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ABSTRACT. Let A be a Lie Banach∗-algebra. For each elements(a, b) and (c, d) in A2 :=
A×A, by definitions

(a, b)(c, d) = (ac, bd),
‖(a, b)‖ = ‖a‖+ ‖b‖,

(a, b)∗ = (a∗, b∗),

A2 can be considered as a Banach∗-algebra. This Banach∗-algebra is called a Lie Banach∗-
algebra whenever it is equipped with the following definitions of Lie product:

[(a, b), (c, d)] =
(

ac− ca

2
,
bd− db

2

)
for all a, b, c, d in A. Also, if A is a Lie Banach∗-algebra, thenD : A2 −→ A2 satisfying

D([(a, b), (c, d)]) = [D(a, b), (c, d)] + [(a, b), D(c, d)]

for all a, b, c, d ∈ A, is a Lie derivation onA2. Furthermore, ifA is a Lie Banach∗-algebra, then
D is called a Lie∗ derivation onA2 wheneverD is a Lie derivation withD(a, b)∗ = D(a∗, b∗)
for all a, b ∈ A. In this paper, we investigate the Hyers-Ulam stability of Lie Banach∗-algebra
homomorphisms and Lie∗derivations on the Banach∗-algebraA2.
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1. I NTRODUCTION

A classical question in the theory of functional equations is the following: “When is it true
that a function which approximately satisfies a functional equation must be close to an exact
solution of the equation?”.

If the problem accepts a solution, we say that the equation isstable. The notion of stability
of mathematical theorems considered from a rather general point of view: When is it true that
by changing a little in the hypothesis of a theorem, one can still assert that the theorem remains
true or approximately true? When is it true that the solution of an equation differing slightly
from a given one, should be necessarily close to the solution of the given equation? Similarly, if
we replace a given functional equation by a functional inequality, when can one assert that the
of the inequality lie near to the exact solutions of that equation?

The stability problem of functional equations, concerning group homomorphisms, had been
first raised by Ulam in 1940 ([16]). In 1941, this problem solved by Hyers for additive groups
under the assumption that the groups are Banach spaces ([8]). In 1978, Th. M. Rassias pro-
vided a generalization of the Hypers’theorem by proving the existence of unique linear map-
pings near approximate to additive mappings ([13]). The result of Rassias has provided a lot of
influence during the last three decades in the development of generalization of the Hyers-Ulam
stability concept which is now called the Hyers-Ulam-Rassias stability theory for functional
equations. Furthermore, in 1994, a generalization of Rassias, theorem was obtained by Gǎvruta
by replacing the bound∈ (‖x‖p + ‖y‖p) by a general control functionφ(x, y) ([7]).

The stability problems of several functional equations have been extensively investigated by
a number of authors (see [1]-[18]).

Theorem 1.1.Let(X, d) be a complete generalized metric space andJ : X −→ X be a strictly
contractive mapping with Lipschitz constantL < 1. Then, for allx ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integersn or there exists a positive integern0 such that

: (a) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
: (b) the sequence{Jnx} converges to a fixed pointy∗ of J ;
: (c) y∗ is the unique fixed point ofJ in the setY = {y ∈ X : d(Jn0x, y) < ∞};
: (d) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

Definition 1.1. By a Banach∗-algebraA, we mean a Banach∗-algebra over the field of complex
numbers, together with a map∗ : A −→ A called involution which has the following properties:

: 1. (x + y)∗ = x∗ + y∗ for all x, y in A.
: 2. (λx)∗ = λ̄x for everyλ in C and everyx in A.
: 3. (x, y)∗ = y∗x∗ for all x, y in A.
: 4. (x∗)∗ = x for all x in A.

Recall that if in addition, the condition‖xx∗‖ = ‖x‖‖x∗‖ holds for allx in A, thenA is called
aC∗-algebra.

Definition 1.2. A C−linear mappingH from a Banach∗-algebraA in to a Banach∗-algebraB
is called a homomorphism in Banach∗-algebras if it satisfiesH(xy) = H(x)H(y) andH(x∗) =
(H(x))∗ for all x, y in A.

Definition 1.3. A C-linear self mappingD on a Banach∗-algebraB is called aderivationonB
if D satisfies

D(xy) = D(x)y + xD(y)

for all x, y ∈ B.
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Definition 1.4. A Banach∗-algebraA, endowed with the Lie product

[x, y] :=
xy − yx

2

onA, is called a Lie Banach∗-algebra.

Definition 1.5. Let A andB be Lie Banach∗-algebras. AC-linear mappingH : A −→ B is
called a Lie Banach∗-algebra homomorphism if

H([x, y]) = [H(x), H(y)]

andH(x∗) = (H(x))∗ for all x, y in A.

