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ABSTRACT. This work aims to extend and improve our previous study on mathematical and
numerical analysis of stationary Pasternak model. In this paper a dynamic response of Pasternak
model is considered. On the one hand we establish the existence and uniqueness of the solution
by using the Lax-Milgram theorem and the spectral theory thus the existence of a Hilbert basis
is shown and the spectral decomposition of any solution of the problem can be established and
on the other hand the finite element method is used to determinate the numerical results. Fur-
thermore, the influence of soil parametersGp andKp on the displacement of the pile is studied
numerically at any timetn.

Key words and phrases:Soil-pile interaction; Hilbert space; Eigenvalues and eigenfunctions; Variational formulation;
Sobolev space; Lax-Milgram; Finite element method; Newmark method.

2010Mathematics Subject Classification.Primary 65N06, 65N30, 65N12. Secondary 74AXX, 74SXX..

ISSN (electronic): 1449-5910

c© 2021 Austral Internet Publishing. All rights reserved.

https://ajmaa.org/
mailto: <imbaye@univ-thies.sn>
mailto: <mamadou.diop@univ-thies.sn>
mailto: <aliousonko59@gmail.com>
mailto: <mmalickba@hotmail.fr>
https://www.univ-thies.sn
https://www.ams.org/msc/


2 I. M BAYE , M. DIOP, A. SONKO AND M. BA

1. I NTRODUCTION

Deep foundations on piles, widely used in the construction of structures, are experiencing in-
creasing development. The progress made in dimensioning methods, technological innovations
in the construction of piles, the increasingly mediocre quality of the land left to builders and
the large dimensions of the structures are at the origin of this development. In practice, these
structures are dimensioned in order to take both axial and lateral forces and moments [1].

The behavior of piles, under vertical and lateral loads has been studied for several years with
full-scale tests [2], tests on centrifuge models [3], theoretical analyzes [4] as well as numerical
simulations.

Today, although complex, the study of the mechanical behavior of piles has already been the
subject of several research works [5, 6, 7, 8, 9, 10, 11, 12]. These have resulted in modeling and
calculation methods used for the design of such structures. Among these calculation methods
we can cite that of finite differences and that of finite elements. Numerical methods by finite
elements or by finite difference make it possible to solve soil-pile interaction problems with
more rigor while including the effects of loadings on the interface, of the inclination of the
piles and of the stiffness of the soil. It also turns out that the analytical approach remains more
complex and has limits. It is in this context that we were interested in the numerical calculation
of piles under lateral loads taking into account the soil-pile interaction. In our previous studies
[10, 11], we worked on stationary behavioral models of soil-pile interaction. However, this
study, on a dynamic model of soil-pile interaction, aims primarily to establish first the existence
and uniqueness of the solution of the problem posed from the Lax-Milgram theorem and the
spectral theory and then to present a rigorous numerical method based on the finite element
method and the Newmark method in order to determine the responses of the pile at each instant
by taking into account a large number of parameters relative to soils and piles.

2. PRESENTATION OF THE MODEL

The dynamic response of Pasternak model is defined as follows.
Find: u : Ω =]0, l[×R∗

+ → R such that:
(2.1)

m
∂2u(z, t)

∂t2
+ EpIp

∂4u(z, t)

∂z4
−Gp

∂2u(z, t)

∂z2
+ Kpu(z, t) = P (z, t), ∀t > 0,∀z ∈]0, l[

u(z, 0) = u0(z), ∀ z ∈]0, l[

∂u(z, 0)

∂t
= u1(z), ∀ z ∈]0, l[

u(0, t) =
∂u(0, t)

∂z
= 0, ∀t > 0

∂u(l, t)

∂z
= 0, ∀t > 0

∂3u(l, t)

∂z3
= H

EpIp
, ∀t > 0.

