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1. INTRODUCTION

The main aim of this paper is to formulate nonuniform nonresonant hypotheses for the ex-
istence and possibly, the uniqueness of the solutions of generalised differential systems of the
form

(1.1) X"+ Ft,X")+BX +CX = P(t),
subject to
(1.2) X(0) — X(T) = X'(0) — X(T) = X'(0) — X (T)=0,

and thereby generalising and improving upon our recent results published in [5].

Accordingly, we shall assume th& andC' are constant real symmetnicx n nonsingular
matrices, and” : [0,7] x R — R" andP : [0,7] — R" aren-vectors, which are T- periodic
in t. We shall assume further thét satisfies the Carathéodory conditions, thatfig;, X")
is measurable for everX” € R"; F(t,-) is continuous for a.e.t € [0,7], and for each
r > 0, there exists an integrable functiop € L'([0, T, R) such that|F'(¢, X")|| < ~,(t), for
1X"|| < randa.et € [0,T]. The case wheis andC' are not neccessarily constant matrices
is also examined.

Arising significantly from an indepth analysis, expounded in [5], of the spectrum of the linear
differential operatoll : dom£L Cc L>* — L' by

(1.3) LX =—-X"—AX'—BX —CX
where

domL = {X € L*: X € C?, with X" absolutely continuous o}, 7]
and satisfying1.2) } ,

we were able to generate sharp nonresonant relations of the forms

S (B'X", X"y L
(14) (k—l—l) QW 2<Ab§W§5bl<k 2w2
and
_1AX// X//
k+1) 2w <A, < (c HX”H; ) <OTA, < k2w

whered, and A, represent respectively, the least and greatest eigenvalues of any matrix
Thus, for the associated eigenvalue problem

(1.5) X"4+BX +CX =-\CX",

we deduce from the above analysis that
(i) any )\ # k—2w=2  for eachk € N, is not an eigenvalue; and
(i) A\ =k2w=? for somek € N, ifand only if B~! = k~2w=2I , B nonsingular.
We observe that (i) implies that any> w2 is not an eigenvalue, and by (ii), the eigenvalues
are all contained in the intervéd , w=2].
Each of the statements (i) and (ii) has an important bearing on the solvability of the PBVP
for the linear nonhomogeneous system

(1.6) X" +XCX"+BX +CX = P(t),

with P € L'. For instance, (i) and the Fredholm’s alternative imply that (1.6) has a solution if
A is such that

<O_1AX//7X//>

@D (kDT <M S AT S S

<OMAL < X < kR
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k€ N, A\, )\ constants, fo’X” # 0 andC nonsingular. On replacing X" with F(t, X"),
the inequality translates into the sharp nonresonant criterion

(CTrR(t, X"), X")
X"
uniformly for a.et € [0,7] and X" € R"™ with | X"|| > ro > 0, wherek € N, w =

e generated in[5] for the existence Gtperiodic solutions of[ (1]1(2}2), with uniqueness
established under the analogous condition

ICH (Pt XT) = F(t.X5)|
IX7 = X5

holding uniformly inX; , X, € R", with X| # X,, and for a.¢ € [0, 7).

On the other hand, (i) implies that a solution exists for|(1.6) for only some classewhbich
are orthogonal to the kernel of the linear differential operatoFurthermore, it suggests other
generalisations of conditiaf; which allow the ratio%# to touch, and even cross, the
spectrum for many values of on subsets of0, 7'| of measure zero, d57|| — oo. This leads

to the so-called nonuniform or generalised conditions which is the central thrust of this paper.