Definition 1.6. A linear self mappingD on a Lie Banach∗-algebraA is called a Lie derivation
of

D([x, y]) = [D(x), y] + [x, D(y)]

for all x, y ∈ A.

2. STABILITY OF HOMOMORPHISMS ON BANACH ∗-ALGEBRAS

In this section we want to investigate the Hyers-Ulam stability of homomorphisms for special
functional equations on Banach∗-algebras.

Let A be a Lie Banach∗-algebra. For each element(a, b) and(c, d) in A2 := A× A define

(a, b)(c, d) = (ac, bd),

‖(a, b)‖ = ‖a‖+ ‖b‖,
(a, b)∗ = (a∗, b∗),

ThenA2 is a Banach∗-algebra with the above norm and product, and involution. Note thatA2

is not necessarily aC∗-algebra. This Banach∗-algebra is called a Lie Banach∗-algebra with the
following definition of Lie product:

[(a, b), (c, d)] =

(
ac− ca

2
,
bd− db

2

)
for all a, b, c, d in A.

Theorem 2.1.Suppose thatA andB are Lie Banach∗-algebras andf : A2 −→ B is a mapping
such thatf(0, 0) = 0. Letϕ : A2 −→ [0,∞) be a function satisfying:

‖2µf
(

a+c
2

, b+d
2

)
− f(µa, µb)− f(µc, µd)‖ ≤ ϕ(a + c, b + d),(2.1)

‖f([(a, b), (c, d)]− [f(a, b), f(c, d)])‖ ≤ ϕ(ac, bd),(2.2)

‖f(a∗, b∗)− (f(a, b))∗‖ ≤ ϕ(a, b),(2.3)

for all scalarsµ with |µ| = 1, and alla, b, c, d in A. Also, suppose that there exists0 < r < 1
such that for alla, b ∈ A,

ϕ(a, b) ≤ r

2
ϕ(2a, 2b).(2.4)

Then there exists a unique Lie Banach∗-algebra homomorphismH : A2 −→ B satisfying

‖f(a, b)−H(a, b)‖ ≤ 1

1− r
ϕ(a, b).(2.5)
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Proof. ConsiderX as the set of all functionsg : A2 −→ B such thatg(0, 0) = 0, and define a
generalized metricd onX by

d(f, g) = inf{c ∈ [0,∞) : ‖f(a, b)− g(a, b)‖ ≤ cϕ(a, b) for all a, b ∈ A}.
It is easy to see that(X, d) is a complete generalized metric onX. Now defineJ : X −→ X
by

Jg(a, b) = 2g

(
a

2
,
b

2

)
for all a, b ∈ A. Note that

‖Jg(a, b)− Jh(a, b)‖ ≤ 2d(g, h)ϕ
(

a
2
, b

2

)
≤ rd(g, h)ϕ(a, b)

for all g, h ∈ X and alla, b ∈ A. Hence

d(Jg, Jh) ≤ rd(g, h)

for all g, h in X. Therefore,J is a contraction with constant at mostr. Note thatf(0, 0) = 0,
so if µ = 1 andc = d = 0 in (2.1), we get∥∥∥∥2f

(
a

2
,
b

2

)
− f(a, b)

∥∥∥∥ ≤ ϕ(a, b)(2.6)

for all a, b ∈ A. It follows from (2.6) thatd(Jf, f) ≤ 1. By Theorem 1.1, there exists a unique
fixed point functionH : A2 −→ B of J in the set

Ω = {g ∈ X : d(f, g) < ∞}
(heref is the function defined in the hypothesis of the theorem). SinceJH = H, thus we get
H

(
a
2
, b

2

)
= 1

2
H(a, b) for all a, b ∈ A. Also, clearly

‖f(a, b)−H(a, b)‖ ≤ sϕ(a, b)

wheres = d(f, H) ∈ (0,∞). Furthermore, by Theorem 1.1,d(Jnf, H) −→ 0 asn −→ ∞.
Since

Jnf(a, b) = 2nf

(
a

2n
,

b

2n

)
,

we have

H(a, b) = lim
n−→∞

2nf

(
a

2n
,

b

2n

)
.(2.7)

Again by Theorem 1.1,d(f, H) ≤ 1
1−r

d(f, Jf) from which we conclude thatd(f, H) ≤ 1
1−r

.
Since

‖f(a, b)−H(a, b)‖ ≤ d(f, H)ϕ(a, b),

we getd(f, H) ≤ 1
1−r

. So the inequality (2.5) holds. Now, it follows from (2.1), (2.4) and (2.7)
that: ∥∥2H

(
a+c
2

, b+d
2

)
−H(a, b)−H(c, d)

