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ABSTRACT. Given a continuous periodic real functighwith »n translatesfy, ..., f,, , where
filx) = f(x + a;),i = 1,...,n. We solve a problem by Erdos and Chang and show that there

are rational numbers s such thatf(r) > f;(r), f(s) < fi(s),i = 1,...,n. No restrictions on
the constants or any further restriction on the functfcare necessary as was imposed earlier.
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2 ADEL A. ABDELKARIM

1. INTRODUCTION AND RESULTS

Let [a, b] be a closed interval and lét be a family of continuous non negative functions
such that for every positive integerwe havef;’ frdxr = fab gdx for all f,g € F. Then we
say thatF’ is a family ofintegro-equivalent functions (i.dor short) on[a, b]. If, furthermore,
fla) = f(b),g9(a) = g(b) forall f,¢g € F then we say thaf andg are closed integro
equivalent functions (cior short).

Remark 1.1. It follows easily that ifF" is a family of ie or cie functions and if, b are constants
such thatuf + b > 0 for all f € F then the familya "+ b ={af +b: f € F} is anie or cie
family. Also this property is kept to hold if we choose the constantssuch thatf +b > 0
for all f € F and if we take the family{1/(af + b) : f € F}. We just use power series
expansions. Similarly if we take any analytic functibrsuch thath(f) is analytic then the
family h(F) = {h(f) : f € F'} is anie or cie family depending afi

We give some examples.

Example 1.1. (1) If f is ap-periodic function and is any real number theli and f(x+c)
are cie functions on any intervét, a + p).
(2) The functions:, 1 — « are ie functions o0, 1].

(3) Consider the functiorf (z) = {gi;)%g;, and the functiory(z) = {gf;%;g@ Then

f andg are cie functions oif0, 3| as it can be easily verified.
(4) Let f(z) = z,g9(x) = ax + b be two functions on|0, 1]. Let us finda, b such that
f(z)andg(z) = ax + b are ie functions o0, 1]. Thus

1 1
/ 2"dr = / (ax +b)"dx
0 0

for all positive integers:. Then we have

(|
n+1 a(n+1)

1
a(n+1)

n+1

(a + b)n+l _

It follows thata = [(a + b)"*' — b"*1)] for all n. Takingn = 1 andn = 2 we get
a=—-1,b=1andg(z) = —z+ 1.

(5) Let f(x) be a continuous function defined ¢nb] such thatf(a) = f(b). Let us
take the functiory with a graph being the reflection of the graph ffx) in the line
r = (a+0)/2. Thusg(z) = f(b+a—z),a < x < b. Thenf andg are cie functions
which need not be translates of any periodic function.

(6) Let f(x ) be a 1-periodic real and continuous function. Let i = 1,..,n be distinct
constants in the intervdD, 1) and letf;(z) = f(z+a;),7 = 1,...,n be the correspond-
ing translates off (). Then the familyF ={f; : i = 1,...,n} is a cie family.

Let f(xz ) be a 1-periodic real and continuous function. We assume! thais not locally
constant. Leta;,7 = 1,..,n be distinct constants in the intervdl, 1) and letf;(z) = f(z +
a;),i =1,...,n be the corresponding translatesfdf). A problem first posed by P. Erdos and
C. Chang, (see Hwang![1]) asks if there is a rational functisach thatf (r) < min(f;(r)),i =
1,...,n. Hwang in [1] proved the following partial answer.

Theorem 1.1(Hwang) Let f(z) be a continuous function of period 1 anddetj = 1, ..., n be
constants such that; — d,,j = 1, ..., n are rational ( for example iff () has a finite number
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of extremum points in the intervil, 1| then this condition is satisfied). Then there are rational
numbers-, s such that

f(r) <min(fi(r)), f(s) > max(fi(s)),i =1,...,n.