(fl) (k’ + 1)_2w_2 < A;léf < < (Sc_lAf < k:_Qw_2 ,

(fg) (k’ + 1)_2w_2 < /\1 < < /\2 < k:_Qw_Q ,

We shall end this section with an introduction of the functional setting of our problem. For
any pairX,Y € R", we shall denote the usual scalar product iy Y'), so that in particular,
(X, X) = ||X]|? is the usual Euclidean norm in"R

It is standard result that iD is a realn x n symmetric matrix, then for anY € R",

(1.8) SlIXIP < (DX,X) < AdIX]P

whered, and A, are respectively the least and greatest eigenvaluds. ofh general,\;(D)
shall denote the eigenvalues of any matrix

The classical spaces &ftimes continuously differentiable functions shall be denoted by
C* ([0, T],R™),k > 0 an integer, wher€® = C' andC> = N;>o C* with norm || X|| ..; while
L = LP(]0,T]), 1 < p < oo, will denote the usual Lebesgue spaces, with their respective
norms|| X || ».

We shall denote byV>" ([0, 7], R") the Sobolev space df—periodic functions with norm
||X||W;,1; while A ([0, T], R™) shall denote the Hilbert space &f-periodic functions with

norm|| X|| .. Let H'(0,7) = { X € H'(0,T) | % [/ X(t)dt =0}.

2. SOME ASSOCIATED INEQUALITIES AND PRELIMINARY RESULTS

In order to establish nonuniform results, we shall require some background lemmas, which
are adaptations and generalisations of analogous results found in [1], [2]'and [4] to the present
situation.

Lemma 2.1. Consider the linear homogeneous system

(2.1) X"+ AHX " +BX +CX =0

whereC' is nonsingular andd(t) = (ay;(t)), witha;; € L*(0,T), is such that
(k -+ 1)_2w_2 < min1§j7k§n()\j(C_l))\k(A(t))) < )\Z(C_IA(t) )

2.2)
< maxigiren (A (CTHM(A(R)) ) < h%w™?
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hold uniformly for a.et € [0,7], i =1,...,n, k € N, with the strict inequality holding on
subsets 0f0, 7'] of positive measure.

Suppose further that for every nonsingular, relation4) holds uniformly if* € R" Then,
(2.7) - (1.2) has only the trivial solution.

Proof. SetD(t) = C~1A(t) and let the solutiot (£) = X (¢)+X (¢) have the Fourier expansion

X(t) ~ Z < Coi + Z(C]“ cos kwt + dy, ; sin kwt) ) ,

i=1 k=1

such that

n N

X = Z ( coi + Z(c;” cos kwt + dy.; sin kwt) >

i=1 k=1

and
X = Z Z (c;w- cos kwt + dj, ; sin k:wt) ,
=1 k=N+1

for some integeV > 0 with (N + 1) 2w™? < A < N 2w 2, wherew = 2.

Then, multiplying ) byX (¢) — )~((t) and integrating ovel0, T'] gives

"

(2.3) /OT<7(t) —X(t), CT'X" ") + D)X (t) + CT'BX'(t) + X(t) Ydt = 0.

Using the orthogonality ok and.X and their derivatives oved, 7' noting that

"

/T<7(t) —X(t), O X" (1) + C7'BX'(t) ) dt = 0,

we obtain
Jo (DOX'(@), X'(8)) —I1X(®)]1%] dt
(2.4) / / B
— TUDOX (1), X (t)) — [X(®)]*]dt =0.
Let 1 be a constant defined by
(2.5) pw=: % <min Ai(D(t)) + max \; (D(t)))
for a.e.t € [0, T]. Then by relation[(2]2),

(k+1D)2w2<p<k2w?, foraete[0,7], and
(2.6)
(k+1)2w? < u< kw2, on subsets of), T'] of positive measure .

Thus, [2.4) gives

en o= ) WX OF - 1X0R] @ - [ ) WX @O = IX0I| @t = 0.

