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ABSTRACT. Given a continuous periodic real functionf with n translatesf1, ..., fn , where
fi(x) = f(x + ai), i = 1, ..., n. We solve a problem by Erdos and Chang and show that there
are rational numbersr, s such thatf(r) ≥ fi(r), f(s) ≤ fi(s), i = 1, ..., n. No restrictions on
the constants or any further restriction on the functionf are necessary as was imposed earlier.
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1. I NTRODUCTION AND RESULTS

Let [a, b] be a closed interval and letF be a family of continuous non negative functions
such that for every positive integern we have

∫ b

a
fndx =

∫ b

a
gndx for all f, g ∈ F. Then we

say thatF is a family of integro-equivalent functions (i.e.for short) on[a, b]. If, furthermore,
f(a) = f(b), g(a) = g(b) for all f, g ∈ F then we say thatf and g are closed integro
equivalent functions (ciefor short).

Remark 1.1. It follows easily that ifF is a family of ie or cie functions and ifa, b are constants
such thataf + b ≥ 0 for all f ∈ F then the familyaF + b = {af + b : f ∈ F} is an ie or cie
family. Also this property is kept to hold if we choose the constantsa, b such thataf + b > 0
for all f ∈ F and if we take the family{1/(af + b) : f ∈ F}. We just use power series
expansions. Similarly if we take any analytic functionh such thath(f) is analytic then the
family h(F ) = {h(f) : f ∈ F} is an ie or cie family depending onF.

We give some examples.

Example 1.1. (1) If f is ap-periodic function andc is any real number thenf andf(x+c)
are cie functions on any interval[a, a + p].

(2) The functionsx, 1− x are ie functions on[0, 1].

(3) Consider the functionf(x) =
{

2x, 0≤x≤1
3−x, 1≤x≤3 and the functiong(x) =

{
x, 0≤x≤2
6−2x, 2≤x≤3 .Then

f andg are cie functions on[0, 3] as it can be easily verified.
(4) Let f(x) = x, g(x) = ax + b be two functions on[0, 1]. Let us finda, b such that

f(x)andg(x) = ax + b are ie functions on[0, 1]. Thus∫ 1

0

xndx =

∫ 1

0

(ax + b)ndx

for all positive integersn. Then we have

1

n + 1
=

1

a(n + 1)
(a + b)n+1 − 1

a(n + 1)
bn+1.

It follows thata = [(a + b)n+1 − bn+1)] for all n. Takingn = 1 and n = 2 we get
a = −1, b = 1 andg(x) = −x + 1.

(5) Let f(x) be a continuous function defined on[a, b] such thatf(a) = f(b). Let us
take the functiong with a graph being the reflection of the graph off(x) in the line
x = (a + b)/2. Thusg(x) = f(b + a − x), a ≤ x ≤ b. Thenf andg are cie functions
which need not be translates of any periodic function.

(6) Let f(x ) be a 1-periodic real and continuous function. Letai, i = 1, .., n be distinct
constants in the interval(0, 1) and letfi(x) = f(x+ai), i = 1, ..., n be the correspond-
ing translates off(x). Then the familyF ={fi : i = 1, ..., n} is a cie family.

Let f(x ) be a 1-periodic real and continuous function. We assume thatt(x) is not locally
constant. Letai, i = 1, .., n be distinct constants in the interval(0, 1) and letfi(x) = f(x +
ai), i = 1, ..., n be the corresponding translates off(x). A problem first posed by P. Erdos and
C. Chang, (see Hwang [1]) asks if there is a rational functionr such thatf(r) ≤ min(fi(r)), i =
1, ..., n. Hwang in [1] proved the following partial answer.

Theorem 1.1(Hwang). Letf(x) be a continuous function of period 1 and letdj, j = 1, ..., n be
constants such thatdj − d1, j = 1, ..., n are rational ( for example iff(x) has a finite number
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of extremum points in the interval[0, 1] then this condition is satisfied). Then there are rational
numbersr, s such that

f(r) ≤ min(fi(r)), f(s) ≥ max(fi(s)), i = 1, ..., n.

We will show in this note that iff1, ..., fn are closely permutable continuous functions then
there are rational numbersr, s such that

f(r) ≤ min(fi(r)), f(s) ≥ max(fi(s)), i = 1, ..., n.

No further restrictions are to be made on these functions. In particular iff(x) is a continuous
function of period 1 and ifaj, j = 1, ..., n are arbitrary constants (with no restrictions) then
there are rational numbersr, s such that

f(r) ≤ min(fi(r)), f(r) ≥ max(fi(s)), i = 1, ..., n.

