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1. I NTRODUCTION AND PRELIMINARIES

The theory of fixed point plays an important role in nonlinear functional analysis and is known
to be very useful in establishing the existence and uniqueness theorems for nonlinear differen-
tial and integral equations. Banach [8] in 1922 proved the well celebrated Banach contraction
principle in the frame work of metric spaces. The importance of the Banach contraction prin-
ciple cannot be over emphasized in the study of fixed point theory and its applications. Due to
its importance and fruitful applications, many authors have generalized this result by consid-
ering classes of nonlinear mappings which are more general than contraction mappings and in
other classical and important spaces (see [1, 2, 14, 21] and the references therein). For exam-
ple, Berinde [9, 10] introduced and studied a class of contractive mappings, which is defined as
follows:

Definition 1.1. Let (X, d) be a metric space. A mappingT : X → X is said to be a generalized
almost contraction if there existδ ∈ [0, 1) andL ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
for all x, y ∈ X.
Furthermore, in 2008, Suzuki [28] introduced a class of mappings satisfying condition(C),
known as Suzuki-type generalized nonexpansive mapping and he proved some fixed point the-
orems for this class of mappings.

Definition 1.2. Let (X, d) be a metric space. A mappingT : X → X is said to satisfy condition
(C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Theorem 1.1.Let (X, d) be a compact metric space andT : X → X be a mapping satisfying

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) < d(x, y),

for all x, y ∈ X. ThenT has a unique fixed point.

In 2014, Ansari [4] introduced the notion ofC-class function, he proved some fixed point
results using the concept ofC-class function and also established that theC-class function is a
generalization of a whole lot of contractive conditions.

Definition 1.3. [4] A mappingF : [0,∞)2 → R is called aC-class function if it is continuous
and the following axioms hold:

(1) F (s, t) ≤ s for all s, t ∈ [0,∞);
(2) F (s, t) = s implies eithers = 0 or t = 0.

Example 1.1.The following functionsF : [0,∞)2 → R defined for alls, t ∈ [0,∞) by
(1) F (s, t) = s− t, F (s, t) = s impliest = 0;
(2) F (s, t) = ms, 0 < m < 1, F (s, t) = s impliess = 0;
(3) F (s, t) = sβ(s), β : [0,∞) → [0, 1) is a continuous function,F (s, t) = s implies

s = 0.

For details aboutC-class functions see [4], andC denote the class ofC-functions. In 2016,
Chandok et al. [12] introduced a new type of contractive mappings using the notion of cyclic
admissible mappings in the framework of metric spaces.

Definition 1.4. [12] Let T : X → X be a mapping and letα, β : X → R+ be two functions.
ThenT is called a cyclic(α, β)-admissible mapping, if
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(1) α(x) ≥ 1 for somex ∈ X implies thatβ(Tx) ≥ 1,
(2) β(x) ≥ 1 for somex ∈ X implies thatα(Tx) ≥ 1.

Definition 1.5. [12] Let (X, d) be a metric space and letα, β : X → [0,∞) be two mappings.
We say thatT is a TAC-contractive mapping, if for allx, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), φ(d(x, y))),

whereψ is a continuous and nondecreasing function withψ(t) = 0 if and only if t = 0, φ is
continuous withlimn→∞ φ(tn) = 0 ⇒ limn→∞ tn = 0 andf ∈ C.
Theorem 1.2. [12] Let (X, d) be a complete metric space and letT : X → X be a cyclic
(α, β)-admissible mapping. Suppose thatT is a TAC contraction mapping. Assume that there
existsx0 ∈ X such thatα(x0) ≥ 1, β(x0) ≥ 1 and either of the following conditions hold:

(1) T is continuous,
(2) if for any sequence{xn} in X with β(xn) ≥ 1, for all n ≥ 0 andxn → x asn → ∞,

thenβ(x) ≥ 1.

In addition, ifα(x) ≥ 1 andβ(y) ≥ 1 for all x, y ∈ F (T ) (whereF (T ) denotes the set of fixed
points ofT ), thenT has a unique fixed point.

