17) ũ(k + 4, l + 2)− ũ(k + 2, l + 2)− ũ(k, l + 2) + ũ(k + 2, l + 2)−
ũ(k + 2, l) + ũ(k + 2, l + 4)− 2ũ(k + 2, l + 2) = 0

Let ar,s denote the coefficient of̃u(k + r, l + s) in equation 3.17, e.g.a4,2 = 1, a2,2 = −1, etc.
Denote the generating function ofũ by,

(3.18) U(t, t1) :=
∞∑
l=0

∞∑
k=0

ũ(k, l)tktl1

Then we can deduced (see Jordan [10], p.608) that, using the notation

(3.19) w(k, t1) :=
∞∑
l=0

ũ(k, l)tl1

we have

(3.20)
4∑

s=0

4∑
r=0

ar,st
4−s
1

(
w(k + r, t1)− t01ũ(k + r, 0)− t11ũ(k + r, 1)− · · · −

ts−1
1 ũ(k + r, s− 1)

)
= 0

Now equation 3.20 is a linear difference equation ink (for the functionw(k, t1) with t1 fixed)
with constant coefficients (in the sense that they are independent of the variablek) of order4
and it contains already4 arbitrary functions ofk

(3.21) φj(k) := ũ(k, j − 1), j = 1, 2, 3, 4

To be clear set

(3.22) K(t1, k) :=
4∑

s=0

4∑
r=0

ar,st
4−s
1

(
t01ũ(k + r, 0) + t11ũ(k + r, 1) + · · · +

ts−1
1 ũ(k + r, s− 1)

)
(3.23) A(t1) :=

4∑
s=0

a4,st
4−s
1 , B(t1, r) := −

4∑
s=0

ar,st
4−s
1

and write equation 3.20 as

(3.24) A(t1)w(k + 4, t1) +
3∑

r=0

B(t1, r)w(k + r, t1) = K(t1, k)
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The general solution to such an equation is given by the sumSh,t1 + Sp,t1 whereSh,t1 is the
general solution to the homogeneous problem (K replaced by0) andSp,t1 is a particular solu-
tion. Since the coefficients of the homogeneous equation are independent ofk, theSh,t1 can be
obtained via the roots of the characteristic equation

(3.25) θ(λ) := A(t1)λ
4 +

3∑
r=0

B(t1, r)λ
r = 0

If there areκ different roots, sayλ1, . . . , λκ of multiplicities τ 1, . . . , τκ then

(3.26) Sh,t1(k) =
κ∑

σ=1

(
Hσ,1(t1) +Hσ,2(t1)k + · · ·+Hσ,τκ(t1)k

τκ−1
)

where theHσ,τ (t1) are arbitrary functions oft1. A particular solution is usually found by an
Ansatz e.g. using the method of Section 3.2. The expansion ofw(k, t1) into a power-series int1
will yield ũ(k, l), the arbitrary functions oft1 will after expansion yield4 arbitrary functions of
l. In this way one could determine all possible solutions,ũ(k, l), to equation 3.17. This in turn
yields the starting real partu via equation 3.16. Finally, givenu we have the following.

Observation 3.3. Let f be1-polyanalytic of the third kind,u := Re f, v := Im f. Thenf is
uniquely determined by the values ofu onZ[i] together with the values ofv on a set of the form
{p0, p0 + 1, p0 + i, p0 + 1 + i}, for some pointp0 ∈ Z[i].

Proof. Let z denote the standard coordinate inZ[i]. By equation 3.9 and 3.10 we have,

(3.27) v(q0 + i) = −v(q0 − i)− (u(q0 + 1)− u(q0 − 1))

(3.28) v(q0 + 1) = v(q0 − 1)− (u(q0 + 1)− u(q0 − 1))

Hence having the two values ofv at p0 = q0 − 1 andp0 + 1 = q0, we can obtainv on the
setS1 := Z[i] ∩ {Im z = Im p0}, via equation 3.28. Similarly we obtainv on the setS1 :=
Z[i] ∩ {Im z = Im p0 + 1}, via the values ofv at p0 + i andp0 + 1 + i. Analogously, given
v at the two adjacent pointsp0 + i and p0, equation 3.27 yieldsv on the setS3 := Z[i] ∩
{Re z = Re p0}, whereas the two adjacent pointsp0 + 1 + i andp0 + 1, yields v on the set
S4 := Z[i] ∩ {Re z = Re p0 + 1}. This process can now be iterated for each subset of

⋃4
j=1 Sj,

of the form{w0, w0 + 1, w0 + i, w0 + 1 + i}, for some pointw0 ∈ Z[i]. This completes the
proof.

Now, for the sake of practicality, we can also for the1-polyanalytic functions of the third
kind, consider sets of uniqueness in order to describe the kernel ofL3.

Observation 3.4. Let f be1-polyanalytic of the third kind onZ[i], let z = x + iy denote the
standard coordinate inZ[i], and letp0, q0 ∈ Z[i] such thatp0 (q0) is zig-zag even (odd). Then
f is uniquely determined by its values onD0 := Deven

0 ∪ Dodd
0 , whereDeven

0 can be either
{p0} ∪ {p0 +

∑k
j=0((−1)j + i), k ∈ Z} or {p0} ∪ {p0 +

∑k
j=0(1 + (−1)ji), k ∈ Z} andDodd

0

can be either{q0}∪{q0 +
∑k

j=0((−1)j + i), k ∈ Z} or {q0}∪{q0 +
∑k

j=0(1+ (−1)ji), k ∈ Z}

Proof. Start from the set,D0. Define iteratively the setsDj, j ∈ N, by lettingDj+1 be the set
of all pointss ∈ Z[i] satisfyings ∈ {w + 1, w − 1, w + i, w − i} for somew ∈ Z[i] such that
precisely 3 points of the set{w+1, w−1, w+ i, w− i} belongs toDj.