Where,u(x, t) is the longitudinal deflection of the beam in terms ofm; z is the space coordinate
measured along the length of the beam inm; t is the time in (s); EpIp is the flexural rigidity
of the beam in (N.m2); m is the mass per unit length of the beam in (kg/m); P (z, t) is the
applied external load per unit length in (N/m); Kp is the spring constant (the first parameter)
of the soil per unit beam length in terms of (N/m2 ), andGp is the shear modulus (the second
parameter) of the soil in (N/m2) [12]; H the head trenchant effort of the free pile in (N ). We
see the description of the soil-pile interaction in the following figure 1.
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Figure 1: Pile under lateral loading.

First, we are interested in the existence and uniqueness of the solutions to the problem (2.1).

2.1. Existence of a Hilbert basis ofL2(Ω). Since the (2.1) problem can be associated with
an eigenvalue problem, we will solve it using a Hilbert basis ofL2(Ω). Thus demonstrating
the existence of a Hilbert basis ofL2(Ω) amounts to verifying the hypotheses of the[Theorem
7.2.8][14].
Consider the following problem:

(2.2)



EpIp
d4u(z)

dz4
−Gp

d2u(z)

dz2
+ Kpu(z) = P (z) ,∀z ∈]0, l[,

u(0) =
du(0)

dz
= 0,

du(l)

dz
= 0,

d3u(l)

dz3
= H

EpIp
.

We posew(z) = u(z)− H
6EpIp

z3 + Hl
4EpIp

z2 and (2.2) becomes the following boundary problem:

(2.3)



EpIp
d4w(z)

dz4
−Gp

d2w(z)

dz2
+ Kpw(z) = G(z) ,∀z ∈]0, l[,

w(0) =
dw(0)

dz
= 0,

dw(l)

dz
= 0,

d3w(l)

dz3
= 0.

with G(z) = P (z)−Kp(
H

6EpIp
z3 − Hl

4EpIp
z2) + Gp(

H
EpIp

z − Hl
2EpIp

)

First we prove that (2.3) admits a unique solution.

Lemma 2.1. According to the Lax-Milgram theorem the problem(2.3)admits a unique solution
w ∈ V = {v ∈ H2(Ω); v(0) = v′(0) = v′(l) = 0} verifying the following variational
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formulation:

(2.4) a(w, v) = L(v) ∀ v ∈ V

with

a(w, v) = EpIp

∫ l

0

d2w(z)

dz2

d2v(z)

dz2
dz + Gp

∫ l

0

dw(z)

dz

dv(z)

dz
dz + Kp

∫ l

0

w(z)v(z)dz

and

L(v) =

∫ l

0

G(z)v(z)dz

we define the spaceL2(Ω) provided with the scalar product:

〈f, v〉 =

∫ l

0

f(z)v(z)dz for all f andv ∈ L2(Ω).

and the spaceV with the reduced norm

‖w‖V = ‖w(2)‖L2(Ω) for all w ∈ V.

Proof. V is a closed subspace ofH2(Ω) therefore it is a Sobolev space in addition

|a(u, v)| ≤ (EpIp + Gpl
2 + Kpl

4)‖u‖V ‖v‖V

impliesa is continuous [11], we also have

a(u, u) ≥ EpIp‖u‖2
V

thena is coercive andL is linear by definition and the inequality

|L(v)| ≤ l2‖G‖L2(Ω)‖v‖V

shows it is continuous therefore the problem admits a unique solution according to Lax-Milgram
theorem.

�

So we can define our operator as follows:

(2.5)
L : L2(Ω) → V

g 7→ Lg

with Lg the solution of the equation (2.3). In other words, the operatorL is defined by:

(2.6) Lg ∈ V such thata(Lg, v) = 〈g, v〉L2(Ω) for all v ∈ V

Now, the objective is to show that the operatorL thus defined is linear continuous, self-adjoint,
compact and definite-positive.

Lemma 2.2. The operatorL defined in(2.5) is continuous linear, self-adjoint, compact and
definite-positive.

