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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique solution
x? of the generalized equation

(1.1) 0 ∈ F (x) +G(x),

where F is a continuous function from an open subset D of X into Y , G is a set–valued map
from X to the subsets of Y with closed graph, and X , Y are Banach spaces.

A large number of problems in applied mathematics and engineering are solved by finding
the solutions of generalized equation (1.1), introduced by Robinson [13], [14].

In the particular case G = {0}, (1.1) is a nonlinear equation in the form

(1.2) F (x) = 0.

For example, dynamic systems are mathematically modeled by differential or difference equa-
tions, and their solutions usually represent the states of the systems, which are determined by
solving equation (1.2).

Most of the numerical approximation methods require the expensive computation of the
Fréchet–derivatives F ′(x) and F ′′(x) of operator F at each step (Newton’s method, Euler–
Chebysheff’s method, Halley’s method, · · · ). A comprehensive bibliography of these methods
is given in [4]. In this study, we are interested in numerical method for solving generalized
equation (1.1) that avoid the expensive computation of any Fréchet–derivative. Here, we gener-
alize Traub–Potra–type method restricted to the resolution of nonlinear operator equations [12],
[17]. Recently, we have considered the problem of approximating a locally unique solution x?

of (1.1) using a third–order iterative method as follows [7]:

(1.3) 0 ∈ F (xn)+ [2 xn−xn−1, xn−1;F ] (xn+1−xn)+G(xn+1), (x0, x1 ∈ D), (n ≥ 1)

which generalizes the results obtained in [5] for nonlinear equations.
In this paper, for approximating x?, we consider Traub–Potra–type method as follows

(1.4) 0 ∈ F (xn) + Tn (xn+1 − xn) +G(xn+1), (x0, x1, x2 ∈ D), (n ≥ 2)

where,

(1.5) Tn = [xn, xn−1;F ] + [xn−2, xn;F ]− [xn−2, xn−1;F ],

with [x, y;F ] ∈ L(X ,Y) the space of bounded linear operators from X to Y is called a divided
difference of F of order one at the points x and y (to be precised in section 2).

In the case of nonlinear equations (1.2), the method (1.4) is reduced to the following algo-
rithm (see [17], [12]):

(1.6) xn+1 = xn − T −1
n F (xn), (x0, x1, x2 ∈ D), (n ≥ 2).

Potra [12] provided a local/semilocal convergence analysis for method (1.6) for solving (1.2)
using some Lipschitz conditions on the first and the second order divided differences operator
(see Theorem 4.1 and Theorem 5.1 in [12]).

Here, we are motivated by the extension of convergence of method (1.6) to generalized equa-
tions and by the works in [5], [7], [10]. Using some conditions on divided differences operator
introduced for nonlinear equation in [4], and under Aubin’s continuity of set–valued map G−1

around (−f(x?), x?), we provide a local convergence of method (1.4). Our approach has the
following advantages: we do not need to evaluate any Fréchet derivative and we extend the
results obtained by Traub [17] (in the scalar case) and by Potra [12] (in the Banach spaces case)
to variational inclusions.
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The structure of this paper is the following. In section 2, we collect a number of basic
definitions and recall a fixed points theorem for set–valued maps. In section 3 we show an
existence–convergence theorem of sequence given by (1.4). Some remarks are also presented.

2. BACKGROUND MATERIAL

In order to make the paper as self–contained as possible we reintroduce some definitions and
some results on fixed point theorems [2]–[9], [10]–[16]. Let us begin with some notations that
will used throughout this paper. We let Z be a Banach space equiped with the norm ‖ . ‖.
The distance from a point x to a set A in Z is defined by dist (x,A) = inf

y∈A
‖ x − y ‖, with

the convention dist (x, ∅) = +∞ (according to the general convention inf ∅ = +∞). Given a
subset C of Z , we denote by e(C,A) the Hausdorff–Pompeiu excess of C into A, defined by

e(C,A) = sup
x∈C

dist (x,A),

with the conventions e(∅, A) = 0 and e(C, ∅) = +∞ whenever C 6= ∅. For a set–mapping
Λ : X ⇒ Y , we denote by gph Λ the set {(x, y) ∈ X × Y , y ∈ Λ(x)} and Λ−1(y) the set
{x ∈ X , y ∈ Λ(x)}. The norms in both the Banach spaces X and Y will be denoted by ‖ . ‖
and the closed ball centered at x with radius r by IBr(x).