⋃
j Dj = Z[i] andf can

be iteratively extended to eachDj by assigning the value off ats ∈ Dj \Dj−1 to be determined
by the equationf(w + 1) − f(w − 1) + if(w + i) − if(w − i) = 0. Obviously replacing the
value off at a point ofD0 yields a different extension toZ[i]. This completes the proof.
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3.4. The set ofq-polyanalytic functions whenq > 1. Now that we have seen for each of the
kernels ofL1, L2, L3 how to obtain any member by choosing appropriate values on a minimal
set of uniqueness we can use these members in order to solve for the members of the kernels of
Lq

1, L
q
2, L

q
3 for q > 1. Define the convolution of two complex-valued functionsf, g onZ[i] by

(3.29) (f ∗ g)(z) :=
∑

w∈Z[i]

f(w)g(z − w), z ∈ Z[i],

Observation 3.5. Assume that we have an operatorEj acting on complex-valued functions on
Z[i] and satisfyingLj(Ejg)(z) = g(z). If f is aq-polyanalytic function of thej:th kind onZ[i],
we haveLq

jf = 0 ⇒ Lj(L
q−1
j f) = 0 sog1 := Lq−1

j f , is a1-polyanalytic function of thej:th
kind. SinceLj(Ejg1) = g1 this means that the functionG2 := Ejg1 + g2 is 2-polyanalytic of
the j:th kind satisfyingL2

jG2 = g1, for any functiong2 that is1-polyanalytic of thej:th kind.
Continuing in this fashion we obtain a functionGq = Eq−1

j g1+Eq−2
j g2+· · ·+Ejgq−1+gq,where

thegk are arbitrary1-polyanalytic functions of thej:th kind, such thatLq
jGq = 0. Hence we can

obtain anyq-polyanalytic function of thej:th kind starting from1-polyanalytic functions of the
j:th kind and we have in the previous section described how all1-polyanalytic functions of the
j:th kind can be determined.

Hence in order to determine theq-polyanalytic functions of thej:th kind for q > 1 we only
need to find the appropriate operatorsEj associated to the operatorsLj, j = 1, 2, 3.

We start withE1. It was resolved by Isaacs [8], p.194. DefineB+ := {z ∈ Z[i] : 1− Re z ≤
Im z ≤ 0}, B− := {z ∈ Z[i] : 1 − Im z ≤ Re z ≤ 0}. Define the operatorQ1 as follows:
Q+(z) = 0 whenRe z ≤ 0, Q+(1) = 1, Q+(1 + iy) = 0 for y 6= 0 and then define recursively
Q+(z) for Re z = p+ 1, p > 1, byQ+(p+ 1 + iy) = (1 + i)Q+(p+ iy)− iQ+(p+ i(y + 1)).
Analogously defineQ− such thatQ−(z) = 0 for Im z ≤ 0, Q−(i) = 1, Q−(x + i) = 0
for x 6= 0 and then recursivelyQ−(z) for Im z = p + 1, p > 1, by Q−(x + i(p + 1)) =
(1− i)Q−(x+ ip) + iQ−(x+ 1 + ip). Kiselman [11], showed in the proof of Theorem 4.2, that
the following operator satisfies the wanted conditions in Observation 3.5,

(3.30) E1 : f 7→ Q+ + ∗(χf) +Q− ∗ (1− χ)f

In the case of the second kind Letχ denotes the characteristic function of the setA+ := {Re z+
Im z ≥ 0}, and set

(3.31) S+(x+ iy) = iy−xd(x, y), x+ iy ∈ Z[i]

whered(x, y), (x, y) ∈ Z2, is defined as0 whenx ≤ −1 or wheny ≤ −1, as1 when(x, y) =
(0, 0), and for(x, y) ∈ N2 \ {(0; 0)} by the recursion formulad(x, y) = d(x − 1, y) + d(x −
1, y − 1) + d(x, y − 1). Kiselman [12], showed thatS+ is a fundamental solution supported in
A+ := {(Re z ≥ 1) ∧ (Im z ≥ 1)}, and pointed out that there is a natural analogue ofS+ but
whose support isA− := {(Re z ≤ 0)∧ (Im z ≤ 0)} (instead ofA+) and the existence of which
is proved similarly. Kiselman [12], showed in the proof of Theorem 4.2, that the following
operator satisfies the wanted conditions in Observation 3.5,

(3.32) E2 : f 7→ S+ ∗ (χf) + S− ∗ (1− χ)f

Finally in the case of the third kind, define for a complex-valuedf onZ[i],

(3.33) L′3f(z) := f(z + 1)− f(z − 1)− if(z + i) + if(z − i)
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and denote by∆(2) the operator which acts according to

(3.34) ∆(2)f(z) := (L3 ◦ L′3)f(z) = f(z + 2) + f(z − 2)+

f(z + 2i) + f(z − 2i)− 4f(z)

We call this operator thetwo-stepdiscrete Laplacian.
Define

(3.35) E3 : f 7→ f ∗ (L′3G )

where we chooseG to be the following

(3.36) G (m,n) :=
1

2π

∫ 2π

0

dψ (1− exp(i(±mφ± nψ))) (4− 2 cosφ− 2 cosψ)−1

satisfying (see van der Pol [20])

(3.37) ∆(2)G (m+ in) = δ(m,n)

whereδ(m,n) = 1 if m = n = 0 andδ(m,n) = 0, otherwise. Then in light ofL3(L
′
3G ) = ∆(2)G ,

we haveL3(E3f)(z) = L3(f∗(L′3G ))(z) =
∑

w∈Z[i] L3f(w)(L′3G )(z−w) =
∑

w∈Z[i] f(w)(L3(L
′
3G )(z−

w)), z ∈ Z[i].
Now given a fixedw ∈ Z[i], we have(L3(L

′
3G )(z − w)) = ∆(2)G (z − w) and the two-step

Laplacian commutes with translationτw : z 7→ z − w, i.e.∆(2)τw ◦ G (z) = τw ◦ (∆(2)G )(z).
Thus∆(2)G (z−w) equals1 if z = w and0 otherwise. HenceE3 satisfies the wanted conditions
in Observation 3.5.

Remark 3.2. In this paper we are considering homogeneous equations of the formLq
jf = 0,

wherej ∈ {1, 2, 3} and q a fixed positive integer. We mention, as a remark, that Tu [19],
p.46, presented the following statement: Letn be a positive integer, letc0, . . . , cn−1 be arbitrary
constants and leta1, · · · , an be distinct roots ofan + cn−1a

n−1 + · · · + c1a + c0 = 0. Then
the general solution to

∑n
j=1 cj−1

1
2jL

j
1F = 0 is F (z) =

∑n
i=1Bie

ai,z, Bi, i = 1, · · · , n, are
arbitrary constants andea,x = (1 + a)x(1 + ia)y, for z = x+ iy, anda ∈ C.
Clearly any equation of the form1

2nL
n
1F = 0 would have associated to it,cn−1 = 1, cj = 0, j <

n− 1, i.e. the equationan + 1 · an−1 = an−1(a+ 1) = 0, which hasn distinct roots only in the
case ofn = 1 or n = 2.