Thus the answer to Erdus-Chang Problem is in the affirmative under the sole condition thatf(x)
is continuous and periodic.

Let fi, i = 1, ...,m, be ieπ/2−periodic functions. We assume, without loss of generality,
that thefi are not locally constant, and that thefi can be made to lie between any two distinct
constants by taking proper constantsa, b and consideringafi + b instead offi. We assume all
integrals are from 0 toπ/2. Under these conditions we prove

Lemma 1.2. For all positive integersn we have∫
sinn f1dx =

∫
sinn fjdx =

∫
cosn f1dx =

∫
cosn fjdx,

for all j = 1, .., n.

Proof.
∫

sinn fjdx =
∫

(fj−f 3
j /3!+ ...)ndx =

∫
(f1−f 3

1 /3!+ ...)ndx =
∫

sinn f1dx. Similarly∫
cosn fjdx =

∫
cosn f1dx. Also we have, by periodicity,∫

sinn f1dx =

∫
cosn(fj − π/2)dx =

∫
sinn fjdx.

This completes the proof.

Remark 1.2. For the sake of completeness we prove the generalized Holder’s inequality.

The reader may prefer to skip reading this remark. Letg1, ..., gn be nonnegative bounded and
integrable functions defined on the interval[a, b]. Let g = g1...gn. Then∫ b

a

gdx ≤ (

∫ b

a

gn
1 dx)1/n....(

∫ b

a

gn
ndx)1/n

The proof is clear for the case ofn = 2; for it is just Schwartz’ inequality. So we assume it is
true forn− 1 and consider the casen. Let f = f1...fn. We then have∫ b

a

fdx ≤
∫ b

a

(fn
1 )1/n(f

n/(n−1)
2 ...fn/(n−1)

n )(n−1)/ndx

≤ (

∫ b

a

fn
1 dx)1/n(

∫ b

a

f
n/(n−1)
2 ...fn/(n−1)

n dx)(n−1)/n

≤ (

∫ b

a

fn
1 dx)1/n[(

∫ b

a

f
n.(n−1)/(n−1)
2 dx)1/(n−1)...(

∫ b

a

fn.(n−1)/(n−1)
n dx)1/(n−1)](n−1)/n

≤ (

∫ b

a

fn
1 dx)1/n...(

∫ b

a

fn
n dx)1/n.
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Definition 1.1. Consider a monomial±x1x2...xn. If we substitutesin x or cos x for each vari-

ablexi, i = 1, ..., n in the monomial we call the resulting expression atrigonometricn−mono-
mial. A sum ofm distinct trigonometricn−monomials is called atrigonometric homogeneous
n−polynomial of rankm (for shortthn(m) polynomial ).

Lemma 1.3. Each of the expressions

sin(a1 + a2 + ... + an), cos(a1 + ... + an)

is a thn( 2n−1).

Proof. Fromsin(a1 + a2) = sin a1 cos a2 + cos a1 sin a2 , and
cos(a1 + a2) = cos a1 cos a2 − sin a1 sin a2 and so the assertion is true forn = 2. Assume it is
true forn− 1. Now sin(a1 + a2 + ... + an) = sin(a1 + (a2 + ... + an)
= sin a1 cos(a2 + ...+an)+cos a1 sin(a2 + ...+an). Using induction we see that the latter sum
is thn(2n−1) + thn(2n−1) = thn(2n−1). This completes the proof.

Remark 1.3. (1) Let f, f1, f2 be ie functions on[0, π/2] and let0 < f < π/6. Then it is
impossible to havef < f1 + f2. For a proof we argue as follows. From the hypothesis
it follows that0 < f, f1, f2 < π/6. Assume thatf < f1 + f2. Now 0 < f < f1 + f2 <
π/3 < π/2. Sincesin x is increasing on the interval[0, π/2] we havesin f < sin(f1 +
f2) = sin f1 cos f2 + cos f1 sin f2. Taking integrals (as usual from 0 toπ/2) and using
Holder’s inequality and Remark 1.1 we get∫

sin fdx ≤
∫

sin f1 cos f2dx +

∫
cos f1 sin f2dx

≤ 2(

∫
sin2 fdx)1/2(

∫
sin2 fdx)1/2 = 2

∫
sin2 fdx.

