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2 AWAR SIMON UKPERA

1. INTRODUCTION

The main aim of this paper is to formulate nonuniform nonresonant hypotheses for the ex-
istence and possibly, the uniqueness of the solutions of generalised differential systems of the
form

(1.1) X
′′′

+ F (t,X
′′
) + BX

′
+ CX = P (t) ,

subject to

(1.2) X(0) − X(T ) = X
′
(0) − X

′
(T ) = X

′′
(0) − X

′′
(T ) = 0 ,

and thereby generalising and improving upon our recent results published in [5].
Accordingly, we shall assume thatB andC are constant real symmetricn × n nonsingular

matrices, andF : [0, T ]× IRn → IRn andP : [0, T ] → IRn aren-vectors, which are T- periodic
in t. We shall assume further thatF satisfies the Carathéodory conditions, that is,F (·, X ′′

)
is measurable for everyX

′′ ∈ IRn; F (t, ·) is continuous for a.e.t ∈ [0, T ], and for each
r > 0, there exists an integrable functionγr ∈ L1([0, T ], IR) such that||F (t,X

′′
)|| ≤ γr(t), for

||X ′′|| ≤ r and a.e.t ∈ [0, T ]. The case whenB andC are not neccessarily constant matrices
is also examined.

Arising significantly from an indepth analysis, expounded in [5], of the spectrum of the linear
differential operatorL : domL ⊂ L∞ → L1 by

(1.3) LX := −X
′′′ − AX

′′ −BX
′ − CX

where

domL = {X ∈ L∞ : X ∈ C2 , with X
′′

absolutely continuous on[0, T ]
and satisfying(1.2) } ,

we were able to generate sharp nonresonant relations of the forms

(1.4) (k + 1)−2ω−2 < ∆b ≤
〈B−1X

′
, X

′〉
‖X ′‖2 ≤ δ−1

b < k−2ω−2

and

(k + 1)−2ω−2 < ∆−1
c δa ≤

〈C−1AX
′′
, X

′′〉
‖X ′′‖2 ≤ δ−1

c ∆a < k−2ω−2 ,

whereδd and∆d represent respectively, the least and greatest eigenvalues of any matrixD.
Thus, for the associated eigenvalue problem

(1.5) X
′′′

+ BX
′
+ CX = −λCX

′′
,

we deduce from the above analysis that
(i) anyλ 6= k−2ω−2 , for eachk ∈ IN, is not an eigenvalue; and

(ii) λ = k−2ω−2 for somek ∈ IN, if and only if B−1 = k−2ω−2I , B nonsingular.
We observe that (i) implies that anyλ > ω−2 is not an eigenvalue, and by (ii), the eigenvalues
are all contained in the interval(0 , ω−2].

Each of the statements (i) and (ii) has an important bearing on the solvability of the PBVP
for the linear nonhomogeneous system

(1.6) X
′′′

+ λCX
′′

+ BX
′
+ CX = P (t) ,

with P ∈ L1. For instance, (i) and the Fredholm’s alternative imply that (1.6) has a solution if
λ is such that

(1.7) (k + 1)−2ω−2 < λ1 ≤ ∆−1
c δa ≤

〈C−1AX
′′
, X

′′〉
‖X ′′‖2 ≤ δ−1

c ∆a ≤ λ2 < k−2ω−2 ,
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GENERAL OSCILLATIONS FOR SOME THIRD ORDER DIFFERENTIAL SYSTEMS 3

k ∈ IN , λ1 , λ2 constants, forX
′′ 6= 0 andC nonsingular. On replacingAX

′′
with F (t,X

′′
),

the inequality translates into the sharp nonresonant criterion

(F1) (k + 1)−2ω−2 < ∆−1
c δf ≤

〈C−1F (t,X
′′
), X

′′〉
‖X ′′‖2 ≤ δ−1

c ∆f < k−2ω−2 ,

uniformly for a.et ∈ [0, T ] and X
′′ ∈ IRn with ‖X ′′‖ ≥ r0 > 0, wherek ∈ IN , ω =

2π
T

, generated in [5] for the existence ofT -periodic solutions of (1.1)-(1.2), with uniqueness
established under the analogous condition

(F2) (k + 1)−2ω−2 < λ1 ≤
‖C−1

(
F (t,X

′′
1 )− F (t,X

′′
2 )

)
‖

‖X ′′
1 −X

′′
2 ‖

≤ λ2 < k−2ω−2 ,

holding uniformly inX
′′
1 , X

′′
2 ∈ IRn, with X

′′
1 6= X

′′
2 , and for a.et ∈ [0, T ].