∥∥ ≤ limn−→∞ 2n‖2f
(

a+c
2n , b+d

2n

)
−f

(
a
2n , b

2n

)
− f

(
c

2n , d
2n

)
‖

≤ limn−→∞ 2nϕ
(

a+c
2n , b+d

2n

)
≤ limn−→∞ rnϕ(a + c, b + d)

= 0
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for all a, b, c, d ∈ A. Thus we have

2H

(
a + c

2
,
b + d

2

)
= H(a, b) + H(c, d)

for all a, b, c, d ∈ A. Therefore, the mappingH : A2 −→ B is Jensen additive. Now, leta = c
andb = d in (2.1). So we obtain

‖2µf(a, b)− 2f(µa, µb)‖ ≤ ϕ(2a, 2b)

for all µ with |µ| = 1 and alla, b ∈ A. Now, by substitutinga by a
2n andb by b

2n in the above
relation, we get ∥∥∥∥2µf

(
a

2n
,

b

2n

)
− 2f

(
µa

2n
,
µb

2n

)∥∥∥∥ ≤ rn−1

2n−1
ϕ(a, b).

So

‖µH(a, b)−H(µa, µb)‖ = lim
n−→∞

∥∥∥∥2nµf

(
a

2n
,

b

2n

)
− 2nf

(
µa

2n
,
µb

2n

)∥∥∥∥ = 0.

Thus,µH(a, b) = H(µa, µb) for all µ with |µ| = 1 and alla, b ∈ A. Now, clearly we can see
thatH : A2 −→ B is C-linear. Note that by (2.2) and (2.4) we have

‖H([(a, b), (c, d)])− [H(a, b), H(c, d)]‖ = limn−→∞ 4n‖f
([(

a
2n , b

2n

)
,
(

c
2n , d

2n

)])
−

[
f

(
a
2n , b

2n

)
, f

(
c

2n , d
2n

)]
‖

≤ limn−→∞ 4nϕ
(

ac
4n , bd

4n

)
≤ limn−→∞(rn)2ϕ(ac, bd)

= 0

for all a, b, c, d in A. Also, by (2.3), we obtain

‖H(a∗, b∗)− (H(a, b))∗‖ = limn−→∞ 2n
∥∥f

(
a∗

2n , b∗

2n

)
−

(
f

(
a
2n , b

2n

))∗∥∥
≤ limn−→∞ 2nϕ

(
a
2n , b

2n

)
≤ limn−→∞(rn)ϕ(a, b)

= 0

for all a, b in A. SoH : A2 −→ B is indeed a Lie Banach∗-algebra homomorphism satisfying
the desired conditions. This complete the proof.

Theorem 2.2. Suppose thatA is a Lie Banach∗-algebra. Letf : A2 −→ B andϕ : A2 −→
[0,∞) be two mappings satisfying the condition (2.2) of Theorem 2.1, and also let for all
a, b, c, d ∈ A andµ ∈ C with |µ| = 1,

‖µf(a + c, b + d)− f(µa, µb)− f(µc, µd)‖ ≤ ϕ(a + c, b + d).(2.8)

If there exists0 < r < 1 such thatϕ(2a, 2b) ≤ 2rϕ(a, b) for all a, b ∈ A, then there exists
a unique Lie Banach∗-algebra homomorphismH : A2 −→ B such that condition (2.5) of
Theorem 2.1 holds.

Proof. Put X = {g : A2 −→ B} and consider the generalized metricd defined onX as in
Theorem 2.1. DefineJ : X −→ X by

Jh(a, b) =
1

2
h(2a, 2b)

and note that

‖Jg(a, b)− Jh(a, b)‖ ≤ rd(g, h)ϕ(a, b)
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for all a, b ∈ A. Thus

‖Jg − Jh‖ ≤ rd(g, h)

and soJ is a contraction. Now, by a similar method used in the proof of Theorem 2.1 together
with (2.8), we can see that the functionH : A2 −→ B defined by

H(a, b) = lim
n−→∞

1

2n
f(2na, 2nb); a, b ∈ A,

is additive and indeed it is the unique Lie Banach∗ homomorphism that holds in the condition
(2.5). This completes the proof.

3. STABILITY OF L IE DERIVATIONS ON BANACH ∗-ALGEBRAS

In this section we want to investigate the Hyers-Ulam stability of Lie derivations for special
functional equations acting on Banach∗-algebras.

If A is a Lie Banach∗-algebra, thenD : A2 −→ A2 satisfying

D([(a, b), (c, d)]) = [D(a, b), (c, d)] + [(a, b), D(c, d)]

for all a, b, c, d ∈ A, is called a Lie derivation onA2. Also, if A is a Lie Banach∗- algebra, then
D is called a Lie∗ derivation onA2 wheneverD is a Lie derivation withD(a, b)∗ = D(a∗, b∗)
for all a, b ∈ A.