If n = 1, c0 = 0 thena1 = 0 is the only root ofa + c0 = 0, and we are considering (up to
multiplication by the constant1/2) precisely the equation for monodiffric functions of the first
kind,L1f = 0. However the function

∑1
i=1B1e

0,z = B11
x+y = B1.

If n = 2 then the roots area1 = 0 anda2 = −1, thus giving the functionF (z) = B1e
0,z +

B2e
−1,z which, for x 6= 0, can be evaluated asB11

x+y + B2 · 0 · (1 − i)y = B1. Obviously
a complex constant is not the general solution toL1f = 0 or L2

1f = 0. We conclude that the
statement in Tu [19] is not meant to apply to equations of the formLq

1f = 0 for any positive
integerq.

4. SOME NATURAL MULTIPLICATIONS AND PSEUDO -POLYNOMIALS

We believe that from an algebraic perspective it makes sense that some notion of multiplica-
tion is used such that the corresponding notion of (pseudo-)polynomial will be1-polyanalytic,
and that the multiplication would need to be given by a binary relation, distributive over addi-
tion. Obviously being both left and right distributive as well as associative and abelian would
be satisfying properties as well, however such requirements are overly restrictive given the cir-
cumstances. Multiplicative structures that are non-associative do occur in modern research but
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non-distributive ones seem to be rare which is why we have required, at minimum, distributiv-
ity. Natural analogues of polynomials in the function spaces that satisfy our above requirements,
more or less exist in the literature, for the case of monodiffric functions of the first and second
kind already. We shall similarly introduce such analogues for1-polyanalytic functions of the
third kind.

4.1. First kind. The analogues of polynomials that we endorse, when it comes to multipli-
cation in the function spaces, are finite linear combinations of what is called pseudo-powers,
z(j), j ∈ N. In the case of1-polyanalytic functions of the first kind, these where introduced by
Isaacs [9] using a multiplication, between the coordinate functionx+ iy 7→ x+ iy, and another
complex functionf : Z[i] → C, according to,

(4.1) (x+ iy)�1 f(x+ iy) := xf((x− 1) + iy) + iyf(x+ i(y − 1))

andc�1 f := cf for constantsc ∈ C.
For two complex-valued functionsf, g onZ[i] we define

(4.2) (g �1 f)(x+ iy) := Re g(x+ iy)f((x− 1) + iy)+

i Im g(x+ iy)f(x+ i(y − 1))

andc�1 f := cf for constantsc ∈ C.

Example 4.1.We havez2 = (x2−y2)+2ixy, so thatz�z2 = x((x−1)3−(x−1)y2+2iy(x−
1)) + iy(x2 − (y − 1)2) + 2ix(y − 1)) whereasz2 �1 z = (x2 − y2)(x− 1 + iy) + i2xy(x +
i(y− 1)) which impliesz �1 z

2(2) = 2− 4i 6= 4 = z2 �1 z. Hence the multiplication�1 is not
commutative. Furthermore note thatz�1 z = x(x−1+ iy)+ iy(x+ i(y−1)) = (x2−x+y−
y2) + i2xy, thus(z �1 z)�1 z = (x2 − x+ y− y2)(x− 1 + iy) + i2xy(x+ i(y− 1)) whereas
z�1(z�1z) = x((x−1)2−x+1+y−y2)+i2(x−1)y)+iy((x2−x+y−1−(y−1)2)+i2x(y−1)),
giving (z �1 z) �1 z(−1) = −4 6= −1(4 + 1 + 1) + i2 = z �1 (z �1 z)(−1). Hence�1 is
non-associative.

The multiplication�1 is obviously distributive over addition but as we have seen not abelian,
and therefore yields two different kinds of pseudo-powers which we shall callleft and right
polynomials respectively. The left pseudo-monomials are defined recursively according to

(4.3) z0,�1,l := 1, zj+1,�1,l = z �1 z
j,�1,l, j ∈ Z+

whereas the right pseudo-powers are defined according to

(4.4) z0,�1,r := 1, zj+1,�1,r = zj,�1,r �1 z, j ∈ Z+

By distributivity we obtain natural extension to left (right)pseudo-polynomialsP
1,left (P

1,right)
of degreeN , according to

(4.5) P
1,left(z) =

N∑
j=0

cjz
j,�1,l, (P

1,right(z) =
N∑

j=0

cjz
j,�1,r)

where thecj are complex constants.
We call complex multiples of pseudo-powers,pseudo-monomials.

Proposition 4.1. Let f be a1-polyanalytic function of the first kind onZ[i]. Thenz �1 f(z) is
a 1-polyanalytic function of the first kind onZ[i].
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Proof. Denotex = Re z, y = Im z. We havez �1 f(z) = xf(x− 1 + iy) + iyf(x+ i(y− 1)).
Thus

(4.6) L(z �1 f(z)) = (x+ 1)f(z)− f(x− 1 + iy) + iyf(x+ 1 + i(y − 1))−
iyf(x+ i(y − 1) + i[xf(x− 1 + i(y + 1)− xf(x− 1 + iy) + i(y + 1)f(z)−

iyf(x+ i(y − 1)] = xf(z) + f(z)− xf(z − 1) + iyf(f + 1− i)−
iyf(z − i) + ixf(z − 1 + i)− ixf(z − 1)− yf(z)− f(z)+

yf(z − i) = y(−f(z) + f(z − i) + i(f(z + 1− i)− f(z − i))+

x(f(z)− f(z − 1) + i(f(z − 1 + i)− f(z − 1)) =

− y

i
L1f(z − i) + xL1f(z − 1) = 0

This completes the proof.

Since the pseudo-powerszj,�1,l are defined iteratively and obviouslyf(z) = z is1-polyanalytic
of the first kind, we immediately have the following.

Corollary 4.2. The pseudo-powerzj,�1,l is, for eachj ∈ N, a 1-polyanalytic function of the
first kind.