We also need to define the pseudo–Lipschitzian concept of set–valued maps, introduced by
Aubin [8] and also known as Lipschitz–like property [11]:

Definition 2.1. A set–valued Γ is pseudo–Lipschitz around (x, y) ∈ gph Γ with modulus M if
there exist constants a and b such that

(2.1) sup
z∈Γ(y′)∩IBa(y)

dist (z,Γ(y′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in IBb(x).

In the term of excess, we have an equivalent definition of pseudo–Lipschitzian property re-
placing the inequality (2.1) by

(2.2) e(Γ(y′) ∩ IBa(y), (y′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in IBb(x).

Pseudo–Lipschitzian property play a crutial role in many aspects of variational analysis and
applications [11], [16]. Let us note that the Lipschitz–like of Γ is equivalent to the metric
regularity of Γ−1 which is a basic well–posedness property in optimization problems. Other
characterization is by Mordukhovich [11] via the concept of coderivative D∗Γ(x/y), i.e.,

(2.3) v ∈ D∗Γ(x/y)(u)⇐⇒ (v,−u) ∈ Ngph Γ(x, y).

Then the Mordukhovich criterion says that Γ is pseudo–Lipschitz around (x, y) if and only if

(2.4) ‖ D∗Γ(x/y) ‖+= sup
u∈IB1(0)

sup
v∈D∗Γ(x/y)(u)

‖ v ‖ < ∞.

For some characterizations and applications of the Lipschitz–like property the reader could be
referred to [8], [9], [11], [15], [16] and the references given there.

We need the definitions of the first and second divided difference operators [4].

Definition 2.2. An operator [x, y;G] belonging to the space L(X ,Y) is called the first order
divided difference of the operator G : X → Y at the points x, y if :

(1) [x, y;G] (x− y) = G(x)−G(y), for x 6= y;
(2) if g is Fréchet differentiable at x ∈ X then [x, x;G] = G′(x).

Definition 2.3. We say that an operator belonging to the space L(X ,L(X ,Y)) denoted by
[x, y, z;G] is called the second order divided difference of the operator G : X → Y on the
points x, y, z ∈ X if :
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(1) [x, y, z;G] (y − z) = [x, y;G]− [x, z;G] for the distinct points x, y and z;

(2) if G is twice differentiable at x ∈ X then [x, y, z;G] =
1

2
G′′(x).

Finally, we need also the following fixed point theorem [9].

Lemma 2.1. Let φ be a set–valued map from X into the closed subsets of X . We suppose that
for η0 ∈ X , r ≥ 0 and 0 ≤ λ < 1 the following properties hold

(1) dist (η0, φ(η0)) ≤ r(1− λ).
(2) e(φ(x1) ∩ IBr(η0), φ(x2)) ≤ λ ‖ x1 − x2 ‖, ∀x1, x2 ∈ IBr(η0).

Then φ has a fixed point in IBr(η0). That is, there exists x ∈ IBr(η0) such that x ∈ φ(x). If φ is
single–valued, then x is the unique fixed point of φ in IBr(η0).

3. LOCAL CONVERGENCE OF METHOD (1.4)

Before presenting our main result of convergence of method (1.4), we give the local con-
vergence theorem restricted to the resolution of nonlinear equation (1.2) (due to Potra) [12,
Theorem 4.1, p. 87–88]:

Theorem 3.1. [12] Let F : D ⊆ X −→ Y be an operator such that for every distinct points
x, y and z in D, there exists a first and a second order divided differences of F [x, y;F ] and
[x, y, z;F ]. Suppose that (1.2) has a solution x? ∈ D at which the Fréchet–derivative F ′(x?)
exists and is invertible. Assume:

(P1) There exists p? > 0, such that for all x, y, u, v in D
‖ F ′(x?)−1 ([x, y;F ]− [u, v;F ]) ‖≤ p? (‖ x− u ‖ + ‖ y − v ‖);

(P2) There exists q? > 0, such that for all x, y, u, v in D
‖ F ′(x?)−1 ([u, x, y;F ]− [v, x, y;F ]) ‖≤ q? ‖ u− v ‖;

(P3)
IB(x?, r?) ⊆ D,

where,

r? =
2

3 p? +
√

9 p2
? + 16 q?

