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1. I NTRODUCTION

In this paper, a nonhomogeneous initial boundary value problem for the time fractional dif-
fusion heat equation in the interval will be studied. This problem was obtained from the non-
homogeneous diffusion heat equation by replacing the first order time derivative by a fractional
derivative of order0 < α < 1 in Caputo’s sense. In this work, we solve the nonhomoge-
neous subdiffusion heat equation with fractional time, initial condition and Dirichlet boundary
condition. This equation has been recently treated by a number of authors (See [1, 3]).

2. PRELIMINARY NOTIONS

In this section, we present some basic definitions and preliminary data that are used through-
out the document.

Definition 2.1. Here we define the following functions for complex argumentz ∈ C, we will
use later called Mittag-Leffler type functions :

Eα (z) :=
∞∑

j=0

zj

Γ (αj+1)
;

Eα,β (z) :=
∞∑

j=0

zj

Γ (αj+β)
;

eζz
α :=zα−1Eα,α (ζzα) ,

whereζ ∈ C, α, β > 0 andΓ(·) is Euler’s Gamma function defined for any complex number
z as

Γ (z) :=

∫ ∞

0

tz−1e−tdt, z ∈ C.

Note that these functions are generalizations of the exponential function basee, asez =
∑∞

j=0 zj/j!

andj! = Γ (j+1).

Definition 2.2. If g (t) is a continuous function in the interval[a, b] (g (t) ∈ C[a, b]) andα > 0,
then its Riemann-Liouville fractional integral is defined by

Iα
a+g (t) =

1

Γ (α)

∫ t

a

g (s)

(t− s)1−α ds.

Definition 2.3. The Caputo-Djrbashyan fractional derivative of orderα > 0 of a continuous
functiong : (a, b) −→ R is defined by(

d

dt

)α

g (t) = In−α
0+ g(n)(t),

wheren = [α] + 1, (the notation[α] denotes the largest integer not greater thanα).

Lemma 2.1. [3] Let p, q ≥ 0, andφ(t) a function of absolute value integrable on an interval
[0, T ] (namely,|φ(t)| is integrable on[0, T ] or φ(t) ∈ L1[0, T ]). Then,

Ip
0+ Iq

0+ φ (t) = Ip+q
0+ φ (t) = Iq

0+ Ip
0+ φ (t) (0)

is satisfied almost everywhere (i.e., except in a set of measure0) on [0, T ]. If further φ(t) is
continuous in the interval (φ(t) ∈ C[0, T ]), then (0) is true and(

d

dt

)α

Iα
0+ φ (t) = φ (t)

for all t ∈ [0, T ] andα > 0.
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Theorem 2.2. [1] Letφ(t) ∈ L1[0, T ]. Then, the integral equation

ϕ (t) = φ (t) +
γ

Γ (α)

∫ t

0

(t− τ)α−1ϕ (τ) dτ

has a unique solutionϕ (t) defined by the following formula:

ϕ (t) = φ (t) + γ

∫ t

0

eγ(t−τ)
α φ (τ) dτ

whereeγz
α is a Mittag-Leffler type function given in Definition 2.1.

3. TECHNICAL DEVELOPMENT M ODEL

Let W (x, t) : [0; a]× [0;∞) −→R be the temperature function at the pointx and timet. We
denote the intensity of heat source at pointx and timet by the formF (x, t). Heat in the borders
is zero (homogeneous Dirichlet boundary condition). The initial temperature (in timet = 0) in
this system is denoted byf(x).
Thus, we have a model of anomalous subdiffusion inhomogeneous heat conduction equation
with fractional time

(3.1)

(
∂

∂t

)α

W = κ
∂2W

∂x2
+ F (x, t) ,

0 < x < a, t > 0

(the constantκ > 0 is the thermal diffusivity), subject to the boundary condition and initial
condition

W (0, t) = 0, W (a, t) = 0, t > 0,

W (x, 0) = f (x) , 0 ≤ x ≤ a

with the fractional derivative orderα ∈ (0, 1) in the sense of Caputo.

Theorem 3.1.Let the differential equation(3.1)with the initial condition. Then the solution of
the problem is unique and has the form

W (x, t) =
∞∑

m=1

AmEα

([
−κ

{
m2

a2

}
π2

]
tα

)
sin

mπx

a
+

(3.2)
∞∑

m=1

Em

∫ t

0

e

h
−κ

n
m2

a2

o
π2
i
(t−τ)

α fk(τ)dτsin
mπx

a
,

where functionsfk (t) are given by(3.11) for subscriptm corresponding, coefficientsEm are
given by(3.9), coefficientsAm are given form ≥ 1, by

(3.3) Am =

√
2

a

∫ a

0

f(x)sin
mπx

a
dx.