On the other hand, (ii) implies that a solution exists for (1.6) for only some classes ofP which
are orthogonal to the kernel of the linear differential operatorL. Furthermore, it suggests other
generalisations of conditionF1 which allow the ratio〈C

−1F (t,Z),Z〉
‖Z‖2 to touch, and even cross, the

spectrum for many values oft, on subsets of[0, T ] of measure zero, as‖Z‖ → ∞. This leads
to the so-called nonuniform or generalised conditions which is the central thrust of this paper.

We shall end this section with an introduction of the functional setting of our problem. For
any pairX, Y ∈ IRn, we shall denote the usual scalar product by〈X,Y 〉, so that in particular,
〈X, X〉 = ||X||2 is the usual Euclidean norm in IRn.

It is standard result that ifD is a realn× n symmetric matrix, then for anyX ∈ IRn,

(1.8) δd||X||2 ≤ 〈DX, X〉 ≤ ∆d||X||2,
whereδd and∆d are respectively the least and greatest eigenvalues ofD. In general,λi(D)
shall denote the eigenvalues of any matrixD.

The classical spaces ofk times continuously differentiable functions shall be denoted by
Ck ([0, T ], IRn), k ≥ 0 an integer, whereC0 = C andC∞ = ∩k≥0 Ck with norm‖X‖Ck ; while
Lp = Lp([0, T ]), 1 ≤ p ≤ ∞, will denote the usual Lebesgue spaces, with their respective
norms‖X‖Lp .

We shall denote byW 3,1
T ([0, T ], IRn) the Sobolev space ofT−periodic functions with norm

||X||W 3,1
T

; while H1 ([0, T ], IRn) shall denote the Hilbert space ofT−periodic functions with

norm‖X‖H1. Let H̃1(0, T ) =
{

X ∈ H1(0, T ) | 1
T

∫ T

0
X(t) dt = 0

}
.

2. SOME ASSOCIATED INEQUALITIES AND PRELIMINARY RESULTS

In order to establish nonuniform results, we shall require some background lemmas, which
are adaptations and generalisations of analogous results found in [1], [2] and [4] to the present
situation.

Lemma 2.1. Consider the linear homogeneous system

(2.1) X
′′′

+ A(t)X
′′

+ BX
′
+ CX = 0

whereC is nonsingular andA(t) ≡ (aij(t)), with aij ∈ L1(0, T ), is such that

(2.2)
(k + 1)−2ω−2 ≤ min1≤j,k≤n

(
λj(C

−1)λk(A(t))
)
≤ λi

(
C−1A(t)

)
≤ max1≤j,k≤n

(
λj(C

−1)λk(A(t))
)
≤ k−2ω−2
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hold uniformly for a.e.t ∈ [0, T ] , i = 1, . . . , n , k ∈ IN, with the strict inequality holding on
subsets of[0, T ] of positive measure.
Suppose further that for everyB nonsingular, relation (1.4) holds uniformly inX

′ ∈ IRn Then,
(2.1) - (1.2) has only the trivial solution.

Proof. SetD(t) = C−1A(t) and let the solutionX(t) = X(t)+X̃(t) have the Fourier expansion

X(t) ∼
n∑

i=1

(
c0,i +

∞∑
k=1

(ck,i cos kωt + dk,i sin kωt)

)
,

such that

X =
n∑

i=1

(
c0,i +

N∑
k=1

(ck,i cos kωt + dk,i sin kωt)

)
and

X̃ =
n∑

i=1

∞∑
k=N+1

(
ck,i cos kωt + dk,i sin kωt

)
,

for some integerN > 0 with (N + 1)−2ω−2 < λ < N−2ω−2, whereω = 2π
T

.

Then, multiplying (2.1) byX(t)− X̃(t) and integrating over[0, T ] gives

(2.3)
∫ T

0

〈
X(t)− X̃(t), C−1X

′′′
(t) + D(t)X

′′
(t) + C−1BX

′
(t) + X(t)

〉
dt = 0 .

Using the orthogonality ofX andX̃ and their derivatives over[0, T ] noting that∫ T

0

〈
X(t)− X̃(t), C−1X

′′′
(t) + C−1BX

′
(t)

〉
dt = 0 ,

we obtain

(2.4)

∫ T

0

[〈
D(t)X̃

′
(t), X̃

′
(t)

〉
−‖X̃(t)‖2

]
dt

−
∫ T

0

[〈
D(t)X

′

(t), X
′

(t)
〉
− ‖X(t)‖2

]
dt = 0 .

Let µ be a constant defined by

(2.5) µ =:
1

2

(
min λi

(
D(t)

)
+ max λi

(
D(t)

))
for a.e.t ∈ [0, T ]. Then by relation (2.2),

(2.6)
(k + 1)−2ω−2 ≤ µ ≤ k−2ω−2 , for a.et ∈ [0, T ] , and

(k + 1)−2ω−2 < µ < k−2ω−2 , on subsets of[0, T ] of positive measure .