.

Then, the sequence given by (1.6) remains in IB(x?, r?), converges to the unique solution x?

of (1.2) and satisfies the following estimation for all n ≥ 2:

‖ xn+1 − x? ‖≤ ρn ‖ xn − x? ‖,
where,

ρn =
p? ‖ xn − x? ‖ +q? (‖ xn − x? ‖ + ‖ xn−2 − x? ‖) (‖ xn − x? ‖ + ‖ xn−1 − x? ‖)

1− 2 p? ‖ xn − x? ‖ −q? (‖ xn − x? ‖ + ‖ xn−2 − x? ‖) ‖ xn−1 − x? ‖
,

i.e., there exists a constant ρ > 0 and a integer N ≥ 2 such that:

‖ xn+1 − x? ‖≤ ρ ‖ xn − x? ‖ ‖ xn−1 − x? ‖ ‖ xn−2 − x? ‖ for all n ≥ N.

We will be concerned with the existence and the convergence of the sequence defined by
(1.4) to the solution x? of (1.1). The main result of this study is as follows.

Theorem 3.2. Let F : D ⊆ X −→ Y be an operator such that for every distinct points x, y
and z in D, there exists a first order and a second order divided differences of F [x, y;F ] and
[x, y, z;F ] at these points. Assume:
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(H1) There exists α > 0, such that for all x, y, u, v in D

‖ [x, y;F ]− [u, v;F ] ‖≤ α

(
‖ x− u ‖ + ‖ y − v ‖

)
;

(H2) There exists β > 0, such that for all x, y, u, v in D

‖ [u, x, y;F ]− [v, x, y;F ] ‖≤ β ‖ u− v ‖;

(H3) The set–valued map G−1 is pseudo–Lipschitz around (−F (x?), x?) with constants M ,
a and b (These constants are given in Definition 2.1);

(H4) There exists κ > 0 such that for all x, y ∈ V , we have

‖ [x, y;F ] ‖≤ κ and M κ <
1

3
.

Then, for every constant C such that

(3.1) C ≥ C0 =
M (α + 4 β)

1− 3 M κ
,

exists δ > 0 satisfying

(3.2) δ < δ0 = min

{
a;

√
1

4
+

1

C
− 1

2
;

b

3 κ
; δ1; δ2; δ3; δ4

}
where,

δ1 =

√
b

2 (α + 4 β)
; δ2 = 3

√
b

2 (α + 4 β)
; δ3 =

√
b

6 α
; δ4 = 3

√
b

24 β

such that for every distinct starting points x0, x1 and x2 in IBδ(x
?) (with x0 6= x?, x1 6= x?

and x2 6= x?), and a sequence (xk) defined by (1.4) which is convergent to x?, and satisfies the
following inequality for k ≥ 2
(3.3)
‖ xk+1 − x? ‖≤

C ‖ xk − x? ‖ max

{
‖ xk − x? ‖ + ‖ xk − x? ‖2, ‖ xk − x? ‖ ‖ xk−2 − x? ‖,

‖ xk − x? ‖ ‖ xk−1 − x? ‖, ‖ xk−1 − x? ‖ ‖ xk−2 − x? ‖
}
.

We need to introduce some notations [6]. First, define the set–valued maps Q : X ⇒ Y and
ψk : X ⇒ X by

(3.4) Q(x) = F (x?) +G(x), ψk(x) = Q−1(Zk(x)), k ≥ 2

where Zk is a mapping from X to Y defined by

(3.5) Zk(x) = F (x?)− F (xk)− Tk (x− xk), k ≥ 2.

The proof of theorem 3.2 is given by induction on k. We first state a result involving the
starting points (x0, x1, x2). Let us note that the point x3 is a fixed point of ψ2 if and only if
0 ∈ F (x2) + T2 (x3 − x2) +G(x3).

Proposition 3.3. Under the assumptions of Theorem 3.2, and for every distinct starting points
x0, x1 and x2 in IBδ(x

?) (with x0 6= x?, x1 6= x? and x2 6= x?), the set–valued map ψ2 has a
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fixed point x3 in IBδ(x
?) satisfying

(3.6)

‖ x3 − x? ‖≤

C ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2, ‖ x2 − x? ‖ ‖ x0 − x? ‖,

‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}
.

where C and δ are given by Theorem 3.2.