Proof. i) Linearity of L
The linearity ofL defined in (2.5) is a consequence of Lemma 2.1.
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ii) Continuity of L
By takingv = Lg in (2.6), we obtain thanks to the coercivity ofa and the continuous
injection ofV into L2(Ω) and fromL2(Ω) to L1(Ω):

(2.7) EpIp‖Lg‖2
V ≤ a(Lg,Lg) = 〈g,Lg〉L2(Ω)

now
〈g,Lg〉L2(Ω) ≤ ‖g‖L2(Ω)‖Lg‖L2(Ω) ≤ l2‖g‖L2(Ω)‖Lg‖V

and so we get
EpIp‖Lg‖2

V ≤ l2‖g‖L2(Ω)‖Lg‖V

=⇒ ‖Lg‖V ≤ l2

EpIp

‖g‖L2(Ω)

hence the continuity ofL.
iii) Self-adjoint of L

By takingv = Lh with g, h ∈ L2(Ω) in (2.6), we obtain thanks to the symmetry ofa:

〈g,Lh〉L2(Ω) = a(Lg,Lh)
= a(Lh,Lg) = 〈h,Lg〉L2(Ω)

iv) Compactness ofL
Let I : V → L2(Ω), g 7→ Ig = g the injection operator andLg the operator defined in
(2.5). So we have:I ◦ L defined fromL2(Ω) to value inL2(Ω).

Lg ∈ V, ∀g ∈ L2(Ω) ⇒ Lg = (I ◦ L)g, ∀g ∈ L2(Ω)

and sinceI is compact thenL is compact as a compound of compact and continuous
operator.

v) L is definite-positive

it comes from the coercivity ofa, indeed:

(2.8) 〈g,Lg〉L2(Ω) = a(Lg,Lg) ≥ EpIp‖Lg‖2
V > 0,∀0 6= g ∈ L2(Ω)

�

The hypotheses of the[Theorem 7.2.8][14] are verified therefore the eigenvalues ofL form a
sequence(λk)k≥1 of real numbers strictly positive which tend to 0, and there exists a Hilbertian
basis(uk)k≥1 of V formed by eigenvectors ofL. Therefore, we get the spectral decomposition
of any elementv of V .

3. VARIATIONAL FORMULATION OF THE PROBLEM

We obtain the following variational formulation of the problem (2.1), findu(t) :]0, T [→ V
such that:

(3.1)

{
d2

dt2
〈u(t), v〉L2(Ω) + a(u(t), v) = 〈P (t), v〉L2(Ω),∀v ∈ V, 0 < t < T

u(t = 0) = u0;
du
dt

(t = 0) = u1

with
V = {v ∈ H2(Ω); v(0) = v′(0) = v′(l) = 0};

P (t) :]0, T [→ L2(Ω);

a(u(t), v) = EpIp

∫
Ω

u′′(z, t)v′′(z) dz + Gp

∫
Ω

u′(z, t)v′(z) dz + Kp

∫
Ω

u(z, t)v(z) dz;
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L(v) = 〈P (t), v〉L2(Ω) =

∫
Ω

P (z, t)v(z) dz − H

EpIp

v(l)

Remark 3.1. We denote byu(z, t) the valueu(t)(z), P (z, t) the valueP (t)(z).

3.1. Semi-discretization in space.LetNh be the number of interior points of the discretization
andh = l

Nh+1
the discretization step. We construct an internal variational approximation by

introducing a subspaceVh of V of finite dimension.Vh will be a finite element subspaceP3

on the discretization. The semi-discretization of (3.1) is therefore the following variational
approximation: We look foruh(t) function of]0, T [ with values inVh such that:

(3.2)

{
d2

dt2
〈uh(t), vh〉L2(Ω) + a(uh(t), vh) = 〈fh(t), vh〉L2(Ω),∀vh ∈ Vh, 0 < t < T

uh(t = 0) = u0,h;
duh

dt
(t = 0) = u1,h

whereu0,h ∈ Vh is an approximation of the initial datau0 andu1,h ∈ Vh is also an approximation
of the initial datau1.
We introduce the basis(w(i), z(j)) of Vh ([11] ) for all 1 ≤ i ≤ Nh + 1 and1 ≤ j ≤ Nh.We are
looking foruh(t) in the form

uh(t) =

Nh+1∑
i=1

Uh
i w(i)(z) +

Nh∑
j=1

(Uh
j )′z(j)(z).