By Parseval’s identity given by

T n T 00
IR CEREDSCRT HIE
=1 k=1
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(2.1) becomes
n 00 N
T
(28) S (ke = 1)(, +diy) + 20, T+ ) (1= pk®w?)(ch, +di )] =0
=1 k=N+1 k=1
It follows from (2.8) thatc,; = 0 (k = 0,1,2,...) andd;,;, = 0 (k = 1,2,...), for all
1=1,...,n. Thus,X = 0, and the lemma follows

The following inequalities which are associated with sysfenj (2.1)-(1.2) are vector derivations
of Lemma 1 and Lemma 4 of Mawhin and Ward [4] :

Lemma 2.2. Let C' be nonsingular, and assume thet, N € L'([0,T], R*) are nonsingular
matrices which satisfy the following conditions

(2.9)  (k+1) % 2| < (CT'M(1)Z,2) < (CT'N(1)2,Z) < k*w™?| 2]
uniformly inZ € R*, fora.e.t € [0,7], ke N, w = 27,
(2.10) (k+1)20 2| Z|P <(C' M) 2, Z) , (CT'Nt)Z,Z) < k2w || Z))?

on subsets db), 7| of positive measure.
Then, there exist constants= ¢(M, N,C) > 0 andn = n(M, N,C) > 0 uniformly a.e. on
[0, 7], such that for allD(t) = C~*A(t) € L'([0,T], R”) satisfying

(2.11) (CTIM()Z,Z) — €| ZIIP < (D(t)Z,Z) < (CT'N(t)Z, Z) + €| Z|]?
uniformly inZ € R*, a.e. on[0, 7], and all X € W;>'([0, 7], R*), one has
(2.12) ICT' X"+ CTACX" + CT'BX 4 Xl = 0| X lyan -

and

Proof. Let us assume that the conclusion of the Lemma does not hold, thatars]l» do
not exist. Then, there exists a sequef&g) € W*'([0, 7], R") with || X, |l;;». = 1, and a
sequencéA,) € L'([0,T], R™) of nonsingular matrices with

1 1

(213) (CT'M()Z,2) = || ZII° < (Du()Z,2) < (CT'N()Z,2Z) + ~|| Z|], n €N,
uniformly in Z € R", for a.e.t € [0, T], whereD,,(t) = C~'A,(t), such that for allX € W31,
one has

T

1" 1 ’ 1

(2.14) / IC7'X, (1) + C'A, ()X, (t) + CT'BX,,(t) + X, || dt < .

0

Let || D,| denote the norm ab,,. Then, by (3.13), there exists somes L'([0, 7], R) such

that
(2.15) DL < alt), n=1,2,...
fora.e.t € [0,7], n € N. For example, one can take

1
) =1z

[H<01M(t)Z, Z) =2, D)1+ (CTIN() 2, 2) + (2. 2)] |-

Now, by the compact embedding Bf*!([0, 7, R") into W2!(]0, T], R™) and the continu-
ous embedding ofi’>1(]0, T, R™) into C*([0, T], R™) imply that by going to subsequences if
neccessary, we can assume that

(2.16) X, — XinCY[0,T],R™), X, — X" in L=([0,T],R") c L'([0,T],R") .
Moreover, by[(2.15), we deduce that
(2.17) D, — Din L'([0,T],R™)
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so that by[(Z2.133),
(2.18) (CT'M)Z,Z) < (D()Z,Z) = (CT'At)Z, Z) < (C"'N(t)Z, Z)

fora.e.t € [0,7].
On the other hand, for evedy € L>°([0, 7], R"), we have by Schwarz inequality

I [T {D. ()X, (t) — DH)X"(t), &(t)) dt|
< A Da) (X — X (1)), (1)) dt]|
(2.19) + | T(Da () — D) X" (£), (1) ) dt|

< lllladip X = X

+ 1L ((Dat) = D) X" (#), @(1) ) dt]
The right hand side of (2.19) tends to zero py (2.16) and [2.17), and we deduce that
(2.20) D,X, — DX"in L*([0,T],R").

By (2.13), [2.16) and (2.20), it follows that
(2 21) qumﬁ = _An<)X;: - BX;@ - X,
' — —AM)X" - BX —CXinLY[0,T],R").