Theorem 3.1. Suppose thatA is an Banach∗-algebra andf : A2 −→ A2 is a mapping such
that f(0, 0) = (0, 0). Also, letϕ : A2 −→ [0,∞) be a function satisfying the condition (2.1) of
Theorem 2.1 and

‖(f(a, b))∗ − f(a∗, b∗)‖ ≤ ϕ(a, b)(3.1)

for all a, b in A. Also, let

‖f([(a, b), (c, d)])− [f(a, b), (c, d)]− [(a, b), f(c, d)]‖ ≤ ϕ(ac, bd)(3.2)

for all a, b, c, d in A. Suppose that there exists0 < r < 1 such that

ϕ(a, b) ≤ r

2
ϕ(2a, 2b)(3.3)

for all a, b in A. Then there exists a unique Lie∗ derivativeD : A2 −→ A2 satisfying the
following condition:

‖f(a, b)−D(a, b)‖ ≤ 1

1− r
ϕ(a, b)(3.4)

for all a, b ∈ A.

Proof. By a similar method used in the proof of Theorem 2.1, forB = A2, we can that there
exists a uniqueC−linear mappingD : A2 −→ A2 satisfying the relation (3.4). Note thatD is
given by

D(a, b) = lim
n−→∞

2nf

(
a

2n
,

b

2n

)
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for all a, b ∈ A. Now, by using the relation (3.2), (3.3) we get

‖D([(a, b), (c, d)])− [D(a, b), (c, d)]− [(a, b), D(c, d)]‖

= limn−→∞ 4n‖f
[

(a,b)
4n , (c,d)

4n

)
−

[
f

(
a
2n , b

2n

)
,
(

c
2n , d

2n

)]
−

[(
a
2n , b

2n

)
, f

(
c

2n , d
2n

)]
‖

≤ limn−→∞ 4nϕ
(

ac
4n , bd

4n

)
≤ limn−→∞(rn)2ϕ(ac, bd)

= 0

for all a, b, c, d ∈ A. Also,

‖D(a, b)∗ −D(a∗, b∗)‖ = limn−→∞(2n)‖f
(

a
2n , b

2n

)∗ − f
(

a∗

2n , b∗

2n

)
‖

≤ limn−→∞ 2nϕ
(

a
2n , b

2n

)
≤ limn−→∞ 2nϕ(a, b)

= 0

HenceD : A2 −→ A2 is the unique Lie∗ derivative satisfying the desired conditions. Now the
proof is complete.

Theorem 3.2.Suppose thatA is a Banach∗-algebra andf : A2 −→ A2, andϕ : A2 −→ [0,∞)
be two mappings satisfying

‖µf(a + c, b + d)− f(µa, µb)− f(µc, µd)‖ ≤ ϕ(a + c, b + d),

‖f([(a, b), (c, d)])− [f(a, b), (c, d)]− [(a, b), f(c, d)]‖ ≤ ϕ(ac, bd)

and

‖f(a, b)∗ − f(a∗, b∗)‖ ≤ ϕ(a, b)

for all scalarsµ with |µ| = 1 and all a, b, c, d in A. Suppose that there exists0 < r < 1 such
that

ϕ(2a, 2b) ≤ 2rϕ(a, b),

for all a, b in A. Then there exists a unique Lie∗ derivativeD : A2 −→ A2 satisfying the
condition

‖f(a, b)−D(a, b)‖ ≤ 1

1− r
ϕ(a, b)

for all a, b ∈ A.

Proof. By a similar method used in the proof of Theorem 2.2, forB = A2, we can see that the
mappingD : A2 −→ A2 defined by

D(a, b) = lim
n−→∞

1

2n
f(2na, 2nb); a, b ∈ A,
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is the uniqueC−linear mapping such that‖f(a, b) − D(a, b)‖ ≤ 1
1−r

ϕ(a, b) for all a, b ∈ A.
Also, we note that

‖D([(a, b), (c, d)])− [D(a, b), (c, d)]− [(a, b), D(c, d)]‖
= limn−→∞

1
4n‖f([4n(a, b), 4n(c, d)])− [f(2na, 2nb),

(
c

2n , d
2n

)
]

−
[(

a
2n , b

2n

)
, f(2nc, 2nd)

]
‖

≤ limn−→∞
1
4n ϕ(4nac, 4nbd)

≤ limn−→∞(rn)2ϕ(ac, bd)

= 0

for all a, b, c, d in A. Also, clearly(D(a, b))∗ = D(a∗, b∗) for all a, b ∈ A. ThusD is indeed a
Lie∗ derivative onA2. This completes the proof.
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