One of the interesting generalization of metric spaces is the concept ofb-metric spaces intro-
duced by Czerwik in [13]. He established the Banach contraction principle in this framework
with the fact thatb need not be continuous. Thereafter, several results has been extended from
metric spaces tob-metric spaces, more so, a lot of results on the fixed point theory of various
classes of mappings in the frame work ofb-metric spaces has been established by different re-
searchers in this area (see [11, 13, 19] and the references therein). Yamaod and Sintunawarat
[30] introduced the notion of(α, β)-(ψ, ϕ)-contraction mapping in the frame work ofb-metric
spaces as follows:

Definition 1.6. Let (X, d) be ab-metric space with coefficients ≥ 1 andα, β : X → [0,∞) be
two given mappings. We say thatT : X → X is an(α, β)-(ψ, ϕ)-contraction mapping if the
following conditions holds: for allx, y ∈ X with α(x)β(y) ≥ 1 implies that

ψ(s3d(Tx, Ty)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y)),

whereMs(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s

} andψ, ϕ : [0,∞) → [0,∞)
are alternating distance functions.

Theorem 1.3. Let (X, d) be a completeb-metric space with coefficients ≥ 1 andT : X → X
an (α, β)-(ψ, ϕ)-contraction mapping. Suppose that one of the following conditions holds:

(1) there existsx0 ∈ X such thatα(x0) ≥ 1,
(2) there existsy0 ∈ X such thatα(y0) ≥ 1,

and the following holds:
(1) T is continuous,
(2) T is cyclic(α, β)-admissible.

ThenT has a fixed point.

Recently, Babu et al. [6] generalized the result of Chandok et al. [12] by introducing a
generalized TAC-contractive mapping in the frame work ofb-metric spaces.

Definition 1.7. Let (X, d) be ab-metric space,α, β : X → [0,∞) be two given mappings and
T be a self map onX. The mappingT is said to be generalized TAC-contrative map inb-metric
spaces, if for allx, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(s3d(Tx, Ty)) ≤ f(ψ(Ms(x, y)), φ(Ms(x, y))),
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whereMs(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s

}, ψ is an alternating dis-
tance function,φ is continuous withlimn→∞ φ(tn) = 0 ⇒ limn→∞ tn = 0 andf ∈ C.

Theorem 1.4. Let (X, d) be a completeb-metric space with coefficients ≥ 1. LetT : X → X
be a generalized TAC-contraction mapping. Suppose the following conditions hold:

(1) T is a cyclic(α, β)-admissible mapping,
(2) there existsx0 ∈ X such thatα(x0) ≥ 1 andβ(x0) ≥ 1,
(3) T is continuous,
(4) if for any sequence{xn} in X with β(xn) ≥ 1, for all n ≥ 0 andxn → x asn → ∞,

thenβ(x) ≥ 1.

ThenT has a fixed point.

In mathematics researchers try to come up with new algebraic structures in order to improve
and extend results obtained in the literature. In [5] Azam et al. introduce the notion of complex
valued metric space and established some common fixed point results for mapping satisfying
generalized contractive conditions. Thereafter, several results and applications has been ex-
tended from metric spaces to complex valued metric spaces, more so, a lot of results on the
fixed point theory and common fixed point results of various classes of mappings in the frame-
work of complex valued metric spaces has been established by different researchers in this area
(see[25, 26, 27] and the references therein).

The following symbols, notation and definition can be found in [5] will be useful in this study.
Let C be the set of complex numbers andz1, z2 ∈ C. Define a partial order- onC as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows thatz1 - z2 if one of the following conditions is satisfied:
(1) Re(z1) = Re(z2), Im(z1) < Im(z2);
(2) Re(z1) < Re(z2), Im(z1) = Im(z2);
(3) Re(z1) < Re(z2), Im(z1) < Im(z2);
(4) Re(z1) = Re(z2), Im(z1) ≤ Im(z2).

In particular, we writez1 � z2 if z1 6= z2 and one of(1), (2) and(3) is satisfied and we we write
z1 ≺ z2 if only (3) is satisfied. Note that

(1) a, b ∈ R anda ≤ b implies thataz - bz for all z ∈ C;
(2) 0 - z1 � z2 implies that|z1| < |z2|;
(3) z1 - z2 andz2 ≺ zz implies thatz1 ≺ z2.