Thus, (2.4) gives

(2.7) 0 ≥
∫ T

0

[
µ‖X̃ ′

(t)‖2 − ‖X̃(t)‖2

]
dt−

∫ T

0

[
µ‖X

′

(t)‖2 − ‖X(t)‖2

]
dt = 0 .

By Parseval’s identity given by∫ T

0

‖X‖2 dt =
n∑

i=1

(
c2
0,iT +

T

2

∞∑
k=1

(c2
k,i + d2

k,i)

)
,
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(2.7) becomes

(2.8)
T

2

n∑
i=1

[ ∞∑
k=N+1

(µk2ω2 − 1)(c2
k,i + d2

k,i) + 2c2
0,iT +

N∑
k=1

(1− µk2ω2)(c2
k,i + d2

k,i)
]

= 0 .

It follows from (2.6) thatck,i = 0 (k = 0, 1, 2, . . . ) and dk,i = 0 (k = 1, 2, . . . ), for all
i = 1, . . . , n. Thus,X ≡ 0 , and the lemma follows.

The following inequalities which are associated with system (2.1)-(1.2) are vector derivations
of Lemma 1 and Lemma 4 of Mawhin and Ward [4] :

Lemma 2.2. Let C be nonsingular, and assume thatM, N ∈ L1([0, T ], IRn2
) are nonsingular

matrices which satisfy the following conditions

(2.9) (k + 1)−2ω−2‖Z‖2 ≤ 〈C−1M(t)Z,Z〉 ≤ 〈C−1N(t)Z,Z〉 ≤ k−2ω−2‖Z‖2

uniformly inZ ∈ IRn, for a.e.t ∈ [0, T ] , k ∈ IN , ω = 2π
T

, and

(2.10) (k + 1)−2ω−2‖Z‖2 < 〈C−1M(t)Z,Z〉 , 〈C−1N(t)Z,Z〉 < k−2ω−2‖Z‖2

on subsets of[0, T ] of positive measure.
Then, there exist constantsε = ε(M, N, C) > 0 andη = η(M, N, C) > 0 uniformly a.e. on

[0, T ], such that for allD(t) ≡ C−1A(t) ∈ L1([0, T ], IRn2
) satisfying

(2.11) 〈C−1M(t)Z,Z〉 − ε‖Z‖2 ≤ 〈D(t)Z,Z〉 ≤ 〈C−1N(t)Z,Z〉+ ε‖Z‖2

uniformly inZ ∈ IRn, a.e. on[0, T ], and allX ∈ W 3,1
T ([0, T ], IRn), one has

(2.12) ‖C−1X
′′′

+ C−1A(·)X ′′
+ C−1BX

′
+ X‖L1 ≥ η‖X‖W 3,1

T
.

Proof. Let us assume that the conclusion of the Lemma does not hold, that is,ε and η do
not exist. Then, there exists a sequence(Xn) ∈ W 3,1([0, T ], IRn) with ‖Xn‖W 3,1 = 1, and a
sequence(An) ∈ L1([0, T ], IRn2

) of nonsingular matrices with

(2.13) 〈C−1M(t)Z,Z〉 − 1

n
‖Z‖2 ≤ 〈Dn(t)Z,Z〉 ≤ 〈C−1N(t)Z,Z〉+

1

n
‖Z‖2 , n ∈ IN ,

uniformly in Z ∈ IRn, for a.e.t ∈ [0, T ], whereDn(t) ≡ C−1An(t), such that for allX ∈ W 3,1,
one has

(2.14)
∫ T

0

‖C−1X
′′′

n (t) + C−1An(t)X
′′

n(t) + C−1BX
′

n(t) + Xn‖ dt <
1

n
.

Let ‖Dn‖ denote the norm ofDn. Then, by (3.13), there exists someα ∈ L1([0, T ], IR) such
that

(2.15) ‖Dn(t)‖ ≤ α(t) , n = 1, 2, . . .

for a.e.t ∈ [0, T ] , n ∈ IN. For example, one can take

α(t) ≡ 1

‖Z‖2

[
‖〈C−1M(t)Z,Z〉 − 〈Z,Z〉‖+ ‖〈C−1N(t)Z,Z〉+ 〈Z,Z〉‖

]
.

Now, by the compact embedding ofW 3,1([0, T ], IRn) into W 2,1([0, T ], IRn) and the continu-
ous embedding ofW 2,1([0, T ], IRn) into C1([0, T ], IRn) imply that by going to subsequences if
neccessary, we can assume that

(2.16) Xn → X in C1([0, T ], IRn) , X
′′

n → X
′′

in L∞([0, T ], IRn) ⊂ L1([0, T ], IRn) .