Proof. By hypothesis (H2) we have

(3.7) e(Q−1(y′) ∩ IBa(x
?), Q−1(y′′)) ≤M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ IBb(0).

According to the definition of excess e, we have

(3.8) dist (x?, ψ2(x?)) ≤ e

(
Q−1(0) ∩ IBδ(x

?), ψ2(x?)

)
.

Moreover, for all distinct points x0, x1 and x2 in IBδ(x
?), and by assumptions (H1) and (H2)

we obtain the following
(3.9)
‖ Z2(x?) ‖ = ‖ F (x?)− F (x2)− T2 (x? − x2) ‖

= ‖
[
([x?, x2;F ]− [x2, x2;F ]) + ([x2, x2;F ]− [x2, x1;F ])
−([x0, x2;F ]− [x0, x1;F ])

]
(x? − x2) ‖

= ‖
[
([x?, x2;F ]− [x2, x2;F ])+

([x2, x2, x1;F ]− [x0, x2, x1;F ]) (x2 − x1)
]

(x? − x2) ‖
≤

(
α ‖ x2 − x? ‖ +β ‖ x2 − x0 ‖ ‖ x2 − x1 ‖

)
‖ x? − x2 ‖

≤
(
α ‖ x2 − x? ‖ +β (‖ x2 − x? ‖ + ‖ x0 − x? ‖)

(‖ x2 − x? ‖ + ‖ x1 − x? ‖)
)
‖ x? − x2 ‖

≤ (α + 4 β) ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2,

‖ x2 − x? ‖ ‖ x0 − x? ‖, ‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}
.

By (3.2) we have Z2(x?) ∈ IBb(0).
Hence from (3.7) one gets

(3.10)

e

(
Q−1(0) ∩ IBδ(x

?), ψ2(x?)

)
= e

(
Q−1(0) ∩ IBδ(x

?), Q−1[Z2(x?)]

)
≤M (α + 4 β) ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2, ‖ x2 − x? ‖ ‖ x0 − x? ‖,

‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}
.

Using (3.8) the following inequality holds:
(3.11)

dist (x?, ψ2(x?)) ≤

M (α + 4 β) ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2, ‖ x2 − x? ‖ ‖ x0 − x? ‖,

‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}
.

AJMAA, Vol. 9, No. 2, Art. 12, pp. 1-11, 2012 AJMAA

http://ajmaa.org


TRAUB–POTRA–TYPE METHOD FOR SET–VALUED MAPS 7

Since C (1− 3 M κ) > M (α + 4 β), there exists λ ∈ [3 M κ, 1[ such that

C (1− λ) ≥M (α + 4 β),

and
(3.12)

dist (x?, ψ2(x?)) ≤

C (1− λ) ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2, ‖ x2 − x? ‖ ‖ x0 − x? ‖,

‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}
.

Identifying η0, φ and r in Lemma 2.1 by

x?, ψ2

and

r2 = C ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2, ‖ x2 − x? ‖ ‖ x0 − x? ‖,

‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}

respectively, we can deduce from the inequality (3.12) that the first assumption in Lemma 2.1
is satisfied.

We prove now that the second assumption of Lemma 2.1 is verified. Using (3.2) we have
r2 ≤ δ ≤ a, and moreover for x ∈ IBδ(x

?) we get in turn

(3.13)

‖ Z2(x) ‖ = ‖ F (x?)− F (x2)− T2 (x− x2) ‖
= ‖ [x?, x2;F ] (x? − x+ x− x2)−

([x2, x1;F ] + [x0, x2;F ]− [x0, x1;F ]) (x− x2) ‖

≤ ‖ [x?, x2;F ] ‖ ‖ x− x? ‖ +

(
‖ ([x?, x2;F ]− [x2, x2;F ])+

([x2, x2, x1;F ]− [x0, x2, x1;F ]) (x2 − x1)

)
‖ x− x2 ‖ .

Using the assumptions (H1)–(H3) we obtain
(3.14)

‖ Z2(x) ‖ ≤ κ ‖ x− x? ‖ +

(
α ‖ x2 − x? ‖ +β ‖ x2 − x0 ‖ ‖ x2 − x1 ‖

)
‖ x− x2 ‖

≤ κ δ + (α δ + 4 β δ2) 2 δ = κ δ + 2 α δ2 + 8 β δ3.