Since the operatdt; : W31([0,7],R") c L'([0,T],R") — L'([0,T], R") is weakly closed,
this implies (by[(2.1p) and (2.21)) that € W' ([0, 7], R"), and

X" =-AX" - BX - CX, thatis,

"

(2.22) X"t)+ADX (1) + BX'(t) +CX(t) =0,

fora.e.t € [0, 7] andX € W31([0,T],R™).

It follows from (2.9), [2.10),[(2.18)] (2.22) and Lemina]2.1 that= 0, that is,X,, — 0 in
W31([0, 7], R") asn — oco. But this clearly contradicts the initial assumption that, |5, =
1 for all n, and the proof is completa.

Lemma 2.3.LetC'and N € L'([0,T], R*’) be defined as in Lem@.Z, such that
(2.23) (CTIN()Z,2) > w || 2]

uniformly inZ € R™ for a.e.t € [0, T, with the strict inequality holding on subsets|@fT’] of
measure zero. L
Then, there exists a constant= p(C, N) > 0 such that for allX € H'([0, T], R"), we have

@29 D=1 [ (<O-1N<t>55’<t), X)) - ||fc<t>|r?) dt > p| K|

T
Proof. Using ) and Wirtinger's inequality, we observe that forale Erl([o, T),R™) and
_ 27

7, (e N0 0. X 0) - 1XOF ez g [ 18 @ - 1RO a=o.

Moreover

/ (N OR (), K1) — 1K) dt = / [WH)?’(wHZ—\I)?(t)lP] it = 0
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if and only if X (¢) = A sin(wt + 9), for A € R", ¥ € R. In this case, we see that

0=Jy (CTNOX' (M), X'(1)) —wIX (1)) dt
= |APw? [ (T(t) — w™?) sin®(wt + 0) dt

where we sef' () = max;<;<, A(C~'N(t). Then certainly by[(2.33)[(¢) > w2, with the
strict mequallty holding on subsets f 7] of measure zero. Thus we must have- 0, which
implies thatX = 0, and thereforeY = 0. It follows that for allX € H'([0,T), R"), we have
By (X) > 0.
Let us assume now that the conclusion of the Lemma is false. Then we can find a sequence
(X,) € H'([0,T],R") andX € H'([0,T], R") such that

(2.25) I Xollzn =1, X, — X inc([0,T],R"), X, = X in H'([0,7],R")
and
i _ 1 T -1 ] ) iy 2 1
0 < By(X,) = f/ (<C N(t)X,(t), X, (1)) — [ Xu(0)] )dt < ~,neN.
0

ProceeNding asin Lemma 1 of [4], we deduce tB@t()?) < 0, so that by the first part of the
proof, X = 0, leading to||.X,,|| z: — 0, a contradiction with the first equality i25|).

3. NONUNIFORM NONRESONANCE RESULTS

The following result which holds under nonuniform nonresonance conditions can now be
proved:

Theorem 3.1. LetC be nonsingular and positive definite, and suppose that an
L!-Carathéodory function which satisfies

(k’+1) -9 < (C1M(t)Z,Z)

12
(CTIF(t,2),2) ~ 1; (CTIF(t,2).2)
(F3) e L e T

uniformly inZ € R" for a.e. t € [0 T), k€ N,andM, N € L'([0,T],R") are
such that(k + 1) 2w2||Z||* < (CT'M(t)Z,Z) and (C~'N(t)Z, Z) < k~*w™?||Z|?
on subsets db), 7’| of positive measure.

Then, the systerh (1.1)-(1.2) has at least one solution for évexyL' ([0, 7], R™).