Proof. According to the method of Duchateau and Zachmann [2] which we can use due to
homogeneous boundary conditions, the solution is soughtW (x, t) in the form of the Fourier
series of functions{Uk}∞k=1 of the linear differential operatorL, defined for functionU and
twice continuously differentiable by the expression

(3.4) LU = −κ∇2U ,
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where the Laplacian∇2 in dimension 1 is defined as

∇2U ≡ ∂2U

∂x2
.

The operatorL is set to some subset of the vector spaceL2 [(0; a)] of the functionsU (x),
x ∈ (0; a) such that the function|U (x)|2 is integrable on(0; a). More precisely, the domain
of definitionGL of the operatorL consists of all functionsU (x) ∈ L2 [(0; a)] satisfying the
boundary conditions

(3.5) U (0, t) = 0, U (a, t) = 0, t > 0,

and whose imagesLU ∈ L2 [(0; a)].
The eigenvalue problem is posed as follows. You have to find the values of the parameterΛ
(operator eigenvaluesL) such that the equation

(3.6) LU = ΛU

has nontrivial solutions (non-zero) in the domainGL. These functions are the functions ofL.
The equation (3.6) equals the Helmholtz equation

∇2U +
Λ

κ
U = 0.

Let λ2 = Λ/κ. So the equation is written

(3.7) ∇2U + λ2U = 0.

To solve the equation (3.7). We assume a nontrivial solution in the form

U (x) = X (x) .

The corresponding derivatives are:

∂U

∂x
= X ′ (x) ,

∂2U

∂x2
= X ′′ (x) .

Substituting in (3.7) we have

X ′′ (x) + λ2X (x) = 0.

Dividing by X (x) results
X ′′ (x)

X (x)
+ λ2 = 0

and then we have
X ′′ (x)

X (x)
= −λ2.

By relying on each side of this equality, both sides must be equal to a constant, we choose
this constant as−µ2, µ ∈ R. Then for equation (3.7) we have

(3.8) X ′′ (x) + µ2X (x) = 0.

The solution corresponding to (3.8) can be expressed as
X(x) = Acos µx + Bsinµx. In terms of the variables separated boundary conditions
become

X (0) = X (a) = 0.

Then, to obtain a nontrivial solutionX of the equation (3.8) must be
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X(0) = 0, X(a) = 0, respectively so that we haveA = 0 and

sinµa = 0, B 6= 0.

The latter gives
µ = mπ

a
, m = 1, 2, . . .. Accordingly,

Xm(x) = Bmsin
mπx

a
, m = 1, 2, . . . .

Recalling thatλ2 = µ2, the solutions of the equation (3.7) can be written as

Um (x) = Emsin
mπx

a
,

m = 1, 2, . . .

for each of the corresponding eigenvalues

λ2
m =

(
m2

a2

)
π2,

for which the equation (3.6) is expressed as

Λm = κλ2
m

Thus we defineΛk ≡ Λm, Uk ≡ Um andEk ≡ Em.
So, with this redefining the numbering we have

LUk = ΛkUk, Uk ∈ GL, k = 1, 2, . . . .

These eigenfunctions ofL can be chosen orthonormal with

(3.9) Ek =
√

2
a
.

Thereby

〈Uk, Ul〉 ≡
∫ a

0

Uk (x) Ul (x)dx =

=

{
2
a

∫ a

0
sin mkπx

a
sin mlπx

a
dx = δkl,

mk, ml = 1, 2, . . . ,

where the sub-subscriptk, l of m correspond to the respective eigenfunction.
{Uk} is a complete set ofL2 [(0; a)] and each functionu(x) ∈ GL can be represented as a series

u (x) =
∞∑

k=1

〈u, Uk〉Uk(x).

For t > 0 solving the problem of anomalous diffusion equation of heat (3.1) that satisfies the
initial and boundary conditions prescribed can be written as

(3.10) W (x, t) =
∞∑

k=1

Uk (x)Tk (t) ,

whereTk (t) = 〈W, Uk〉. To find the fractional differential equation for functionsTk (t), solution
(3.10) is substituted into the equation (3.1)

∞∑
l=1

Ul (x)

(
d

dt

)α

Tl (t) = −
∞∑
l=1

Tl (t) · LUl (x) + F (x, t)
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= −
∞∑
l=1

Tl (t) · ΛlUl (x) + F (x, t) .