Then by (3.2), we deduce that for all x ∈ IBδ(x
?) we have Z2(x) ∈ IBb(0). Then it follows that

for all x′, x′′ ∈ IBr2(x
?) we have

e(ψ2(x′) ∩ IBr2(x
?), ψ2(x′′)) ≤ e(ψ2(x′) ∩ IBδ(x

?), ψ2(x′′)),

which yields by (3.7)
(3.15)
e(ψ2(x′) ∩ IBr2(x

?), ψ2(x′′)) ≤ M ‖ Z2(x′)− Z2(x′′) ‖
= M ‖ ([x2, x1;F ] + [x0, x2;F ]− [x0, x1;F ]) (x′′ − x′) ‖
≤ 3 M κ ‖ x′′ − x′ ‖

Using (H3) and the fact that λ ≥ 3 M κ, we obtain

(3.16) e(ψ2(x′) ∩ IBr2(x
?), ψ2(x′′)) ≤ λ ‖ x′′ − x′ ‖ .

The second condition of Lemma 2.1 is satisfied. By Lemma 2.1 we can deduce the existence of
a fixed point x3 ∈ IBr2(x

?) for the map ψ2.
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The proof of Proposition 3.3 is complete.

Proof. (Proof of Theorem 3.2) Keep η0 = x?, and for k ≥ 3 set:

r := rk = C ‖ x? − xk ‖ max

{
‖ xk − x? ‖ + ‖ xk − x? ‖2, ‖ xk − x? ‖ ‖ xk−2 − x? ‖,

‖ xk − x? ‖ ‖ xk−1 − x? ‖, ‖ xk−1 − x? ‖ ‖ xk−2 − x? ‖
}
.

Then, the application of Proposition 3.3 to the map ψk gives the desired result.

Remark 3.1. We can show by using more precise estimates that under less computational cost,
and weaker hypothesis than (H1), (H2) and (H4): the ratio of convergence of method (1.4)
is improved and the radius of convergence is enlarged. The idea is taken from the works on
nonlinear equations [3]–[5]. We can show the following result for the local convergence of
method (1.4).

Proposition 3.4. Let F : D ⊆ X −→ Y be an operator such that for every distinct points x, y
and z in D, there exists a first order and a second order divided differences of F [x, y;F ] and
[x, y, z;F ] at these points. We suppose that assumption (H3) of Theorem 3.2 is satisfied, and
assume:
(H1)? There exists α > 0, such that for all x, y, z in D

‖ [x?, x;F ]− [y, x;F ] ‖≤ α ‖ y − x? ‖;
(H2)? There exists β > 0, such that for all x, y, z in D

‖ [x, x, y;F ]− [z, x, y;F ] ‖≤ β ‖ x− z ‖;
(H4)? There exists κ > 0 and κ > 0 such that for all x, y ∈ V , we have

‖ [x, y;F ] ‖≤ κ, ‖ [x?, y;F ] ‖≤ κ and M κ <
1

3
.

Then, for every constant C such that

(3.17) C ≥ C0 =
M (α + 4 β)

1− 3 M κ
,

exists δ > 0 satisfying

(3.18) δ < δ0 = min

{
a;

√
1

4
+

1

C
− 1

2
;

b

3 κ
; δ1; δ2; δ3; δ4

}
where,

δ1 =

√
b

2 (α + 4 β)
; δ2 = 3

√
b

2 (α + 4 β)
; δ3 =

√
b

6 α
; δ4 = 3

√
b

24 β

such that for every distinct starting points x0, x1 and x2 in IBδ(x
?) (with x0 6= x?, x1 6= x?

and x2 6= x?), and a sequence (xk) defined by (1.4) which is convergent to x?, and satisfies the
following inequality for k ≥ 2
(3.19)
‖ xk+1 − x? ‖≤

C ‖ xk − x? ‖ max

{
‖ xk − x? ‖ + ‖ xk − x? ‖2, ‖ xk − x? ‖ ‖ xk−2 − x? ‖,

‖ xk − x? ‖ ‖ xk−1 − x? ‖, ‖ xk−1 − x? ‖ ‖ xk−2 − x? ‖
}
.
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Proof. (Idea) The proof of Proposition 3.4 is the same one as that of the principal theorem
(Theorem 3.2). It is enough to make some modifications by replacing estimates (3.9) and (3.14)
by
(3.20)