Moreover, by (2.15), we deduce that

(2.17) Dn ⇀ D in L1([0, T ], IRn2

)
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so that by (2.13),

(2.18) 〈C−1M(t)Z,Z〉 ≤ 〈D(t)Z,Z〉 ≡ 〈C−1A(t)Z,Z〉 ≤ 〈C−1N(t)Z,Z〉
for a.e.t ∈ [0, T ].

On the other hand, for everyΦ ∈ L∞([0, T ], IRn), we have by Schwarz inequality

(2.19)

‖
∫ T

0

〈
Dn(t)X

′′
n(t) − D(t)X

′′
(t), Φ(t)

〉
dt‖

≤ ‖
∫ T

0

〈
Dn(t)

(
X

′′
n(t)−X

′′
(t)

)
, Φ(t)

〉
dt‖

+ ‖
∫ T

0

〈 (
Dn(t)−D(t)

)
X

′′
(t), Φ(t)

〉
dt‖

≤ ‖Φ‖∞‖α‖L1‖X
′′
n −X

′′‖∞

+ ‖
∫ T

0

〈 (
Dn(t)−D(t)

)
X

′′
(t), Φ(t)

〉
dt‖ .

The right hand side of (2.19) tends to zero by (2.16) and (2.17), and we deduce that

(2.20) DnX
′′

n ⇀ DX
′′

in L1([0, T ], IRn) .

By (2.14), (2.16) and (2.20), it follows that

(2.21)
X

′′′
n = −An(·)X ′′

n −BX
′
n − CXn

⇀ −A(·)X ′′ −BX
′ − CX in L1([0, T ], IRn) .

Since the operatord
3

dt3
: W 3,1([0, T ], IRn) ⊂ L1([0, T ], IRn) → L1([0, T ], IRn) is weakly closed,

this implies (by (2.16) and (2.21)) thatX ∈ W 3,1
T ([0, T ], IRn), and

X
′′′

= −A(·)X ′′ −BX
′ − CX, that is,

(2.22) X
′′′
(t) + A(t)X

′′
(t) + BX

′
(t) + CX(t) = 0 ,

for a.e.t ∈ [0, T ] andX ∈ W 3,1([0, T ], IRn).
It follows from (2.9), (2.10), (2.18), (2.22) and Lemma 2.1 thatX ≡ 0, that is,Xn → 0 in

W 3,1([0, T ], IRn) asn →∞. But this clearly contradicts the initial assumption that‖Xn‖W 3,1 =
1 for all n, and the proof is complete.

Lemma 2.3. LetC andN ∈ L1([0, T ], IRn2
) be defined as in Lemma 2.2, such that

(2.23) 〈C−1N(t)Z,Z〉 ≥ ω−2‖Z‖2

uniformly inZ ∈ IRn for a.e.t ∈ [0, T ], with the strict inequality holding on subsets of[0, T ] of
measure zero.

Then, there exists a constantρ = ρ(C, N) > 0 such that for allX̃ ∈ H̃1([0, T ], IRn), we have

(2.24) BN(X̃) ≡ 1

T

∫ T

0

(〈
C−1N(t)X̃

′
(t), X̃

′
(t)

〉
− ‖X̃(t)‖2

)
dt ≥ ρ‖X̃‖2

eH1 .

Proof. Using (2.23) and Wirtinger’s inequality, we observe that for allX̃ ∈ H̃1([0, T ), IRn) and
ω = 2π

T

1

T

∫ T

0

[〈
C−1N(t)X̃

′
(t), X̃

′
(t)

〉
− ‖X̃(t)‖2

]
dt ≥ 1

T

∫ T

0

[
ω−2‖X̃ ′

(t)‖2 − ‖X̃(t)‖2

]
dt = 0 .

Moreover∫ T

0

[〈
C−1N(t)X̃

′
(t), X̃

′
(t)

〉
− ‖X̃(t)‖2

]
dt =

∫ T

0

[
ω−2‖X̃ ′

(t)‖2 − ‖X̃(t)‖2

]
dt = 0
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if and only if X̃(t) = Λ sin(ωt + ϑ), for Λ ∈ IRn, ϑ ∈ IR. In this case, we see that

0 =
∫ T

0

[〈
C−1N(t)X̃

′
(t), X̃

′
(t)

〉
−ω−2‖X̃ ′

(t)‖2
]
dt

= ‖Λ‖2ω2
∫ T

0

(
Γ(t)− ω−2

)
sin2(ωt + ϑ) dt

where we setΓ(t) ≡ max1≤i≤n λi(C
−1N(t). Then certainly by (2.23),Γ(t) ≥ ω−2, with the

strict inequality holding on subsets of[0, T ] of measure zero. Thus we must haveΛ = 0, which
implies thatX̃ = 0, and thereforeX = 0. It follows that for allX̃ ∈ H̃1([0, T ), IRn), we have
BN(X̃) ≥ 0.