We denote byUh the vector of coordinates ofuh in the same way we have:

u0,h(t) =

Nh+1∑
i=1

U0,h
i w(i)(z) +

Nh∑
j=1

(U0,h
j )′z(j)(z);

u1,h(t) =

Nh+1∑
i=1

U1,h
i w(i)(z) +

Nh∑
j=1

(U1,h
j )′z(j)(z)

where,U0,h denotes the vector of coordinates ofu0,h andU1,h denotes the vector of coordinates
of u1,h. and (3.2) becomes for all1 ≤ i ≤ Nh + 1 and1 ≤ j ≤ Nh

(3.3)

{
d2

dt2
〈uh(t), w

(i)〉L2(Ω) + a(uh(t), w
(i)) = 〈fh(t), w

(i)〉L2(Ω),∀0 < t < T
d2

dt2
〈uh(t), z

(j)〉L2(Ω) + a(uh(t), z
(j)) = 〈fh(t), z

(j)〉L2(Ω),∀0 < t < T

hence, the variational approximation (3.2) is equivalent to the following linear system of ordi-
nary differential equations with constant coefficients:

(3.4)

{
Mh

d2Uh

dt2
+KhU

h = Bh

Uh(0) = U0,h; dUh

dt
(0) = U1,h

the mass matrix is defined by:

Mh =

(
M11 M12

M21 M22

)
with

M11 = (〈w(i), w(j)〉)1≤i,j≤Nh+1; M
12 = (〈z(i), w(j)〉)1≤i≤Nh;1≤j≤Nh+1;

M21 = (〈w(i), z(j)〉)1≤i≤Nh+1;1≤j≤Nh
; M22 = (〈z(i), z(j)〉)1≤i,j≤Nh

.

The stiffness matrix is defined by:

Kh =

(
K11 K12

K21 K22

)
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with
K11 = (a(w(i), w(j)))1≤i,j≤Nh+1; K

12 = (a(z(i), w(j)))1≤i≤Nh;1≤j≤Nh+1;

K21 = (a(w(i), z(j)))1≤i≤Nh+1;1≤j≤Nh
; K22 = (a(z(i), z(j)))1≤i,j≤Nh

.

and the matrix of the second member is defined by:

Bh =

(
B1

B2

)
with B1 = (L(w(i)))1≤i≤Nh+1 andB2 = (L(z(j)))1≤j≤Nh

3.2. Total discretization in space-time. We decompose the time interval[0, T ] into N time
step∆t = T

N
, we settn = n∆t for n ∈ {0, 1 . . . , N} and we denote byUh

n the approximation
of Uh(tn). To calculate numerically approximate solutions of ((3.4)) we use the following
Newmark time-stepping method:

(3.5)


MhÜ

h
n+1 +KhU

h
n+1 = Bh

n+1

U̇h
n+1 = U̇h

n + ∆t
(
(1− δ)Üh

n + δÜh
n+1

)
Uh

n+1 = Uh
n + ∆tU̇h

n + (∆t)2

2

(
(1− 2θ)Üh

n + 2θÜh
n+1

)
Where, the real parametersδ andθ will be fixed as follows0 ≤ δ ≤ 1; 0 ≤ θ ≤ 1

2
[14], ∆t is

the time-step fixed later. So inserting the formula forUh
n+1 intoMhÜ

h
n+1 +KhU

h
n+1 = Bh

n+1 at
time tn+1 we obtain from (3.5) the following schema:

(3.6)


Üh

n+1 = (Mh + θ(∆t)2Kh)
−1

(
Bh

n+1 −Kh[U
h
n + ∆tU̇h

n + (∆t)2

2
(1− 2θ)Üh

n ]
)

U̇h
n+1 = U̇h

n + ∆t
(
(1− δ)Üh

n + δÜh
n+1

)
Uh

n+1 = Uh
n + ∆tU̇h

n + (∆t)2

2

(
(1− 2θ)Üh

n + 2θÜh
n+1

)
and the acceleration

(3.7) Üh
n = M−1

h (Bh
n −KhU

h
n )

follows from the equationMhÜ
h
n+KhU

h
n = Bh

n. KnovingUh
n , U̇h

n , Üh
n we findUh

n+1, U̇
h
n+1, Ü

h
n+1.