We will show in this note that iff,, ..., f,, are closely permutable continuous functions then
there are rational numberss such that

f(r) < min(fi(r)), f(s) > max(fi(s)),i = 1,...,n.
No further restrictions are to be made on these functions. In particufdrifis a continuous

function of period 1 and if;;, j = 1,...,n are arbitrary constants (with no restrictions) then
there are rational numberss such that

f(r) <min(f;(r)), f(r) = max(fi(s)),1=1,...,n.
Thus the answer to Erdus-Chang Problem is in the affirmative under the sole conditif(xthat
is continuous and periodic.

Let f;,i = 1,...,m, be iew/2—periodic functions. We assume, without loss of generality,
that thef; are not locally constant, and that tlfie can be made to lie between any two distinct
constants by taking proper constant$ and considering f; + b instead off;. We assume all
integrals are from O ta /2. Under these conditions we prove

Lemma 1.2. For all positive integers: we have
/sin” frde = /sin” fidx = /COS” frdx = /cos” fidx,
forall j =1,.. n.
Proof. [ sin” f;dz = f(fj—ff/3!+...)”d;1: = [(fi—f2/3!+..)"dz = [sin™ fidz. Similarly
[ cos™ fidx = [ cos™ fidz. Also we have, by periodicity,
/sin” frdx = /cos"(fj —7/2)dx = /sin” fidx.
This completes the proog

Remark 1.2. For the sake of completeness we prove the generalized Holder’s inequality.

The reader may prefer to skip reading this remark. ¢;et.., g, be nonnegative bounded and
integrable functions defined on the inter{@ld]. Letg = g;...g,. Then

b b b
/ gdzr < (/ g’fdx)l/”....(/ gtdx)Ym

The proof is clear for the case af= 2; for it is just Schwartz’ inequality. So we assume it is
true forn — 1 and consider the case Let f = f;...f,. We then have
b b
[ o< [ g e g
b b
< ([ granyin [ g gl Do
b ba ‘ b
< (/ flndx)l/n[(/ fg'(”l)/("l)dx)l/(”1)...(/ f:lt.(nfl)/(nfl)dm)1/(n71)](nfl)/n

b b
<([ grasp [ gasyn
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Definition 1.1. Consider a monomiattx,x,...2,,. If we substitutesin 2 or cos z for each vari-

ablex;,7 = 1,...,n in the monomial we call the resulting expressiamigonometricn— mono-
mial. A sum ofm distinct trigonometric:—monomials is called &igonometric homogeneous
n—polynomial of rankm (for shortthn(m) polynomial ).

Lemma 1.3. Each of the expressions
sin(ay + ag + ... + ay),cos(a; + ... + a,)

isathn(2"1).

Proof. Fromsin(a; + ay) = sinay cos as + cosa; sinay, and

cos(ay + ag) = cos aj cos ay — sin ap sin az and so the assertion is true for= 2. Assume it is

true forn — 1. Nowsin(a; + ag + ... + a,,) = sin(ay + (az + ... + a,,)

= sinay cos(as + ... + a,) + cos ay sin(ay + ... + a,,). Using induction we see that the latter sum

isthn(2"1) + thn(2" 1) = thn(2"~1). This completes the proof.

Remark 1.3. (1) Let £, f1, f> be ie functions ono, /2] and let0 < f < 7/6. Then itis
impossible to havg < f; + f. For a proof we argue as follows. From the hypothesis
it follows that0 < f, f1, fo < /6. Assume thalff < f; + fo. Now0 < f < f1 + fo <
7/3 < m/2. Sincesin z is increasing on the intervél, /2] we havesin f < sin(f; +
f2) = sin fi cos fo + cos fi sin fo. Taking integrals (as usual from 0 tg/2) and using
Holder's inequality and Remajk 1.1 we get

/sin fdx < /sin f1cos fadx + /cos f1sin fodx

< 2(/sin2 fd:);)l/z(/ sin? fdr)/? = 2/sin2 fdz.

It follows that [ sin f(2sin f — 1)dz > 0. But2sin f — 1 < 0 since0 < f < 7/6. This
contradiction completes the proof.