Proof. We choose as in Lemma 2]2. Then, byf), we can fix a constant vectgr= ¢(e) with
each¢; > 0 such that

(Bl (CT'M)Z,Z) —€|Z|P <(CT'F(t,2),Z) < (CT'N(t)Z, Z) + || Z]]?

fora.e.t € [0,7] and allZ € R™ with |z;| > &,.
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Let us now define (¢, Z) = (v;(t, 2)) :[0,7] x R® — R" by

1<i<n
(2 filt, Z), if |2, > ¢, ;
6 it 21y 21,y Zig s - 20) (1= E—Z)Q(t) ;
vi(t, Z) = if0<z <&
szi_in(t, 21y Zimts =& Zip1s - Zn) (14 E—j)a(t) )
\ if — fz <z <0.
fora.e.t € [0, 7], wherex is given by
1
(3.2) alt) = I C™'M(t)Z,Z) — (Z, Z)| + |{CT'N(t) 2, Z) +{Z, Z)| | ,

so that by construction and (3.1), we deduce that
(8:3)  (CTIM()Z,Z) — €| Z|]* < (CT'(t, 2), Z) < (CTIN()Z, Z) + €| Z|?
fora.e.t € [0,7] andZ € R".

The functionF' = (f;(¢, Z))1<i<a[0, T] x R® — R™ defined byf;(t, Z) = v,(t, Z)z; satisfies
the Carathéodory conditions, by construction. Hence, setting”) = F'(t, Z) — F(t, Z), then
x(t, Z) is alsoL'-Carathéodory with

(3.4) Ix( 2)|l < sup [|F(t,Z) — F(t, Z)|| < (1)

|2:]<€;

fora.e.t € [0,7] andZ € R™, for someyp € L'([0,T],R) depending only o/, N and~,
mentioned at the beginning in association withThen, the problenj (1].1) is equivalent to

1

(3.5) X"+ Ft, X" () + x(t, X" (t)) + BX'(t) + CX (t) = P(t) .

By the Leray-Schauder technigue (see Mawhin [3]), the proof of the Theorem now follows by
showing that there is a constakit > 0, independent ok € (0, 1), such thal| X |2 < K, for
all possible solutions( of the homotopy

(36) X"+ (1-NNOX +AF(t,X")+BX +CX 4+ x(t,X") = AP(t)
A € [0, 1], or equivalently
CIX" + (1= NCINHX "+ AXCEt, X" )+ CBX + X +ACx(t, X")

(3.7) = C7I\P(t).
We observe fron (3]3) that
38) (CTMMZ,Z) —el|Z|PF < (1= NCIN(HZ +XCF(t, 2), Z)

' < (CTIN()Z,Z) + €| Z)?

fora.e.t € [0,7], Z € R and\ € [0, 1]. N

Thus, we may sefl — N)C'N(H)X" + \C'F(t,X") = CTrA)X" , forae. t €
0,7], X" € R*and) € [0, 1], where, by[(3.B)A(t) is such that
(3.9) (C'MHX", X" — €| X2 < (CTTABX", XY < (CTINHX", X") + €| X2
fora.e.t €[0,7], X" € R*and\ € [0, 1].

Thus integrating (3]7) ove, T'] gives
0> [F|CTX" + CTTAMX" + C'BX'(t) + X|| dt

3.10 T " .
(3.10) — 6 (S Ix@ X)) dt — [ [|P(t)]| dt)
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whered,. > 0 is the least eigenvalue 6f assumed positive definite. It follows from Lemnaj2.2
that

(3.11) 0> nl| X |lypsa — 6. (el = 11PNl )

which yields a constank, > 0 such that|| X||;;s: < Ky. Hence, we obtain the required
constantl’ > 0 suchthat| X |2 < K, following a standard procedure just asiin [2], completing
the proof.x

Remark 3.1. We can obtain a partial generalisation of Theofem 3.1, correspondihg-td,
for nonlinear systems of the form

(3.12) X"+ Ft,X") + %gradg(X) +CH(X) = P(t),

under suitable assumptions énsatisfying some requirements in respect of the first (possible)
eigenvalue of the eigenvalue problen {2[1){1.2). Here,R" — R is a C?-function, H :
R™ — R" is continuous, while’', P are as specified earlier.

Theorem 3.2.LetC be nonsingular and positive definite, and suppose fhiatan L' -Carathéodory
function which satisfies

() limsup(C\F(t,2), Z) > (CTN()Z,2) > w7 Z)]?