Let us assume now that the conclusion of the Lemma is false. Then we can find a sequence
(X̃n) ∈ H̃1([0, T ], IRn) andX̃ ∈ H̃1([0, T ], IRn) such that

(2.25) ‖X̃n‖ eH1 = 1 , X̃n → X̃ in C([0, T ], IRn) , X̃n ⇀ X̃ in H1([0, T ], IRn)

and

0 ≤ BN(X̃n) ≡ 1

T

∫ T

0

(〈
C−1N(t)X̃

′

n(t), X̃
′

n(t)
〉
− ‖X̃n(t)‖2

)
dt ≤ 1

n
, n ∈ IN .

Proceeding as in Lemma 1 of [4], we deduce thatBN(X̃) ≤ 0, so that by the first part of the
proof,X̃ = 0, leading to‖X̃n‖ eH1 → 0, a contradiction with the first equality in (2.25).

3. NONUNIFORM NONRESONANCE RESULTS

The following result which holds under nonuniform nonresonance conditions can now be
proved:

Theorem 3.1.LetC be nonsingular and positive definite, and suppose thatF is an
L1-Carathéodory function which satisfies

(F3)

(k + 1)−2ω−2 ≤ 〈C−1M(t)Z,Z〉
‖Z‖2

≤ lim inf‖Z‖→∞
〈C−1F (t,Z),Z〉

‖Z‖2 ≤ lim sup‖Z‖→∞
〈C−1F (t,Z),Z〉

‖Z‖2

≤ 〈C−1N(t)Z,Z〉
‖Z‖2 ≤ k−2ω−2

uniformly in Z ∈ IRn for a.e. t ∈ [0, T ] , k ∈ IN, andM, N ∈ L1([0, T ], IRn2
) are

such that(k + 1)−2ω−2‖Z‖2 < 〈C−1M(t)Z,Z〉 and 〈C−1N(t)Z,Z〉 < k−2ω−2‖Z‖2

on subsets of[0, T ] of positive measure.

Then, the system (1.1)-(1.2) has at least one solution for everyP ∈ L1([0, T ], IRn).

Proof. We chooseε as in Lemma 2.2. Then, by (F3), we can fix a constant vectorξ = ξ(ε) with
eachξi > 0 such that

(3.1) 〈C−1M(t)Z,Z〉 − ε‖Z‖2 ≤ 〈C−1F (t, Z), Z〉 ≤ 〈C−1N(t)Z,Z〉+ ε‖Z‖2

for a.e.t ∈ [0, T ] and allZ ∈ IRn with |zi| ≥ ξi.
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Let us now defineγ(t, Z) ≡
(
γi(t, Z)

)
1≤i≤n

: [0, T ]× IRn → IRn by

γi(t, Z) =



z−1
i fi(t, Z) , if |zi| ≥ ξi ;

ziξ
−2
i fi(t, z1, . . . , zi−1, ξi, zi+1, . . . , zn) + (1− zi

ξi
)α(t) ,

if 0 ≤ zi < ξi ;

ziξ
−2
i fi(t, z1, . . . , zi−1,−ξi, zi+1, . . . , zn) + (1 + zi

ξi
)α(t) ,

if − ξi ≤ zi < 0 .

for a.e.t ∈ [0, T ], whereα is given by

(3.2) α(t) ≡ 1

‖Z‖2

[
‖〈C−1M(t)Z,Z〉 − 〈Z,Z〉‖+ ‖〈C−1N(t)Z,Z〉+ 〈Z,Z〉‖

]
,

so that by construction and (3.1), we deduce that

(3.3) 〈C−1M(t)Z,Z〉 − ε‖Z‖2 ≤ 〈C−1γ(t, Z), Z〉 ≤ 〈C−1N(t)Z,Z〉+ ε‖Z‖2

for a.e.t ∈ [0, T ] andZ ∈ IRn.
The functionF̃ ≡ (f̃i(t, Z))1≤i≤n[0, T ]× IRn → IRn defined byf̃i(t, Z) = γi(t, Z)zi satisfies

the Carathéodory conditions, by construction. Hence, settingχ(t, Z) = F (t, Z)− F̃ (t, Z), then
χ(t, Z) is alsoL1-Carathéodory with

(3.4) ‖χ(t, Z)‖ ≤ sup
|zi|≤ξi

‖F (t, Z)− F̃ (t, Z)‖ ≤ ϕ(t)

for a.e. t ∈ [0, T ] andZ ∈ IRn, for someϕ ∈ L1([0, T ], IR) depending only onM, N andγr

mentioned at the beginning in association withF . Then, the problem (1.1) is equivalent to

(3.5) X
′′′
(t) + F̃ (t,X

′′
(t)) + χ(t,X

′′
(t)) + BX

′
(t) + CX(t) = P (t) .