Definition 1.8. LetX be a nonempty set. Suppose that the mappingd : X ×X → C, satisfies:
(1) 0 - d(x, y) for all x, y ∈ X andd(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Thend is called a complex valued metric and(X, d) is called a complex valued metric space.

Example 1.2.LetX = C anddi : X ×X → C, i = 1, 2, 3 be defined as
(1) d(z1, z2) = |z1 − z2| for all z1, z2 ∈ X;
(2) d(z1, z2) = eik|z1 − z2| for all z1, z2 ∈ X andk ∈ R;
(3) d(z1, z2) = eiθ|z1 − z2| for all z1, z2 ∈ X andθ ∈ (0, Π

2
).

Motivated by the concept ofb-metric spaces and complex valued metric spaces [13, 5], Rao
et al. in [18], introduced the notion of complex valuedb-metric spaces and established some
common fixed point results. Thereafter, several results and applications has been extended from
metric spaces,b-metric spaces and complex valued metric spaces to complex valuedb-metric
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spaces (see [18] and the reference therein). The notion of complex valuedb-metric spaces
generalize, improves and unifies results in metric spaces,b-metric spaces and complex valued
metric spaces.

Definition 1.9. Let X be a nonempty set ands ≥ 1 be a given real number. Suppose that the
mappingdb : X ×X → C, satisfies:

(1) 0 - db(x, y) for all x, y ∈ X anddb(x, y) = 0 if and only if x = y;
(2) db(x, y) = db(y, x) for all x, y ∈ X;
(3) db(x, y) - s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Thendb is called a complex valuedbmetric and(X, db) is called a complex valued metric space.

Example 1.3. [18] LetX = C defined the mappingdb : X × X → C by db(z1, z2) = |z1 −
z2|2 + i|z1 − z2|2 for all z1, z2 ∈ X.

Definition 1.10. Suppose that(X, db) is a complex valuedb-metric space and{zn} is a sequence
in X, then the sequence{zn}

(1) converges to an element to and elementz0 ∈ X if for every 0 ≺ c ∈ C, there exist an
integerN such thatdb(zn, z0) ≺ c for all n ∈ N.

(2) is a Cauchy sequence if for every0 ≺ c ∈ C, there exist an integerN such that
db(zn, zm) ≺ c for all n,m ∈ N.

Definition 1.11. Suppose that(X, db) is a complex valuedb-metric space, the space(X, db) is
said to be complete if every Cauchy sequence inX converges to a point inX.

Definition 1.12. [16] LetX be a nonempty set andS, T : X → X be any two mappings.

(1) A pointx ∈ X is called:
(a) coincidence point ofS andT if Sx = Tx,
(b) common fixed point ofS andT if x = Sx = Tx.

(2) If y = Sx = Tx for somex ∈ X, theny is called the point of coincidence ofS andT.
(3) A pair (S, T ) is said to be:

(a) commuting ifTSx = STx for all x ∈ X,
(b) weakly compatible if they commute at their coincidence points, that isSTx =

TSx, wheneverSx = Tx.

Motivated by the current research interest in this direction, the purpose of this work is to
further develop the concept ofC-class function and establish some fixed point and common
fixed point results for a new type of generalized contractive mapping using the notion ofC-
class function in the framework of complex valuedb-metric spaces. As an application, we
establish the existence of a solution for Riemann-Liouville integral and ordinary differential
equation in the framework of a complete complex valuedb-metric spaces.

2. MAIN RESULT

In this section, we define a complexC-class function, established some common fixed point
and fixed point results. Throughout this work, we will used instead ofdb to denoted a complex
valuedb metric. We define

S = {z ∈ C : 0 - z}

Definition 2.1. A mappingF : S × S → C is called aC-class function if it is continuous and
the following axioms holds:

(1) F (s, t) � s;
(2) F (s, t) = s implies eithers = 0 or t = 0

AJMAA, Vol. 18 (2021), No. 1, Art. 19, 15 pp. AJMAA
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for all t, s ∈ S.