1Z][—o0

uniformly in Z € R for a.e. t € [0,7], and N e L'([0,T],R") is such that
(CTIN(t)Z,Z) > w™?|| Z]]* on subsets df), T'| of measure zero.

Furthermore, suppose th&t is continuous and, for everyf € R", satisfies
(H) (H(X), X) > A X[, 2 <0.
Then, for all arbitraryg € C?, (3.12)-(1.2) has at least one solution for evérye L' ([0, T], R").

Proof. Proceeding as in the preceding proof, for same 0, there existg = £(¢) > 0 such
that

(3.13) (CTYF(t,2), 2y < (C'Nt)Z, Z) + || Z|?

fora.e.t €[0,7]and allZ € R" with || > &;.
Then, define’’(t, Z) andx(t, ZX) as before, so that the relations

(3.14) (1=NC'N@®Z+AC'F(t,2) < CT'N({t)Z +¢Z
and
(3.15) Ix(t, Z2)|| < (t)

hold, for a.et € [0,7] and everyZ € R".
It suffices to establish the appropriate a-priori bounds fonHkependent family of systems

X"+ (1 =NNBHX" +CX)+\F(t,X")
+ALgradg(X) + A\CH(X) + Ax(t, X") = AP(t)

t

(3.16)

A € [0, 1], or equivalently

CIX"+ (1=NCINBOX " +NCEE X" )+ (1 - NX
+ C'2Egradg(X) + AH(X) + AC'x(t, X") = CIAP(t) .

t

(3.17)
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Let X be a solution 07.2). Taking the scalar produdt of (3.17) with) and integrating
by parts ovef0, T] using (3.14) gives
P IX O CONOX 0, X(0))
(3.18) — 5[y IX @) dt + Tfo X), X )dt
> TfO t _X(taX )aX>dt

noting that
T d
/ <C‘1£gradg(X), X)dt=0.

0
Applying now the hypotheses di, P, x, we get
0> [ IO NOX (1), X'(1)~ (1+ X } dt = Jy X (1) dt
-2 [ C )—P()X)dt.
SinceA, < 0 by definition, we deduce from Lemma 2.3 and the Cauchy-Schwartz inequality
that

T
€ ’ —
@20) 02 Xl -5 [ IX O -5 (el + 121 1Xe
0
That is
2 Py 12 e [T 2 1
@20 X = BIXUE < 5 [ IXOR o+ 5 el + 1P X -

Now observe that

(3.19)

/T [(1 NN X+ AF(L, X”)] dt < /T( CINWX" +eX")dt =0.

Hence, taking the average of (3 17) ﬁnT] we obtain by the Mean Value Theorem,
| (1=X)X(to)+ AH(X(to)) ||
H (1—N) %fﬁ) tydt) + A(% [T H(X(1)dt) |

(3.22) )(
IO~ (Fllellr + ZIPlle) = m

IA I

for somet, € [0, 7.
Notice by the continuity offf that for anyk > 0, there exists & = ¢(k) > 0 such that
|H(X)|| > k for everyX € R"™ with ||.X|| > max{ k, ¢ }. Hence, for any\ € (0, 1], we have

|(1=XNX+XHX)|| > 1=-Nk+ e =k
for every|| X || > max{ k, ¢ }. Thus, choosing > &, it follows that

(3.23) 1X (to) | < max{k a} =

Hence from the relatioX (t) = X () +ft s) ds, we obtain

(3.24) Xl < /€2—|-(T/ 1 (5)[2ds)? < o+ TH|X |l -
0

Substituting[(3.24) intd (3.21), with sufficiently small such that — ¢ > 0, now yields some
constants:; > 0, k4 > 0 for which

(3.25) IX' |2 < s
and
(3.26) 1 X|oo < Ka .
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Next, multiplying [3.1}) scalarly byX'(¢) and integrating ovei0, T gives

@27y T e X" X ydt+ 2 [T fioradg(X), X') dt |
+ 2 [y (@t X) = P(t),X")dt =0
noting by definition that
17 p o AT ,
?/0 (1= NC'N@OX" +ACF(t, X"), X )dt+f/0 (H(X),X')dt = 0.