4.2. Second kind. Also in the case of1-polyanalytic functions of the second kind, there exists
in previous literature a natural multiplication (see e.g. Duffin & Petersson [5], p.626) that we
endorse. We define the following binary relation,�2, on the space of complex valued functions
onZ[i],

(4.7) (g �2 f)(z) :=

∫
γg(z)

f(w)dw

whereγg(z) is a 4-curve with initial pointa0 = 0 and end pointaN = g(z) for some positive
integerN. As a direct consequence of equation 2.10 (path-independence), the number(g �2

f)(z) is independent of the choice of different, non-self-intersecting 4-curves,γ, that share
initial and end point. Clearly,�2 is distributive over addition. It is however not abelian or
associative.

Example 4.2.That�2 is not abelian takef(z) = z2, g(z) = z and calculate2(g�2 f)(−1) =
(1+0)(−1−0) = −1, whereas2(f�2 g)(−1) = (1−0)(1−0) = 1. It is not associative which
can be seen by settingA(z) := 2(g�2 g)(z), and noting thatA(−1) = (−1 + 0)(−1− 0) = 1,
A(0) = 0, and ((g �2 g) �2 g)(−1) = (1 − 0)(1 − 0) = 1, whereas(g �2 (g �2 g))(−1) =
(A(−1) + A(0))(−1− 0) = −1.

The multiplication�2 therefore yields two different kinds of candidates for so calledpseudo-
monomials, namely we introduce the left pseudo-powers

(4.8) z(0),l := 1, z(j+1),l = z �3 z
(j),l, j ∈ Z+

whereas the right pseudo-powers are defined according to

(4.9) z(0),r := 1, z(j+1),r = z(j),r �3 z, j ∈ Z+

Up to multiplication byj, the left pseudo-monomials can be found in e.g. Duffin & Petersson
[5], p.626, there denotedz(j) (which means thatjz(j+1),l =: z(j), for j > 0) and they are known
to be1-polyanalytic of the second kind, see e.g. Theorem 2.6, Duffin & Petersson [5] (note that
the the reason the multiplej does not appear in our definition is that our definition arises as a
consequence of a more general multiplication whereas thez(j) are stand-alone definitions). It is

AJMAA, Vol. 15, No. 1, Art. 4, pp. 1-26, 2018 AJMAA

http://ajmaa.org


POLYANALYTIC FUNCTIONS ON SUBSETS OFZ [i] 17

precisely theleft pseudomonimials that we endorse (as natural analogues of powers ofz in the
case of holomorphic functions) in the case of1-polyanalytic functions of the second kind.

4.3. Third kind. Let v1 be a zig-zag even point and letv1 (v2) be a zig-zag even (odd) point in
Z[i]. Let Γ0,v1(Γ1,v2) be a zig-zag polygon staring at0(1) with end pointv1(v2). Obviously for
any zig-zag polygonΓ+(Γ−) from a pointa(b) to a pointb(a) we have for any complex-valued
functionf on Z[i],

∫
Γ−
f(z)dz = −

∫
Γ+ f(z)dz. As a consequence of Proposition 2.2 (zig-zag

path-independence) the numbers

(4.10) (even)
∫ v1

0

f(w)dw :=

∫
Γ0,v1

f(w)dw, (odd)
∫ v2

1

f(w)dw :=

∫
Γ1,v2

f(w)dw

are independent of the choice of zig-zag polygonΓ0,v1 (Γ1,v2) as long as they are zig-zag poly-
gons starting at0(1) with end pointv1(v2). Define, for each functionf : Z[i] → C, the number

(4.11)
∫
zig-zag,z

f(w)dw :=

{
(even)

∫ z

0
f(w)dw , if z is zig-zag even

(odd)
∫ z

1
f(w)dw , if z is zig-zag odd

Obviously, by zig-zag path-independence we can now define integration along an arbitrary
zig-zag polygonΓ, with starting pointa0 and end pointaN (for a positive integerN ) namely∫

Γ
f(w)dw =

∫
zig-zag,aN

f(w)dw −
∫
zig-zag,a0

f(w)dw.

Proposition 4.3. The functionF (z) :=
∫
zig-zag,z f(w)dw is 1-polyanalytic of the third kind

wheneverf is.

Proof. Without loss of generality, assumez is zig-zag even. we chose paths fromz− 1 to z+ 1
namely(z − 1, z − i, z + 1), and fromz − i to z + i (z − i, z − 1, z + i), and as a consequence
of Proposition 2.2 (zig-zag path-independence) we can write

(4.12) 2

∫
zig-zag,z

f(w)dw = 2

(∫
zig-zag,z+1

f(w)dw −
∫
zig-zag,z−1

f(w)dw

)
+

i2

(∫
zig-zag,z+i

f(w)dw −
∫
zig-zag,z−i

f(w)dw

)

= 2

(∫
zig-zag,z+1

f(w)dw −
∫
zig-zag,z−1

f(w)dw

)
+

i2

(∫
zig-zag,z+i

f(w)dw −
∫
zig-zag,z−i

f(w)dw

)
=

(f(z + 1) + f(z − i))((z + 1)− (z − i)) + (f(z − i) + f(z − 1))((z − i)− (z − 1))+

i(f(z + i) + f(z − 1))((z + i)− (z − 1)) + i(f(z − 1) + f(z − i))((z − 1)− (z − i)) =

(f(z + 1) + f(z − i))(1 + i) + (f(z − i) + f(z − 1))(1− i)+

i(f(z + i) + f(z − 1))(1 + i) + +i(f(z − 1) + f(z − i))(−1 + i) =

(1 + i)f(z + 1) + (−i− 1)f(z − 1) + (i− 1)f(z + i) + (1− i)f(z − i)) =

(1 + i)(f(z + 1)− f(z − 1)) + i(1 + i)f(z + i)− i(1 + i)f(z − i) =

(1 + i) · L3(f(z)) = 0

This completes the proof.
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We define the following binary relation,�3, on the space of complex valued functions on
Z[i],

(4.13) (g �3 f)(z) :=

∫
zig-zag,g(z)

f(w)dw

Again,�3 is distributive over addition but not abelian and not associative (see example 4.3, and
therefore yields two different (see Example 4.3) kinds of monomials,

(4.14) z[0],l := 1, z[j+1],l = z �3 z
[j],l, j ∈ Z+

whereas the right monomials are defined according to

(4.15) z[0],r := 1, z[j+1],r = z[j],r,1 �3 z, j ∈ Z+

By Proposition 4.3 the pseudo-polynomials obtained via the left-monomials are allq-polyanalytic
of the third kind.