In the course of this work,C denote the class ofC-functions. LetΨ denote the class of functions
ψ : S → S satisfying the following condition:

(1) ψ is continuous;
(2) ψ(t) � t for all t � 0 andψ(t) = 0 if and only if t = 0.

Let Φ denote the class of functionsφ : S → S satisfying the following condition:

(1) φ is continuous;
(2) φ(t) � t for all t � 0 andφ(0) � 0.

Theorem 2.1. Let (X, db) be a complex valuedb-metric space withs > 1 andS, T be a self
map onX satisfying

1

2s
d(x, Sx) � d(x, y) ⇒ ψ(sεd(Tx, Sy) � F (ψ(M(x, y)), φ(M(x, y)))(2.1)

for all x, y ∈ X, whereε ≥ 1, F ∈ C, φ ∈ Φ, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), d(x, Tx)d(y, Sy)
s+ d(x, y)

}.

Then the pairS andT have a unique common fixed point.

Proof. Let x0 be any arbitrary point inX and we definex2n+1 = Tx2n andx2n+2 = Sx2n+1 for
all n = 0, 1, 2, · · · . Since 1

2s
d(x2n+1, Sx2n+1) = 1

2s
d(x2n+1, x2n+2) ≺ d(x2n+1, x2n+2), using

(2.1) and the properties ofF, we have

ψ(sεd(x2n+1, x2n+2)) = ψ((sεd(Tx2n, Sx2n+1)))

� F (ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1))(2.2)

� ψ(M(x2n, x2n+1)),

where

M(x2n, x2n+1)

= max

{
d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1),

d(x2n, Tx2n)d(x2n+1, Sx2n+1)

s+ d(x2n, x2n+1)

}
= max

{
d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+1)d(x2n+1, x2n+2)

s+ d(x2n, x2n+1)

}
,

since d(x2n,x2n+1)
s+d(x2n,x2n+1)

≺ 1, we have thatd(x2n,x2n+1)d(x2n+1,x2n+2)
s+d(x2n,x2n+1)

≺ d(x2n+1, x2n+2), as such, we
have that

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

If we suppose thatM(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2),
we then have (2.2) becomes

ψ(sεd(x2n+1, x2n+2)) � ψ(d(x2n+1, x2n+2))

⇒ sεd(x2n+1, x2n+2) � d(x2n+1, x2n+2),

which is a contradiction, as such we must have that

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n, x2n+1),
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we then have (2.2) becomes

ψ(sεd(x2n+1, x2n+2)) � ψ(d(x2n, x2n+1))

⇒ sεd(x2n+1, x2n+2) � d(x2n, x2n+1),

⇒ d(x2n+1, x2n+2) �
1

sε
d(x2n, x2n+1).

Inductively, we have that

d(xn, xn+1) �
(

1

sε

)n

d(x0, x1)

|d(xn, xn+1)| ≤
(

1

sε

)n

|d(x0, x1)|.

Now for anym > n, wherem,n ∈ N, observe that

d(xn, xm) � sd(xn, xn+1) + sd(xn+1, xm)

� sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

� sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3) + s3d(xn+3, xm)

� sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sm−nd(xm−1, xm)

� s

(
1

sε

)n

d(x0, x1) + s2

(
1

sε

)n+1

d(x0, x1) + s3

(
1

sε

)n+2

d(x0, x1)

+ · · ·+ sm−n

(
1

sε

)m−1

d(x0, x1)

� s

(
1

sε

)n[
1 +

(
1

sε−1

)
+ · · ·+

(
1

sε−1

)m−n−1]
d(x0, x1)

� s

(
1

sε

)n(
sε−1

sε−1 − 1

)
d(x0, x1).