Thus, from [(3.2]7) we obtain

_ "2 _ ’,2 — 4
(3.28) 0> AZHX 72 = 02 Al X M2 — 62 (el + 1P ) I1X ]
whereA, andJj. are the greatest and least eigenvalue§’' odndA, is the greatest eigenvalue
of the Hessian matrix correspondinggoAgain from the relatior)| X'|| . < VT X" |12, we
deduce using (3.25) i (3.28) constarts> 0, k¢ > 0 such that

(3.29) 1X |2 < ks
and
(3.30) 1X oo < kg -

Finally, integrating[(3.17) and using the continuity dfand [3.26), we can find a consta,
such that

"

(331) ||X HLl S Ry
so that
(3.32) 1 X Nloo < TIX" |11 = Tki.

Therefore, by[(3.26)[ (3.30) and (3]32),

(3.33) 1XMlc2 = [ X lloo + [1X Tloo + X [loo < ris
for somexg > 0, and we are doneg
Finally, we give some uniqueness results for|(1.1)}(1.2).

Theorem 3.3. Assuming the hypotheses of Theofenm 3.Xon/, P, M and N hold, and
suppose further that

(Fs) : )

-2 -2 (C™YM@t)(Z1—Z2),21—Zo) (CHF@t,21)-F(t,22) ), Z1—2Z2)
(k+1)"w™ < 1Z1—2Z2]2 < HZrZ2<|g N2 20) 22

B t)(L1—42),41—Z2 -2 =2
< =7l < kW
or
C~YF(t,Z)— F(t,Z Z1— 7

(«7:6) < ( (7 1) (7 2))7 1 2> > w2

12, — Zs|? B

holds uniformly for a.et € [0,7], k € N, w = QT’T and all Z,, Z, € R™" with Z; # Z,, with
the strict inequalities holding on subsets T'| of positive measure iff;, and of measure zero
in Fe.

Then, the systern (1.1)-(1L.2) has a uniquperiodic solution.

AIJMAA Vol. 2, No. 1, Art. 15, pp. 1-12, 2005 AJMAA


http://ajmaa.org

12 AWAR SIMON UKPERA

Proof. It follows from (F;) that (F3) holds, and from %) that (F,) holds (takeF'(¢,0) = 0).
Thus, the existence of at least dfigoeriodic solution for[(1]1)F(1]2) is assured by Theofem 3.1
and Theorern 3]2.

Now, letZ;, Z, € R" be any twal-periodic solutions of (1]1)-(1}2) and déft) = Z;(¢) —
Zy(t), thenU (t) satisfies
(3.34) U"(t)+D*(t, U (1)U (t) + BU (t) + CU(t) = 0
with the accompanying@-periodic boundary conditions di, whereD*(-, U”(-)) IS a matrix
defined as follows:

F subject to 5): Set

F(LU + Zy) — F(t, Zy), ifU#0
D*(t,U(t))U(t) =
M(t) if U =0
and satisfies\;(C 1M (t)) < \;(C7'D*(t,U(t)) ) < M(C7'N(t)) uniformly inU € R" for
a.e.t € [0,7]. It follows from Lemmg 2.l thaf (3.34) has only the trivial solution= 0, and

we are done.
F subject to g): Here

F(t,U+ Zy) — F(t, Zy), ifU#0
D*(t,U(t))U(t) =
w2, if U=0

and satisfies C~'D*(t,U(t))U,U ) > (C7'N(t)U,U) > w2 uniformly inU € R" for a.e.
t € [0, T]. Multiply now (3.34) scalarly by-U" (t) and integrate ove), 7], we get by Lemma
2.3

(3.35) 0= /0 (CT'D*(t, UM)U (1), U (t)) — |U[?) dt > p||Ul[3n

from which we deduce thdf = 0, and the proof is completaq.
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