Example 4.3. To see that�3 is non-abelian takeg(z) �3 f(z) at the pointz = 1 + i, where
f(z) = z2, g(z) = z. We haveg(z) �3 f(z) =

∫
zig-zag,z w

2dw, whereasf(z) �3 g(z) =∫
zig-zag,z2 wdw. Hence atz = 1+ i we havez2 = 2i so thatf(z)�3 g(z) = ((1+ i)2 +0)(1+

i− 0) = (1 + i)2 = 2i, andg(z)�3 f(z) =
∫
zig-zag,2i

wdw = (2i + (1 + i))(2i− (1 + i)) +

((1 + i) + 0)((1 + i)− 0) = (2i+ 1)(i− 1) + (1 + i)2 = −3 + i 6= f(z)�3 g(z).
To see that�3 is non-associative, setA(z) := g(z)�3 g(z) =

∫
zig-zag,z wdw. Then(g(z)�3

g(z)) �3 g(z) =
∫
zig-zag,A(z)

wdw = (A(aN) + A(aN−1))(aN − aN−1) + · · · + (A(a1) +

A(a0))(a1 − a0), for a zig-zag polygon with ordered set or vertices(aN , . . . , a0), whereaj+1 ∈
{aj ± (1 + i), aj ± (1 − i)}. Choosez = 1 + i. Then we have a path of integration with only
two vertices namelya1 = 1 + i, a0 = 0. Now g(z) �3 (g(z) �3 g(z)) =

∫
zig-zag,z A(w)dw.

Let Γw := (bM,w, . . . , b0,w), be a zig-zag polygon of minimal length such thatbM,w = w. Then
A(w) = (A(bM,w)+A(bM−1,w))(bM,w− bM−1,w)+ · · ·+(A(b1,w)+A(b0,w))(b1,w− b0,w), Now
we haveA(0) = 0, A(1 + i) =

∫
zig-zag,1+i

wdw = (1 + i)2 = 2i. Hence(g �3 (g �3 g))(1 +

i) =
∫
zig-zag,1+i

A(w)dw = (A(1 + i) + A(0))(1 + i − 0) = 2i(1 + i) = 2i − 2, whereas

((g�3 g)�3 g)(1 + i) =
∫
zig-zag,A(1+i)

wdw =
∫
zig-zag,2i

wdw = ((1 + i) + 0)((1 + i)− 0) +

(2i+ (1 + i))(2i− (1 + i)) = (1 + i)2 + (3i+ 1)(i− 1) = −4 6= (g �3 (g �3 g))(1 + i).

Remark 4.1. Note the slight difference in notation for the pseudo-monomialsz(j),l andz[j],l

used to separate between the case of the second and third kind respectively.

5. THE SETS OF SECTION 3 USED AS A PROOF-TOOL

5.1. Pairwise inequivalence of the three kinds.Here is a proposition that illustrates one way
that the minimal sets of uniqueness from Section 3 can be useful.

Proposition 5.1. Denote forj = 1, 2, 3, by Ker(Lj) the set of complex-valued functions onZ[i]
that are annihilated byLj. Then Ker(Lk)\KerLl 6= ∅ for k 6= l.

Proof. By Observation 3.1 the setD = {z : 0 ≤ Re z ≤ 1} is a minimal determining set
for functions annihilated byL3. Definef on D according tof(0) = 1, f(1) = −i, f(i +
1) = f(i) = 0, andf(z) = 0 otherwise. Then we know thatf has a unique extension (see
Remark 3.1) toZ[i] which is1-polyanalytic of the third kind. HoweverL2f(0) = 2 6= 0 and
L1f(0) = −2i−1 6= 0. This takes care of the cases Ker(L3)\Ker(L1) and Ker(L3)\Ker(L2).By
Observation 3.2 we know thatD = {z ∈ Z[i] : Re z Im z = 0} is a minimal set of uniqueness
for any functionf satisfyingL2f ≡ 0. On the other hand, by Observation 3.1, we know that

AJMAA, Vol. 15, No. 1, Art. 4, pp. 1-26, 2018 AJMAA

http://ajmaa.org


POLYANALYTIC FUNCTIONS ON SUBSETS OFZ [i] 19

D′ := D \ {z ∈ Z[i] : (Re z = 0) ∧ (Im z > 0)} is a minimal determining set for any function
f satisfyingL1f ≡ 0. Defining a functiong onD according tog(z) = f(z) for z ∈ D′ and
g(z) = f(z) + 1 for z ∈ D \ D′, we know thatg determines uniquely an extension toZ[i]
that is annihilated byL2. On the other handg cannot be annihilated byL1 because it does
not coincide with the unique extension from the setD′ for functions that are annihilated by
L1. Furthermore define a functionh onD′ according toh(−i) = 1 andh(z) = 0 otherwise.
Then by Observation 3.1h has unique (see Remark 3.1) extension toZ[i] that is annihilated
by L1. HoweverL3h(0) = −i 6= 0. Furthermore we know that the extension ofh satisfies
g(−i + 1) = 1 + i, henceL2h(−i) = 1 + i(1 + i) = i 6= 0. This takes care of the cases
Ker(L2) 6=Ker(L1), Ker(L1) 6=Ker(L3) and Ker(L1) 6=Ker(L2) respectively. Finally define the
functionG(z) onD according toG(1) = 1, G(−1) = −1, G(i) = 0, G(−i) = 0 andG(z) = 0
otherwise. By Observation 3.2,G determines uniquely an extension toZ[i] that is annihilated
by L2 but by constructionL3G(0) = 2 6= 0. This takes care of the case Ker(L2) 6=Ker(L3),
This completes the proof.

5.2. A question posed by Kiselman.A complex function onZ[i], is said to have a represen-
tation in terms of apseudo-power (Maclaurin) seriesif there is a series

∑∞
j=0 cjz

(j),l, where
thecj are complex constants, which pointwise coincides with the given complex function. Let
P denote the set of complex-valued functions onZ[i] which can be expressed in terms of a
Maclaurin series. Kiselman [12], Sec 3, p.5, posed the question whether or not each function
that is annihilated byL2 on Z[i] has a pseudo-power (Maclaurin) series expansion in terms of
pseudo-powers associated to the functions annihilated byL2 on Z[i] (these pseudo-powers are,
up to multiplication by their integer powers, given in Section 4). Given our previous work, we
may make a small statement regarding Kiselman’s question.