By the Leray-Schauder technique (see Mawhin [3]), the proof of the Theorem now follows by
showing that there is a constantK > 0, independent ofλ ∈ (0, 1), such that‖X‖C2 < K, for
all possible solutionsX of the homotopy

(3.6) X
′′′

+ (1− λ)N(t)X
′′

+ λF̃ (t,X
′′
) + BX

′
+ CX + λχ(t,X

′′
) = λP (t)

λ ∈ [0, 1], or equivalently

(3.7) C−1X
′′′

+ (1− λ)C−1N(t)X
′′

+ λC−1F̃ (t,X
′′
) + C−1BX

′
+ X + λC−1χ(t,X

′′
)

= C−1λP (t).

We observe from (3.3) that

(3.8) 〈C−1M(t)Z,Z〉 − ε‖Z‖2 ≤ 〈 (1− λ)C−1N(t)Z + λC−1F̃ (t, Z), Z 〉
≤ 〈C−1N(t)Z,Z〉+ ε‖Z‖2

for a.e.t ∈ [0, T ], Z ∈ IRn andλ ∈ [0, 1].
Thus, we may set(1 − λ)C−1N(t)X

′′
+ λC−1F̃ (t,X

′′
) ≡ C−1A(t)X

′′
, for a.e. t ∈

[0, T ], X
′′ ∈ IRn andλ ∈ [0, 1], where, by (3.8),A(t) is such that

(3.9) 〈C−1M(t)X
′′
, X

′′〉 − ε‖X ′′‖2 ≤ 〈C−1A(t)X
′′
, X

′′〉 ≤ 〈C−1N(t)X
′′
, X

′′〉+ ε‖X ′′‖2

for a.e.t ∈ [0, T ], X
′′ ∈ IRn andλ ∈ [0, 1].

Thus integrating (3.7) over[0, T ] gives

(3.10)
0 ≥

∫ T

0
‖C−1X

′′′
+ C−1A(t)X

′′
+ C−1BX

′
(t) + X‖ dt

− δ−1
c

(∫ T

0
‖χ(t,X

′′
)‖ dt−

∫ T

0
‖P (t)‖ dt

)
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whereδc > 0 is the least eigenvalue ofC assumed positive definite. It follows from Lemma 2.2
that

(3.11) 0 ≥ η‖X‖W 3,1 − δ−1
c

(
‖ϕ‖L1 − ‖P‖L1

)
which yields a constantK0 > 0 such that‖X‖W 3,1 ≤ K0. Hence, we obtain the required
constantK > 0 such that‖X‖C2 < K, following a standard procedure just as in [2], completing
the proof.

Remark 3.1. We can obtain a partial generalisation of Theorem 3.1, corresponding tok = 1,
for nonlinear systems of the form

(3.12) X
′′′

+ F (t,X
′′
) +

d

dt
gradg(X) + CH(X) = P (t) ,

under suitable assumptions onF satisfying some requirements in respect of the first (possible)
eigenvalue of the eigenvalue problem (2.1)-(1.2). Here,g : IRn → IR is a C2-function, H :
IRn → IRn is continuous, whileC, P are as specified earlier.

Theorem 3.2.LetC be nonsingular and positive definite, and suppose thatF is anL1-Carathéodory
function which satisfies

(F4) lim sup
‖Z‖→∞

〈C−1F (t, Z), Z〉 ≥ 〈C−1N(t)Z,Z〉 ≥ ω−2‖Z‖2

uniformly in Z ∈ IRn for a.e. t ∈ [0, T ], and N ∈ L1([0, T ], IRn2
) is such that

〈C−1N(t)Z,Z〉 > ω−2‖Z‖2 on subsets of[0, T ] of measure zero.

Furthermore, suppose thatH is continuous and, for everyX ∈ IRn, satisfies

(H) 〈H(X), X 〉 ≥ ∆0‖X‖2 , ∆0 ≤ 0 .

Then, for all arbitraryg ∈ C2, (3.12)-(1.2) has at least one solution for everyP ∈ L1([0, T ], IRn).