(2) Letf, f1, fo, f3 be ie functions o0, 7 /2]and letd < f < 7/8. Then it is impossible to
havef < f1+ fo+ f5. For a proof we argue as follows. Assume tlfiat f; + fo+ f5. It
follows thatO < f, f1, f2, f3s < /8. Assumethad < f < f1 + fo+ f3 < 37/8 < w/2.
Sincesin z is increasing on the intervad, /2] , sin f < sin(f; + fo + f3) and so
[sin fdz < 4 [ sin® fdx. Thus [sin f(4sin® f — 1)dz > 0. But4sin® f —1 < 0
becaus® < f < 7/6. This contradiction completes the proof.

Lemma 1.4. Let f, fi, fo, ..., f» be ie functions o0, 7/2]and let0 < f < 7/2n. Thenitis
impossible to havg < f1 + fo + ... + fa.

Proof. Assume thatf < fi + fo + ... + f,. Then [ sin fdz < 2"~! [sin” fdz. Thus
[sin f(2" " sin® ! f — 1)dz > 0. It follows that (2" 'sin"~' f — 1) < 0 in the interval
[0,7/(2n)]. This is a contradiction. The proof is complete.

Proposition 1.5. Let {f, fi1, fo, ..., f»} be asetof ie non constant, non negative and continuous
cie functions orla, b|. Then there igy such that f(y) > max f;(y) and there isz such that
f(2) < min f;(2).

Proof. There is a uniform bound/ for the elements of the cie familyy’ = {f, f1, f2, ..., fu}

and there is a change of variable and there are constainteat makes Lemma 1.4 applicable.

Then thereig such thatf(y) > fi+ fo+...+ f... Thus there ig such thatf (y) > max f;(y).
Using the Remark 11 and taking reciprocals the second inequality follows: Thesedh that

f(2) < min f;(2). n
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Proposition 1.6. Let f be a non locally constant real-valued continuous periodic function of
period 7/2. Letay, ..., a, € (0,1) be distinct real numbers. Let(z) = f(x + a;),i =1,...,n
be n translates off. Then there igy such that f(y) > max f;(y) and there isz such that

f(z) < min f;(2).

Proof. There arex > 0,b suchthal) < F' = af +b < ©/(2n). Let Fi(x) = F(x + a;),i =
1,...,n be then translates of". Then by Lemma I]4 it is impossible to ha¥e< F; + I, +

... + F,. Thus there i3 € (0,7/2) such thatF'(y) > Fi(y) + Fa(y) + ... + Fu(y). Itis clear
then thatF'(y) > F;(vy), f(y) > fi(y),i = 1,...,n. The first part of the proposition follows.
We choose real numbersd, h,c > 0 such thatG = 0 < F‘ic + h < 7/(2n) and form
the translate?;(z) = G(z + a;),7 = 1,...,n. Then by Lemma 1]4 it is impossible to have
G < Gy + Gy + ... + G,. Thus there is: such thatG(z) > G1(z) + Ga(2) + ... + G.(2). It

is clear then thatZ(z) > G;(2), f(2) < fi(2),i = 1,...,n. The second part of the proposition
follows. This completes the prooj.

Theorem 1.7.Let f(x) be a continuous function of period 1 anddete (0,1),j = 1,...,n.Then
there are rational numbers s such thatf(r) < min(f;(r)), f(s) > max(fi(s)),i =1,...,n.

Proof. Letg(x) = f(z7/2). Theng isn/2-periodic. Then there issuchthay(z) < g1(2), g2(2).
Also there is a rational number such that ifr/(7/2) = s theng(s) < gi(s), g2(s). Or,
f(r) = f(77-5) < hi(75-5) = fi(r), fa(755-5) = fo(r). Similarly there is a rational number
t such thatf(t) > fi(t), f2(¢). This can be generalized totranslates off. This completes the
proof. i

Problem 1. Let f;,i = 1, ..., m be real-valued, continuous permutable functions defined on a
cubel in R". Is there a rational pointy = (ry,...,7,) € I such that fi(p) > fi(p),i =
1,...,m?
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