We then have

|d(xn, xm)| ≤ s

(
1

sε

)n(
sε−1

sε−1 − 1

)
|d(x0, x1)|,

sinces > 1, ε ≥ 1, taking limit asm,n→∞, we have

lim
n,m→∞

|d(xn, xm)| = 0.(2.3)

Thus, then sequence{xn} is a complex valuedb-Cauchy sequence. SinceX is complete there
existsx ∈ X such thatlim

n→∞
|d(xn, x)| = 0.We also haved(xn+1, x) � sd(xn+1, xn)+sd(xn, x)

using (2.3) and the fact thatlim
n→∞

|d(xn, x)| = 0, we have lim
n→∞

|d(xn+1, x)| = 0. Using a similar

approach, we havelim
n→∞

|d(xn+2, x)| = 0. Now, we claim that

1

2s
d(xn, xn+1) � d(xn, x) or

1

2s
d(xn+1, xn+2) � d(xn+1, x).

Suppose on the contrary that there existsm ≥ 0, such that

1

2s
d(xm, xm+1) � d(xm, x) or

1

2s
d(xm+1, xm+2) � d(xm+1, x).(2.4)
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Now observe that

2sd(xm, x) ≺ d(xm, xm+1)

� sd(xm, x) + sd(x, xm+1)(2.5)

⇒ sd(xm, x) ≺ sd(x, xm+1).

It follows from (2.4) and (2.5) that

sd(xm, x) ≺ sd(x, xm+1) ≺
1

2
d(xm+1, xm+2).(2.6)

Since 1
2s
d(xm+1, xm+2) ≤ d(xm+1, xm+2), we have that

ψ(sεd(xm+1, xm+2)) = ψ(sεd(Txm, Sxm+1))

� F (ψ(M(xm, xm+1)), φ(M(xm, xm+1)))(2.7)

� ψ(M(xm, xm+1))

� ψ(d(xm, xm+1)).

We then have that (2.7) becomes

ψ(sεd(xm+1, xm+2)) � ψ(d(xm, xm+1)).(2.8)

Using the properties ofψ, we have that

sεd(xm+1, xm+2) � d(xm, xm+1).(2.9)

Using this fact, (2.4) and (2.5),we have

sεd(xm+1, xm+2) � d(xm, xm+1)

� sd(xm, x) + sd(x, xm+1)

� sd(x, xm+1) + sd(x, xm+1)(2.10)

≺ 1

2
d(xm+1, xm+2) +

1

2
d(xm+1, xm+2)

= d(xm+1, xm+2),

which is a contradiction. Thus, we must have that
1

2
d(xn, xn+1) � d(xn, x) or

1

2
d(xn+1, xn+2) � d(xn+1, x).

We then have

ψ(sεd(xn+1, Sx))

= ψ(sεd(Txn, Sx))

� F (ψ(M(xn, x)), φ(M(xn, x)))

� ψ(M(xn, x))

= ψ(max{d(xn, x), d(xn, xn+1), d(x, Sx),
d(xn, Txn)d(x, Sx)

s+ d(xn, x)
})

� ψ(max{d(xn, x), sd(xn, x) + sd(x, xn+1), d(x, Sx),
d(xn, Txn)d(x, Sx)

s+ d(xn, x)
}),

this implies thatsεd(xn+1, Sx) � max{d(xn, x), sd(xn, x)+sd(x, xn+1), d(x, Sx),
d(xn,Txn)d(x,Sx)

s+d(xn,x)
}

and taking limit asn→∞, we have

|d(x, Sx)| ≤ 1

sε
|d(x, Sx)|,(2.11)
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which is a contradiction, as such we must have that

Sx = x.(2.12)

More so, we have

ψ(sεd(Tx, xn+2)

= ψ(sεd(Tx, Sxn+1))

� F (ψ(M(x, xn+1)), φ(M(x, xn+1)))

� ψ(M(x, xn+1))

= ψ(max{d(x, xn+1), d(x, Tx), d(xn+1, Sxn+1),
d(x, Tx)d(xn+1, Sxn+1)

s+ d(xn, x)
})

� ψ(max{d(xn, x), d(xn+1, xn+2), d(x, Tx),
d(x, Tx)d(xn+1, Sxn+1)

s+ d(xn, x)
}),

this implies thatsεd(Tx, xn+2) � max{d(xn, x), d(xn+1, xn+2), d(x, Tx),
d(x,Tx)d(xn+1,Sxn+1)

s+d(xn,x)
}

and taking limit asn→∞, we have

|d(Tx, x)| ≤ 1

sε
|d(Tx, x)|,(2.13)

which is a contradiction, as such we must have that

Tx = x.(2.14)

From (2.12) and (2.14), we have that

x = Tx = Sx.