Proof. Proceeding as in the preceding proof, for someε > 0, there existsξ = ξ(ε) > 0 such
that

(3.13) 〈C−1F (t, Z), Z〉 ≤ 〈C−1N(t)Z,Z〉+ ε‖Z‖2

for a.e.t ∈ [0, T ] and allZ ∈ IRn with |zi| ≥ ξi.
Then, definẽF (t, Z) andχ(t, ZX) as before, so that the relations

(3.14) (1− λ)C−1N(t)Z + λC−1F̃ (t, Z) ≤ C−1N(t)Z + εZ

and

(3.15) ‖χ(t, Z)‖ ≤ ϕ(t)

hold, for a.e.t ∈ [0, T ] and everyZ ∈ IRn.
It suffices to establish the appropriate a-priori bounds for theλ-dependent family of systems

(3.16) X
′′′

+ (1− λ)(N(t)X
′′

+ CX) + λF̃ (t,X
′′
)

+ λd
dt

gradg(X) + λCH(X) + λχ(t,X
′′
) = λP (t)

λ ∈ [0, 1], or equivalently

(3.17) C−1X
′′′
+ (1− λ)C−1N(t)X

′′
+ λC−1F̃ (t,X

′′
) + (1− λ)X

+ C−1λd
dt

gradg(X) + λH(X) + λC−1χ(t,X
′′
) = C−1λP (t) .
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LetX be a solution of (3.17)-(1.2). Taking the scalar product of (3.17) withX(t) and integrating
by parts over[0, T ] using (3.14) gives

(3.18)

(1−λ)
T

∫ T

0

[
〈‖X(t)‖2− C−1N(t)X

′
(t), X

′
(t) 〉

]
dt

− ε
T

∫ T

0
‖X ′

(t)‖2 dt + λ
T

∫ T

0
〈H(X), X 〉 dt

≥ λ
T

∫ T

0
C−1〈P (t)− χ(t,X

′′
), X 〉 dt

noting that ∫ T

0

〈C−1 d

dt
gradg(X), X 〉 dt = 0 .

Applying now the hypotheses onH, P , χ, we get

(3.19)
0 ≥

∫ T

0

[
〈‖C−1N(t)X

′
(t), X

′
(t) 〉− (1 + ∆0)X(t)‖2

]
dt− ε

T

∫ T

0
‖X ′

(t)‖2 dt

− λ
T

∫ T

0
C−1〈χ(t,X

′′
)− P (t), X 〉 dt .

Since∆0 ≤ 0 by definition, we deduce from Lemma 2.3 and the Cauchy-Schwartz inequality
that

(3.20) 0 ≥ ρ‖X‖2
H1 −

ε

T

∫ T

0

‖X ′
(t)‖2 dt− δ−1

c

(
‖ϕ‖L1 + ‖P‖L1

)
‖X‖∞ .

That is

(3.21) ρ‖X‖2
H1 =

ρ

T
‖X ′‖2

L2 ≤ ε

T

∫ T

0

‖X ′
(t)‖2 dt + δ−1

c

(
‖ϕ‖L1 + ‖P‖L1

)
‖X‖∞ .

Now observe that∫ T

0

[
(1− λ)C−1N(t)X

′′
+ λF̃ (t,X

′′
)
]
dt ≤

∫ T

0

( C−1N(t)X
′′

+ εX
′′
) dt = 0 .

Hence, taking the average of (3.17) on[0, T ], we obtain by the Mean Value Theorem,

(3.22)

∥∥ (1− λ)X(t0)+ λH(X(t0))
∥∥

=
∥∥ (1− λ)

(
1
T

∫ T

0
X(t) dt

)
+ λ

(
1
T

∫ T

0
H(X(t)) dt

) ∥∥
≤ ‖C−1‖

(
1
T
‖ϕ‖L1 + 1

T
‖P‖L1

)
:= κ1

for somet0 ∈ [0, T ].
Notice by the continuity ofH that for anyk > 0, there exists aq = q(k) > 0 such that

‖H(X)‖ > k for everyX ∈ IRn with ‖X‖ > max{ k, q }. Hence, for anyλ ∈ (0, 1], we have

‖ (1− λ)X + λH(X) ‖ ≥ (1− λ)k + λk = k

for every‖X‖ > max{ k, q }. Thus, choosingk > κ1, it follows that

(3.23) ‖X(t0)‖ ≤ max{ k, q } := κ2 .

Hence from the relationX(t) = X(t0) +
∫ t

t0
X

′
(s) ds, we obtain

(3.24) ‖X‖∞ ≤ κ2 +
(
T

∫ T

0

‖X ′
(s)‖2ds

) 1
2 ≤ κ2 + T

1
2‖X ′‖L2 .

Substituting (3.24) into (3.21), withε sufficiently small such thatρ − ε > 0, now yields some
constantsκ3 > 0, κ4 > 0 for which

(3.25) ‖X ′‖L2 ≤ κ3

and

(3.26) ‖X‖∞ ≤ κ4 .
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Next, multiplying (3.17) scalarly byX
′
(t) and integrating over[0, T ] gives

(3.27)
− 1

T

∫ T

0
〈C−1X

′′
, X

′′〉 dt + λ
T

∫ T

0
〈C−1 d

dt
gradg(X), X

′〉 dt

+ λ
T

∫ T

0
〈χ(t,X)− P (t), X

′〉 dt = 0

noting by definition that

1

T

∫ T

0

〈 (1− λ)C−1N(t)X
′′

+ λC−1F̃ (t,X
′′
), X

′ 〉 dt +
λ

T

∫ T

0

〈H(X), X
′〉 dt = 0 .