Proposition 5.2. (i)⇒(ii) where:

(i) There exists no Maclaurin series of the formP (z) =
∑∞

j=0 cjz
(4j),l,where thecj are complex

constants, such thatc0 6= 0 butP vanishes on the coordinate axes except at0.
(ii) Ker(L2) 6= P

Proof. Since we already know from Section 4 thatP ⊆Ker(L2), it is sufficient for obtaining
validity of (ii), to prove that Ker(L2) has a minimal set of uniqueness which properly contains
a set of uniqueness with respect toP .

Let us first look at some conditions we know each member ofP must satisfy. Recall that
by Observation 3.2, a complex-valued functionP on Z[i] is uniquely determined (see Remark
3.1) by its values on the set

(5.1) D := {z ∈ Z[i] : Re z Im z = 0}

i.e. any arbitrary choice of complex values onD will render an extension function that is anni-
hilated byL2 onZ[i].

Let P (z) =
∑∞

j=0 djz
(j),l, where thedj are complex constants We split the Maclaurin series

P into 4 sums

(5.2) P = P1 + P2 + P3 + P4

whereP1 andP2 both consist only of even pseudo-powers according to
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(5.3) P1(z) :=
∞∑

j=0

d4jz
(4j),l, P2(z) :=

∞∑
j=0

d4j+2z
(4j+2),l

andP3 andP4 both consist only of odd pseudo-powers according to

(5.4) P3(z) :=
∞∑

j=0

d4j+1z
(4j+1),l, P4(z) :=

∞∑
j=0

d4j+3z
(4j+3),l

Introduce the following notation for the restrictions toD

(5.5) pk = Pk|D, k = 1, 2, 3, 4

Forx := Re z, y := Im z, we will show that

(5.6) z(j),l|y=0(−x) = (−1)jz(j),l|y=0(x)

This can be done by induction as follows. Forj = 1 this is trivial. Assume equation 5.6
holds true forj = n − 1. Let γt denote the 4-curve on thex-axis, starting at0 and with end
point t+ i0. Recall that ifG(x) := G(x+ 0i) is a complex function on thex-axis then

(5.7) 2

∫
γx

G(t) = (G(0) +G(1))(1− 0) + · · ·+

(G(x− 1) +G(x))(x− (x− 1)) = G(0) +G(x) + 2
x−1∑
t=1

G(t)

and

(5.8) 2

∫
γ−x

G(t) = (G(0) +G(−1))(−1− 0) + · · ·+

(G(−(x− 1)) +G(−x))(−x− (−x+ 1)) = −G(0)−G(−x)− 2

−(x−1)∑
t=−1

G(−t)

Hence

(5.9) G(t) = ±G(−t), 0 ≤ t ≤ x =⇒
∫

γ−x

G(t) = ±
∫

γx

G(t)

Now writing the left hand side of equation 5.6 forj = n as

(5.10) z(n),l|y=0(−x) =

∫
γ−x

z(n−1),l|y=0(t)dt

the induction hypothesis (provided by equation 5.6 forj = n− 1) implies that the integrand in
the right hand side of equation 5.10 satisfies one of the options (depending uponj) of the left
hand side of equation 5.9, which implies

(5.11)
∫

γ−x

z(n−1),l|y=0(t)dt =

∫
γ−x

(−1)n−1z(n−1),l|y=0(−t)dt
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Finally note that

(5.12) 2

∫
γ−x

G(−t) = (G(0) +G(1))(−1− 0) + · · ·+

(G(x− 1) +G(x))(−x− (−x+ 1)) = −G(0)−G(x)− 2
x−1∑
t=1

G(t)

which applied to equation 5.11 gives

(5.13)
∫

γ−x

(−1)n−1z(n−1),l|y=0(−t)dt = (−1)n−1(−1)

∫
γx

z(n),l|y=0(t)dt

This completes the induction step and thus proves equation 5.6.
By equation 5.6

(5.14) p1(−x) = p1(x), p2(−x) = p2(x), x ∈ Z

(5.15) p3(−x) = −p3(x), p4(−x) = −p4(x), x ∈ Z
Also the counterpart to equation 5.6 for they-axis instead of thex-axis can be verified anal-

ogously

(5.16) z(j),l|x=0(−iy) = (−1)jz(j),l|x=0(iy)

which yields

(5.17) p1(−iy) = p1(iy), p2(−iy) = p2(iy), y ∈ Z

(5.18) p3(−iy) = −p3(iy), p4(−iy) = −p4(iy), y ∈ Z
Next we note that ifκit denotes the 4-curve on they-axis, starting at0 and with end point

0 + it, then

(5.19) 2

∫
κit

z = (0 + i · 1)(i · 1− 0) + · · ·+

(i(t− 1)) + it)(it− i(t− 1)) = i2

∫
γt

z

(whereγt, as before, denotes the 4-curve on thex-axis, starting at0 and with end pointt + i0)
which after repeated application implies

(5.20) z(j),l|y=0(it0) = ijz(j),l|x=0(t0), t0 ∈ Z
By equation 5.20

(5.21) p1(it) = p1(t), p2(it) = −p2(t), t ∈ Z

(5.22) p3(it) = ip3(t), p4(it) = −ip4(t), t ∈ Z
Now consider the case when we additionally require

(5.23) P |D\{0} ≡ 0, P (0) 6= 0

which implies

(5.24) (p1 + p2 + p3 + p4)(±x) = 0, x ∈ Z+
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(5.25) (p1 + p2 + p3 + p4)(±iy) = 0, y ∈ Z+

and sinceP (0) = p1(0),

(5.26) (p2 + p3 + p4)(0) = 0

For a fixedt ∈ Z+, equations 5.14,5.15,5.17,5.18,5.21,5.22,5.24,5.25 render a homogeneous
system of equations were the left hand side takes the matrix form

(5.27)



−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 −i 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −i 0 0 0 0 0 0 0 1 0
0 0 0 i 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1





p1(t)
p2(t)
p3(t)
p4(t)
p1(−t)
p2(−t)
p3(−t)
p4(−t)
p1(it)
p2(it)
p3(it)
p4(it)
p1(−it)
p2(−it)
p3(−it)
p4(−it)


The matrix of the homogeneous system of equations in 5.27 has rank 16 thus the only solution

is the zero vector. Sincet ∈ Z+ was arbitrary, this implies thatpk ≡ 0 onD \ {0} for k =
1, 2, 3, 4, and because each correspondingPk is annihilated byL2 together with the fact thatD
is a minimal determining set for functions annihilated byL2 and equation 5.26, implies that

(5.28) Pk ≡ 0, k = 2, 3, 4

For the Maclaurin seriesP1(z) =
∑∞

j=0 d4jz
(4j),l, we have,

(5.29) P1|D\{0} ≡ 0

If there does not exist such aP1 satisfyingP1(0) 6= 0 thenP1 vanishes onD and therefore (as
a consequence ofP ⊆Ker(L2) andD being a set of uniqueness) vanishes onZ[i]. But that in
turn implies thatP = P1 +P2 +P3 +P4 vanishes onZ[i]. SinceP was an arbitrary member of
P that vanished onD \ {0}, we conclude that the latter set is a set of uniqueness with respect
to P and is also properly contained inD which is a minimal set of uniqueness with respect to
Ker(L2).