Hencex is the common fixed point for the pairS andT.
Let x andy be two common fixed points for the pairS andT, such thatx 6= y. Now observe

that

ψ(sεd(x, y)) = ψ(sεd(Tx, Sy))

� F (ψ(M(x, y)), φ(x, y))

� ψ(M(x, y))

= ψ(d(x, y)),

which implies that|d(x, y)| < 1
sε |d(x, y)|, we get a contradiction, as such, we havex = y.

Theorem 2.2. Let (X, db) be a complex valuedb-metric space withs > 1 andT be a self map
onX satisfying

1

2s
d(x, Tx) � d(x, y) ⇒ ψ(sεd(Tx, Ty) � F (ψ(M(x, y)), φ(M(x, y)))(2.15)

for all x, y ∈ X, whereε ≥ 1, F ∈ C, φ ∈ Φ, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)d(y, Ty)
s+ d(x, y)

}.

ThenT has a unique fixed point.

Proof. The prove follows a similar approach as in Theorem 2.1 as such we omit it.

AJMAA, Vol. 18 (2021), No. 1, Art. 19, 15 pp. AJMAA

https://ajmaa.org


10 K A FASSINOU, A. A. M EBAWONDU, H. A. ABASS AND O K NARAIN

Corollary 2.3. Let (X, db) be a complex valuedb-metric space withs > 1 andS, T be a self
map onX satisfying

ψ(sεd(Tx, Sy) � ψ(M(x, y))− φ(M(x, y))(2.16)

for all x, y ∈ X, whereε ≥ 1, φ ∈ Φ, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), d(x, Tx)d(y, Sy)
s+ d(x, y)

}.

Then the pairS andT have a unique common fixed point.

Corollary 2.4. Let (X, db) be a complex valuedb-metric space withs > 1 andS, T be a self
map onX satisfying

ψ(sεd(Tx, Ty) � ψ(M(x, y))− φ(M(x, y))(2.17)

for all x, y ∈ X, whereε ≥ 1, φ ∈ Φ, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Tx)d(y, Tx)
s+ d(x, y)

}.

ThenT has a unique fixed point.

Corollary 2.5. Let (X, db) be a complex valuedb-metric space withs > 1 andS, T be a self
map onX satisfying

1

2s
d(x, Sx) � d(x, y) ⇒ ψ(sεd(Tx, Sy) � kψ(M(x, y))(2.18)

for all x, y ∈ X, wherek ∈ (0, 1), ε ≥ 1, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), d(x, Tx)d(y, Sy)
s+ d(x, y)

}.

Then the pairS andT have a unique common fixed point.

Corollary 2.6. Let (X, db) be a complex valuedb-metric space withs > 1 andT be a self map
onX satisfying

1

2s
d(x, Tx) � d(x, y) ⇒ ψ(sεd(Tx, Ty) � kψ(M(x, y))(2.19)

for all x, y ∈ X, wherek ∈ (0, 1), ε ≥ 1, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)d(y, Ty)
s+ d(x, y)

}.

ThenT has a unique fixed point.

Corollary 2.7. Let (X, db) be a complex valuedb-metric space withs > 1 andS, T be a self
map onX satisfying

sd(Tx, Sy) � kd(x, y)(2.20)

for all x, y ∈ X, wherek ∈ (0, 1). Then the pairS andT have a unique common fixed point.