Thus, from (3.27) we obtain

(3.28) 0 ≥ ∆−1
c ‖X ′′‖2

L2 − δ−1
c ∆g‖X

′‖2

L2 − δ−1
c

(
‖ϕ‖L1 + ‖P‖L1

)
‖X ′‖∞ ,

where∆c andδc are the greatest and least eigenvalues ofC, and∆g is the greatest eigenvalue
of the Hessian matrix corresponding tog. Again from the relation‖X ′‖∞ ≤

√
T‖X ′′‖L2, we

deduce using (3.25) in (3.28) constantsκ5 > 0, κ6 > 0 such that

(3.29) ‖X ′′‖L2 ≤ κ5

and

(3.30) ‖X ′‖∞ ≤ κ6 .

Finally, integrating (3.17) and using the continuity ofH and (3.26), we can find a constantκ7,
such that

(3.31) ‖X ′′′‖L1 ≤ κ7

so that

(3.32) ‖X ′′‖∞ ≤ T‖X ′′′‖L1 = Tκ7.

Therefore, by (3.26), (3.30) and (3.32),

(3.33) ‖X‖C2 = ‖X‖∞ + ‖X ′‖∞ + ‖X ′′‖∞ ≤ κ8

for someκ8 > 0, and we are done.

Finally, we give some uniqueness results for (1.1)-(1.2).

Theorem 3.3. Assuming the hypotheses of Theorem 3.1 onC, F, P, M and N hold, and
suppose further that
(F5)

(k + 1)−2ω−2 ≤ 〈C−1M(t)(Z1−Z2),Z1−Z2〉
‖Z1−Z2‖2 ≤ 〈C−1

(
F (t,Z1)−F (t,Z2)

)
,Z1−Z2 〉

‖Z1−Z2‖2

≤ 〈C−1N(t)(Z1−Z2),Z1−Z2〉
‖Z1−Z2‖2 ≤ k−2ω−2

or

(F6)
〈C−1

(
F (t, Z1)− F (t, Z2)

)
, Z1 − Z2 〉

‖Z1 − Z2‖2 ≥ ω−2

holds uniformly for a.e.t ∈ [0, T ], k ∈ IN, ω = 2π
T

and all Z1, Z2 ∈ IRn with Z1 6= Z2, with
the strict inequalities holding on subsets[0, T ] of positive measure inF5, and of measure zero
in F6.

Then, the system (1.1)-(1.2) has a uniqueT -periodic solution.
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Proof. It follows from (F5) that (F3) holds, and from (F6) that (F4) holds (takeF (t, 0) = 0).
Thus, the existence of at least oneT -periodic solution for (1.1)-(1.2) is assured by Theorem 3.1
and Theorem 3.2.

Now, letZ1, Z2 ∈ IRn be any twoT -periodic solutions of (1.1)-(1.2) and setU(t) = Z1(t)−
Z2(t), thenU(t) satisfies

(3.34) U
′′′
(t) + D?

(
t, U

′′
(t)

)
U

′′
(t) + BU

′
(t) + CU(t) = 0

with the accompanyingT -periodic boundary conditions onU , whereD?
(
·, U ′′

(·)
)

is a matrix
defined as follows:

F subject to (F5): Set

D?
(
t, U(t)

)
U(t) =

 F (t, U + Z2)− F (t, Z2) , if U 6= 0

M(t) , if U = 0

and satisfiesλi(C
−1M(t)) ≤ λi

(
C−1D?(t, U(t))

)
≤ λi(C

−1N(t)) uniformly in U ∈ IRn for
a.e. t ∈ [0, T ]. It follows from Lemma 2.1 that (3.34) has only the trivial solutionU ≡ 0, and
we are done.

F subject to (F6): Here

D?
(
t, U(t)

)
U(t) =

 F (t, U + Z2)− F (t, Z2) , if U 6= 0

ω−2 , if U = 0

and satisfies〈C−1D?(t, U(t))U,U 〉 ≥ 〈C−1N(t)U,U 〉 ≥ ω−2 uniformly in U ∈ IRn for a.e.
t ∈ [0, T ]. Multiply now (3.34) scalarly by−U

′′
(t) and integrate over[0, T ], we get by Lemma

2.3

(3.35) 0 =

∫ T

0

(
〈C−1D?(t, U(t))U

′
(t), U

′
(t) 〉 − ‖U‖2

)
dt ≥ ρ‖U‖2

H1

from which we deduce thatU ≡ 0, and the proof is complete.
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