‖ Z2(x?) ‖ ≤ (α + 4 β) ‖ x2 − x? ‖ max

{
‖ x2 − x? ‖ + ‖ x2 − x? ‖2,

‖ x2 − x? ‖ ‖ x0 − x? ‖, ‖ x2 − x? ‖ ‖ x1 − x? ‖, ‖ x1 − x? ‖ ‖ x0 − x? ‖
}

and
(3.21)

‖ Z2(x) ‖ ≤ κ ‖ x− x? ‖ +

(
α ‖ x2 − x? ‖ +β ‖ x2 − x0 ‖ ‖ x2 − x1 ‖

)
‖ x− x2 ‖

≤ κ δ + (α δ + 4 β δ
2
) 2 δ = κ δ + 2 α δ

2
+ 8 β δ

3
.

Remark 3.2. In general, α, β and κ given in (H1), (H2) and (H4) are not easy to compute. This
is our motivation for introducing even weaker hypotheses (H1)?, (H2)? and (H4)? in Proposi-
tion 3.4.

We clearly have:

(3.22) α ≤ α,

(3.23) β ≤ β,

(3.24) κ ≤ κ,

(3.25) C0 ≤ C0,

(3.26) δ0 ≥ δ0,

and
β

β
,
α

α
,
κ

κ
can be arbitrarily large [3]–[4].

It follows using (3.25) and (3.26) that the radius of convergence is larger and the convergence
of method (1.4) is faster in Proposition 3.4 than the corresponding in Theorem 3.2.

Remark 3.3. We can enlarge the radius of convergence in Theorem 3.2 even further as follows:
using inequalities (3.14), (3.9), (3.21) and (3.20), we can improve δ and δ given by (3.2) and
(3.18) by considering the constants δ′ and δ

′
respectively:

δ′ < δ′0 = min

{
a;

√
1

4
+

1

C
− 1

2
; δ5; δ6

}
and

δ
′
< δ0

′
= min

{
a;

√
1

4
+

1

C
− 1

2
; δ′5; δ′6

}
where δ5, δ6, δ′5 and δ′6 are the constants given respectively by

δ5 = max {η > 0 : η3 + η − b

α + 4 β
< 0},

δ6 = max {η > 0 : κ η + 2 α η2 + 8 β η3 − b < 0},

δ′5 = max {η > 0 : η3 + η − b

α + 4 β
< 0},
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and
δ′6 = max {η > 0 : κ η + 2 α η2 + 8 β η3 − b < 0}.

The constants κ, κ, α, α, β, β, and b are as given in Theorem 3.2 and Proposition 3.4.
It follows by (3.3) that there exists C > 0, and an integer N ≥ 2, such that for all n ≥ N :

‖ xn+1 − x? ‖≤ C ‖ xn − x? ‖ ‖ xn−1 − x? ‖ ‖ xn−2 − x? ‖ .
It then follows that the R–order of convergence as already noted in the abstract of the article
is 1.839 · · · , which compares favorably with say the Secant method (see [4], [6]) using similar
information:

0 ∈ F (xn) + [xn−1, xn;F ] (xn+1 − xn) +G(xn+1), (x0, x1 ∈ D), (n ≥ 1),

which is only of order 1.618 · · ·

CONCLUSION

We provided a new iterative method to approximate solutions for generalized equations. This
method extends the one related to the resolution of nonlinear equations [12], [17]. Moreover,
we obtain a local convergence result (see Theorem 3.2) using Lipschitz–type assumptions on
the first order and the second order divided differences operator and Lipschitz–like concept for
set–valued maps.

Under some ideas given in [3], [4] for nonlinear equations, and using some observations (see
Remarks 3.2 and 3.3), we provided under weaker hypotheses than used in Theorem 3.2, and
less computational cost a local convergence analysis (see Proposition 3.4) with the following
advantages:

(1) A larger radius of convergence which allows a larger choice of initial guesses x0, x1 and
x2;

(2) Finer error estimates on the distances ‖ xn − x? ‖ (n ≥ 1).
These observations are very important in computational mathematics [3], [4].
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