3.3. Parameters of the simulation. the calculation of the coefficients of the matricesMh,Kh

andBh is carried out in the same way as in ([11] ). The parameters of simulation [13, 12] are
as follows:

Table 3.1: Parameters of the soil-pile interaction

l(m) EpIp(MN.m2) Kp(kN/m2) Gp(kN/m2) m(kg/m) P (kN/m)
20 3000 100 37393 48.2 200
20 3000 552 186966 48.2 200
20 3000 1103 373933 48.2 200
40 3000 87 63059 48.2 200
40 3000 437 315296 48.2 200
40 3000 874 630591 48.2 200

And we chooseT = 1s, dt = 0.01s, δ = 0.6 andθ = 0.4 for the Newmark Scheme.
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4. NUMERICAL RESULTS

The following pictures display differents shapes of deformation of the pile with respect to
several parametersGp andKp of the soil at any timetn.

Figure 2: Behaviour of the Pile
of lengthl = 20m at t25,t50, t75, t100
for Gp = 37393 andKp = 100

Figure 3: Behaviour of the Pile
of lengthl = 20m at t25,t50, t75, t100
for Gp = 186966 andKp = 552

Figure 4: Behaviour of the Pile
of lengthl = 20m at t25,t50, t75, t100
for Gp = 373933 andKp = 1103
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Figure 5: Behaviour of the Pile
of lengthl = 40m at t25,t50, t75, t100
for Gp = 63059 andKp = 87

Figure 6: Behaviour of the Pile
of lengthl = 40m at t25,t50, t75, t100
for Gp = 315296 andKp = 437

Figure 7: Behaviour of the Pile
of lengthl = 40m at t25,t50, t75, t100
for Gp = 630591 andKp = 874

5. DISCUSSION OF THE RESULTS

As we know the soil-structure interaction (SSI) of the Pasternak model is essentially based
on the two mechanical parameters which are: Pasternak shear modulusGp and the Pasternak
reaction coefficientKp. The parametric study of our (SSI) model was emphasized on the vari-
ability of these parameters and the length of the sheetl. From figures 2, 3 and 4, it can be seen
that the horizontal deflection of the pile depends on the parametersKp andGp at any timetn.
Indeed, the deflections vary in a decreasing way according to the values of Kp and Gp. These
displacements are more influenced by the shear modulusGp. We deduce from this that for the
behavioral model, more the shear layer is incompressible (the values of the parametersKp and
Gp very large) less the pile moves in the soil mass. From figures 5, 6 and 7, for a more flexible
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pile (l very large) and for incompressible shear layers (Gp very large), we obtain for smaller
values ofKp, the same deflection forms but with greater amplitudes at any timetn. In the previ-
ous studies [10, 11] we have established in the case of the stationary model of pile under lateral
load that to reduce the deformations of the pile it is necessary to increase both the parameters
Gp andKp of the soil. In this work, we also establish that at each moment by increasing the
parameters of the soil the deformation of the pile decreases.
Finally, we can keep that in order to reduce the deformation of the pile under latteral load and a
trenchant effort on the free head, we must take into account soil parameters.

6. CONCLUSION

In this work, we use on the one hand mathematical analysis results to prove the existence and
uniqueness of the solution and on the other hand we use finite element method to determine an
approximate solution to partial differential equation. Moreover, numerical simulations show us
the pious deformation and the influence of soil parameters on the structure in relation to time.
We also observe that when soil parametersKp, Gp increase then the displacement of the pious
decreases even if the number of iterationsN in time increases. It turned out from our study
that a variability in the parameters of the shear layer (in particular the shear modulus) has a
considerable influence on the displacements over time. This work confirms and reinforces the
previous results obtained in the analysis of the deflection of the stationary Pasternak model.
Finally, the authors believe that the present investigations could help engineers and researchers
in studying and designing shell structures and a more suitable foundation model for obtaining
the optimal dynamic response.
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