It follows that
∫

sin f(2 sin f − 1)dx ≥ 0. But 2 sin f − 1 < 0 since0 < f < π/6. This
contradiction completes the proof.

(2) Letf, f1, f2, f3 be ie functions on[0, π/2]and let0 < f < π/8. Then it is impossible to
havef ≤ f1 +f2 +f3. For a proof we argue as follows. Assume thatf ≤ f1 +f2 +f3. It
follows that0 < f, f1, f2, f3 < π/8. Assume that0 < f ≤ f1 + f2 + f3 < 3π/8 < π/2.
Sincesin x is increasing on the interval[0, π/2] , sin f ≤ sin(f1 + f2 + f3) and so∫

sin fdx < 4
∫

sin3 fdx. Thus
∫

sin f(4 sin2 f − 1)dx > 0. But 4 sin2 f − 1 < 0
because0 < f < π/6. This contradiction completes the proof.

Lemma 1.4. Let f, f1, f2, ..., fn be ie functions on[0, π/2]and let0 < f < π/2n. Then it is
impossible to havef ≤ f1 + f2 + ... + fn.

Proof. Assume thatf ≤ f1 + f2 + ... + fn. Then
∫

sin fdx < 2n−1
∫

sinn fdx. Thus∫
sin f(2n−1 sinn−1 f − 1)dx > 0. It follows that (2n−1 sinn−1 f − 1) < 0 in the interval

[0, π/(2n)]. This is a contradiction. The proof is complete.

Proposition 1.5.Let {f, f1, f2, ..., fn} be a set of ie non constant , non negative and continuous
cie functions on[a, b]. Then there isy such that f(y) > max fi(y) and there isz such that
f(z) < min fi(z).

Proof. There is a uniform boundM for the elements of the cie familyF = {f, f1, f2, ..., fn}
and there is a change of variable and there are constantsa, b that makes Lemma 1.4 applicable.
Then there isy such thatf(y) > f1 +f2 + ...+fn.. Thus there isy such thatf(y) > max fi(y).
Using the Remark 1.1 and taking reciprocals the second inequality follows: There isz such that
f(z) < min fi(z).
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Proposition 1.6. Let f be a non locally constant real-valued continuous periodic function of
period π/2. Leta1, ..., an ∈ (0, 1) be distinct real numbers. Letfi(x) = f(x + ai), i = 1, ..., n
be n translates off. Then there isy such that f(y) > max fi(y) and there isz such that
f(z) < min fi(z).

Proof. There area > 0, b such that0 < F = af + b < π/(2n). Let Fi(x) = F (x + ai), i =
1, ..., n be then translates ofF. Then by Lemma 1.4 it is impossible to haveF ≤ F1 + F2 +
... + Fn. Thus there isy ∈ (0, π/2) such thatF (y) > F1(y) + F2(y) + ... + Fn(y). It is clear
then thatF (y) > Fi(y), f(y) > fi(y), i = 1, ..., n. The first part of the proposition follows.
We choose real numbersc, d, h, c > 0 such thatG = 0 < d

F+c
+ h < π/(2n) and form

the translatesGi(x) = G(x + ai), i = 1, ..., n. Then by Lemma 1.4 it is impossible to have
G ≤ G1 + G2 + ... + Gn. Thus there isz such thatG(z) > G1(z) + G2(z) + ... + Gn(z). It
is clear then thatG(z) > Gi(z), f(z) < fi(z), i = 1, ..., n. The second part of the proposition
follows. This completes the proof.

Theorem 1.7.Letf(x) be a continuous function of period 1 and letdj ∈ (0, 1), j = 1, ..., n.Then
there are rational numbersr, s such thatf(r) ≤ min(fi(r)), f(s) ≥ max(fi(s)), i = 1, ..., n.

Proof. Letg(x) = f(xπ/2). Theng isπ/2-periodic. Then there isz such thatg(z) < g1(z), g2(z).
Also there is a rational numberr such that ifr/(π/2) = s then g(s) < g1(s), g2(s). Or,
f(r) = f( r

π/2
.π
2
) < f1(

r
π/2

.π
2
) = f1(r), f2(

r
π/2

.π
2
) = f2(r). Similarly there is a rational number

t such thatf(t) > f1(t), f2(t). This can be generalized ton translates off. This completes the
proof.

Problem 1. Let fi, i = 1, ...,m be real-valued, continuous permutable functions defined on a
cubel in Rn. Is there a rational pointp = (r1, ..., rm) ∈ I such that f1(p) ≥ fi(p), i =
1, ...,m?
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