After taking the scalar product of this equation for the eigenfunctionUk,
∞∑
l=1

〈Uk, Ul〉
(

d

dt

)α

Tl (t) = −
∞∑
l=1

Tl (t) · Λl 〈Uk, Ul〉+ 〈Uk, F 〉

and using the orthonormality of eigenfunctions, we obtain the equations

(3.11)

(
d

dt

)α

Tk (t) + ΛkTk (t) = fk (t) ,

with fk (t) ≡ 〈Uk, F 〉 , k = 1, 2, . . . . Due to the initial condition of the equation (3.1), of
(3.10) we have

W (x, 0) = f (x) =
∞∑

k=1

Uk (x)Tk (0) ,

(3.12) Tk (0) = 〈W |t=0, Uk〉 = 〈f, Uk〉 .
For the initial conditionTk (0) note that the solution of the corresponding homogeneous problem
(3.1) (i.e., withF (x, t) ≡ 0) has the form

WH (x, t) =
∞∑

k=1

Uk (x)TH,k (t) ,

where
TH,k (t) = AH,kEα(−Λkt

α), k = 1, 2, . . .

is the general solution of the homogeneous equation corresponding to (3.11) (sincefk (t) ≡ 0
if F = 0) for eachΛk [4].
EachAH,k an arbitrary constant which is determined by applying the homogeneous initial con-
dition, which is the same as for the non-homogeneous equation (WH (x, 0) = W (x, 0) = f(x)),

(3.13) WH (x, 0) =
∞∑
l=1

Ul (x)AH,l = W (x, 0) = f (x) ,

from which we get by taking the dot product off given by (3.13) byUk and considering (3.12),

(3.14) Tk (0) = 〈Uk, f〉 = AH,k.

That is formk ≥ 1,

AH,k =

√
2

a

∫ a

0

f(x)sin
mkπx

a
dx.

To find the solution of the Cauchy problem for the equation (3.11) with the initial condition
(3.14) consider the following. By Lemma 2.1, we have(

d

dt

)α

Tk (t) = I1−α
0+ T ′k (t) .

Substituting this result in equation (3.11), the following equation is obtained:

I1−α
0+ T ′k (t) + ΛkTk (t) = fk (t) .

Applying the operatorIα
0+ to this equation, we obtain the following Volterra integral equation

of the second kind:

(3.15) Tk (t) = Iα
0+fk (t) + Tk (0)− Λk

Γ (α)

∫ t

0

(t− τ)α−1Tk (τ) dτ .
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According to the Theorem 3.1, and using the formulas [1], [5],

1

Γ (ξ)

∫ z

0

τβ−1Eα,β (ζτα) (z − τ)ξ−1dτ = zβ+ξ−1Eα,β+ξ (ζzα) ;

1

Γ (β)
+ zEα,α+β (z) = Eα,β (z) ,

the integral equation (3.15), considering the initial condition (3.14), has a solutionTk (t) defined
only by the following formula

Tk (t) = AH,kEα(−Λkt
α) +

∫ t

0

e−Λk(t−τ)
α fk(τ)dτ

Substituting this in the series (3.10), we obtain the formal solution of the problem given by the
equation of heat subdiffusion (3.1) that satisfies the initial and boundary conditions given here:

W (x, t) =
∞∑

k=1

Uk (x)

[
AH,kEα(−Λkt

α) +

∫ t

0

e−Λk(t−τ)
α fk(τ)dτ

]
.

So, as the solution of the equation of anomalous subdiffusion heat that meets the prescribed
boundary conditions can be written as

W (x, t) =
∞∑

m=1

AmEα

([
−κ

{
m2

a2

}
π2

]
tα

)
sin

mπx

a
+

(3.16)
∞∑

m=1

Em

∫ t

0

e

h
−κ

n
m2

a2

o
π2
i
(t−τ)

α fk(τ)dτsin
mπx

a
,

where functionsfk (t) are given by (3.11) for subscriptm corresponding, coefficientsEm are
given by (3.9), coefficientsAm are given form ≥ 1, by

(3.17) Am =

√
2

a

∫ a

0

f(x)sin
mπx

a
dx.
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