This completes the proof.

Note that the proof involves examining whether or not a minimal determining set for1-
polyanalytic functions of the second kind turns out to contain, as apropersubset, a determining
set with respect to the space of Maclaurin series. We know in turn, that for certain subset of
the set of pseudo-power (Maclaurin) series, much smaller determining sets are known as the
following Theorem shows.
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Theorem 5.3(Duffin & Petersson [5], p.637). Any member of the set of pseudo-power (Maclau-
rin) series

∑∞
j=0

aj

j!
jz(j),l, where theaj are complex constants, such thatlim sup |jaj|1/j < 2,

is uniquely determined by its values on the non-negative real axis.

We point out that a problem that is associated to determining sets is that of determining sets
relative to a given subset ofZ[i], by which we mean the following. LetΩ ⊂ Z[i] be a finite
discrete domain whose boundary,γ, is a non-selfintersecting closed polygon. Letj ∈ {1, 2, 3}.
A natural question is: What are the minimal subsetD ⊂ Ω such thatf |D = 0 ⇒ f = 0, for all
1-polyanalytic functionsf of the j:th kind, onΩ. Having seen the proofs of Observation 3.1,
3.2, 3.4, the following is almost self-evident:
If f is 1-polyanalytic of the1:th kind or of the second kind on̊Ω, thenf |γ = 0 ⇒ f ≡ 0. This
is an appealing feature that is lacking for the1-polyanalytic functions of the third kind. Iff is
1-polyanalytic of the third kind on̊Ω andγ is a closed non-selfintersecting zig-zag polygon that
contains a zig-zag even (odd) point, thenf |γ = 0 ⇒ f(z) = 0 for all zig-zag even (odd) points
of Ω. Weaker yet is the case whenf is 1-polyanalytic of the third kind on̊Ω, andγ is a general
4-curve.

Example 5.1.LetΩ := ((
√

2K + 1− i) ∪ (eiπ/4
√

2K)) ∩ Z[i], whereK = {z ∈ C : |Re z| ≤
1, |Im z| ≤ 1}. Then the boundary ofΩ is the closed zig-zag polygon,γ determined by(−2,−1−
i,−2i,−2i+1,−2i+2,−i+2, 2, 1+ i, 2i,−1+ i,−2). Prescribing a complex-valuedf onΩ
to be0 onγ, the condition thatL3f = 0 only induces the value off at 0, which means that we
can for instance choosef(1) arbitrarily and still be able to extendf to a solution forL3f = 0
onΩ.

6. A MOTIVATION FOR THE DEFINITION OF q-POLYANALYTIC FUNCTIONS OF THE

THIRD KIND

We believe that adjacency is useful in motivating the defined operators and furthermore some
structure such as multiplication is a priori not required. For this reason we formalize our work
using so called Gaussian structures. Recall that the notationZ[i] usually implies thering of
Gaussian integers (in particular with a priori given multiplication) and with no graph structure
(i.e. no adjacency).

Definition 6.1 (Gaussian structure). LetG be an additive abelian group. Also equipG×G with
the additive group structure

(6.1) (p1, p2) + (q1, q2) := (p1 + q1, p2 + q2)

(p1, p2), (q1, q2) ∈ G×G. Define for each(v1, v2) ∈ G×G,

(6.2) J := (v1, v2) 7→ (−v2, v1).

Let G also be a directed graph with adjacency relation∼G. Define an extension,∼, of the
adjacency relation∼G, by defining for any pair of pointsp, q ∈ G×G such that,p = (p1, p2),
p 6= q: q ∼ p ⇐⇒ p = q + J j((s1 − p1, 0)) for somej ∈ Z≥0, and somes1 ∼G p1. The
structure,G, so obtained is called theGaussian structure induced byG. WhenG = Z, we shall
denote the Gaussian structure byGZ.

It is clear that lettingG = Z with adjacency being determined by (q ∼ p, q 6= p) ⇐⇒
(p ∈ {q± 1}), andZ2 assumed to have the natural addition induced byZ, we obtain a Gaussian
structure which aside from its graph properties, can, when equipped with the usual multiplica-
tion, be identified withZ[i]. Indeed, we haveG × G = Z2, and the mapJ can be identified
with 90 degree clockwise rotation in the plane. However we are introducing graph properties
(which are not a priori part of the definition of the Gaussian structure induced byZ) which in
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the particular example ofZ[i], impliesz ∼ w, andz 6= w, thenz1 = w1 ± i or z2 = w2 ± 1
and each point has precisely four adjacent points except itself. We may obviously introduce
multiplication (z1, z2) · (w1, w2) := (z1w1 − z2w2, z1w2 + z2w1), and thus be able to identify
the Gaussian structure,GZ, induced byG = Z with Z[i] but with additional graph structure as
above. Note however that we have not introduced a multiplication in our definitions.

Definition 6.2 (q-polyanalytic functions of the third kind on Gaussian structures). Let q ∈ Z+

and letG be a Gaussian structure induced by a groupG (in particular we have an adjacency
relation∼ onG×G). SinceG is directed we can assign to each ordered pair of adjacent points,
s, t, λs,t = 1 (λs,t = −1) if the ordered pair is of positive (negative) direction. We define a
complex-valued functionf : G → C to beq-polyanalytic of the third kindat p ∈ G if and only
if, L3f(p) = 0, whereL3f(p) = i

∑
q∼p,q2 6=p2

f(q) · λp2,q2 +
∑

q∼p,q1 6=p1
f(q) · λp1,q1 .

In practice, we shall be working in the case where the inducing groupG is Z and in such
cases the other two kinds of1-polyanalytic functions have equally natural formulations.

Definition 6.3. Let q ∈ Z+ and letGZ be the Gaussian structure induced byZ. We define a
complex-valued functionf : G → C to be q-polyanalytic of thej:th kind atz ∈ G if and only
if, Lq

jf(z) = 0, j = 1, 2, 3, whereL1f(z) := f(z + 1)− f(z) + i(f(z + i)− f(z)), L2f(z) :=
f(z+1)−f(z−1)+i(f(z+i)−f(z−i)),L3f(z) := f(z+1+i)−f(z)+if(z+i)−if(z+1). If
the condition holds true at each point of a subsetS ⊆ GZ where the defining operator is defined,
then we say thatf is q-polyanalytic of thej:th kind onS and when it is clear from the context
whatS is we simply say thatf is q-polyanalytic of thej:th kind.

Definition 6.4 (Order of adjacency). Let G be a graph, with the adjacency relation∼. Let
p ∈ G. Denote adj(p, 0) := {p}, and define adj(p, 1) as the set of points{r ∈ G : r ∼ p} \ {p}.
Iteratively define for eachk ∈ Z+, adj(p, k + 1) = {z ∈ G : z ∼ q for someq ∈ adj(p, k)} \⋃k−1

j=1 adj(p, j). The set adj(p, k) will be called the set of points that areadjacent of orderk to p.

From the perspective of graph theory, it may be notable that when applied to Gaussian struc-
tures, the defining operator for1-polyanalytic functions of the second kind invokes second order
adjacency when defining a discrete analogue of a first order operator and we note that the defi-
nition of 1-polyanalytic functions of the first kind does not does not use all first order adjacent
point. In both cases, we find ourselves with rather skewed powers of the given operators in the
sense that theq:th power of the operator at a pointz, will involve points which lie unsymmet-
rically aboutz. This is not the case for the operator appearing in equation 1.3. We shall now
give yet another motivation for1-polyanalytic functions of the third kind, from the perspective
of differential geometry.

Let M be a complex one-dimensional manifold, and letf : M → C be a differentiable func-
tion. It is well-known thatf is holomorphic onM if and only if df is C-linear. Letz = x+ iy,
denote the standard complex coordinate forC, and letp ∈ M. If J is the complex structure
map onM then a basis forTpM is given byv = ∂

∂x
, Jv = ∂

∂y
. Obviously, ifdf is C-linear then

dpf(Jv) = idpf(v), for v = ∂
∂x
. Conversely, ifdpf(iv) = idpf(v) thendpf(λv) = λdpf(v),

and identifying the complex structure mapJ with multiplication by i, we see that for all
w ∈ TpM, dpf(λw) = λdpf(w), i.e.dpf is C-linear.

Obviously, the real-linearity ofdpf together with the above implies thatf satisfies the Cauchy-
Riemann equations atp if and only if

(6.3) dpf(v) + idpf(iv) = 0, ∀v ∈ TpM

and by definitiondpf is R-linear so that,

(6.4) 2dpf(v) = dpf(v)− dpf(−v), ∀v ∈ TpM
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Hence

(6.5) dpf is C-linear⇔
2dpf(v) + i2dpf(iv) = 0 ⇔ (dpf(v)− dpf(−v)) + i(dpf(iv)− dpf(−iv)) = 0

It is an analogue of these equations that we shall use to define a symmetric discrete operator
whoseq:th powers will be analogous to the powers∂

q
.

Recall that ifM is ann-dimensional smooth real manifold andp ∈ M, then we can define
the set of tangent vectors atp (or tangent space atp) as the set of vectorsv such that there
exists a differentiable curveγ : (−ε, ε) → M, someε > 0, γ(0) = p, such thatv = ∂γ

∂t
(0),

and acts on the set of differentiable functions, defined on a neighborhood ofp, according to
v(g) := ∂(f◦γ)

∂t
(0), for differentiablef : U → C, p ∈ U , U an open neighborhood ofp in

M. The tangent space atp is denotedTpM. Also for differentiablef : M → C, we define the
differential mapdpf : TpM → C, asdγ(0)f(∂γ

∂t
(0)) = ∂(f◦γ)

∂t
(0).

Definition 6.5. Let G be a graph and letp ∈ G. A pathΓ throughp in G is an ordered set of
pointsΓ(j) = zj ∈ G, j = −m1, . . . ,m2, for nonnegative integersm1,m2, such thatzj ∼ zj+1,
j = −m1, . . .m2 − 1, andp ∈ {Γ(j), j = −m1 + 1, . . . ,m2 − 1}. When the base point is not
essential to the argument being made we shall simply use the termpath inG.

For eachp ∈ G, denoteTpG = {v ∈ G : v = q − p, q ∼ p}. This is the set oftangents.
Obviously, the cardinality ofTpG may vary dependent upon the base pointp.

Let f be a mapG → D, for an additive abelian groupD.
For eachp ∈ G, we have a mapdpf : TpG → D, according tov = (q − p) 7→ f(q) − f(p).

So there exists a pathΓ containingp andq such thatdpf(v) = f(Γ(j0 + 1)) − f(p) where
Γ(j0) = 0.

Definition 6.6 (1-polyanalytic functions of the third on Gaussian structures). Let G be the
Gaussian structure induced byG, whereG is an additive group.

Let R be an additive abelian group and letf be a functionG → R2, whereR2 is equipped
with the component wise addition.
f is called a1-polyanalytic function of the third kind (with respect to the Gaussian structure

G, at p), if (using the notation of Definition 6.5) we have

(6.6) dpf(v)− dpf(−v) + J ′(dpf(J v)− dpf(−J v)) = 0, v ∈ TpG
WhereJ ′, is defined byJ ′(A,B) = (−B,A), andJ (v1, v2) = (−v2, v1).

From the definitions it is clear that this coincides with the case of1-polyanalytic functions of
the third kind from Definition 6.2, when e.g.R = R, G = Z.

Remark 6.1. Note that in defining our natural discrete analogue (L3) of the Cauchy-Riemann
operator, we have not needed to introduce a multiplicative structure on the domain space (the
Gaussian structure), it has been sufficient with a group structure where we on the other hand
have required that there exist adjacency (i.e. an additional graph structure).
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