Corollary 2.8. Let (X, db) be a complex valuedb-metric space withs > 1 andT be a self map
onX satisfying

s2d(Tx, Ty) � d(x, y)(2.21)

for all x, y ∈ X. ThenT has a unique fixed point.
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3. APPLICATION

3.1. Application to Riemann-Liouville Equation. In this section, we establish the existence
of a solution of a Riemann-Liouville of the form:

RLcIu
t x(t) = Γ(u)

∫ t

c

(t− s)u−1x(s)ds,R(u) > 0(3.1)

whereu ∈ C, x(t) ∈ X = C([0, 1],R) andt, s ∈ [0, 1] which is the fractional integral. Let
X = C([0, 1],R) be the space of continuous function, andd : X ×X → C be defined as

d(u, v) =

[
max
t∈[0,1]

‖u(t)− v(t)‖
√

1 + a2ei tan−1 a

]2

wheres = 2. It is well-known that(X, d) is a complete complex valuedb-metric space. Define
T : X → X by

Tx(t) = Γ(u)

∫ t

c

(t− s)u−1x(s)ds.(3.2)

Theorem 3.1.X = C([0, 1],R) and suppose that

[
maxt∈[0,1]

1

Γ(u+ 1)

(t− s)u−1(t− c)u

|(t− s)u−1|

]2

� 1

4

then Equation 3.1 has a solution.
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Proof. It is well-known thatx ∈ X is a fixed point ofT if and only if x is a solution of problem
(3.1). Note that at some pointl Now observe that for allu, v ∈ X, we have that

d(Tx, Ty)

=

[
max
t∈[0,1]

|Tx(t)− Ty(t)|
√

1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

∣∣∣∣ 1

Γ(u)

∫ t

c

(t− s)u−1x(s)− 1

Γ(u)

∫ t

c

(t− s)u−1y(s)

∣∣∣∣√1 + a2ei tan−1 a

]2

-

[
max
t∈[0,1]

1

Γ(u)

∣∣∣∣ ∫ t

c

(t− s)u−1ds

∣∣∣∣(|x(s)− y(s)|)
√

1 + a2ei tan−1 a

]2

�
[

max
t∈[0,1]

1

Γ(u)

∫ t

c

|(t− s)u−1ds|(|x(s)− y(s)|)
√

1 + a2ei tan−1 a

]2

�
[

max
t∈[0,1]

1

Γ(u)

(t− s)u−1

|(t− s)u−1|

∫ t

c

|(t− s)u−1ds|(|x(s)− y(s)|)
√

1 + a2ei tan−1 a

]2

�
[

max
t∈[0,1]

− 1

Γ(u)

(t− s)u−1

|(t− s)u−1|

∫ 0

t−c

qu−1dq(|x(s)− y(s)|)
√

1 + a2ei tan−1 a

]2

, where q= t-s

�
[

max
t∈[0,1]

− 1

Γ(u)

(t− s)u−1

|(t− s)u−1|

(
qu

u

)0

t−c

(|x(s)− y(s)|)
√

1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

1

Γ(u)

(t− s)u−1

|(t− s)u−1|
(t− c)u

u
(|x(s)− y(s)|)

√
1 + a2ei tan−1 a

]2

�
[

max
t∈[0,1]

1

Γ(u+ 1)

(t− s)u−1(t− c)u

|(t− s)u−1|
(|x(s)− y(s)|)

√
1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

(|x(s)− y(s)|)
√

1 + a2ei tan−1 a

]2[
max
t∈[0,1]

1

Γ(u+ 1)

(t− s)u−1(t− c)u

|(t− s)u−1|

]2

� d(x, y)
1

4

= d(x, y)
1

s2
.

Thus, we have thats2d(Tx, Ty) - d(x, y). Clearly, all conditions in Corollary 2.8 are satis-
fied and guarantees the existence of the fixed pointx ∈ X. Thus,x is the solution of the integral
equation 3.1.

3.2. Application to Differential Equation. In this section, we establish the existence of a
solution of a differential equation of the form:

u′(t) = f(t, u(t)), t ∈ I = [0, 1]

u(0) = u(1),(3.3)

wheref : [0, 1] × Rn → Rn is a continuous function. It is easy to see that (3.3) is can be
rewritten as

u′(t) + 2u(t) = f(t, u(t)) + 2u(t), t ∈ I = [0, 1]

u(0) = u(1),(3.4)

AJMAA, Vol. 18 (2021), No. 1, Art. 19, 15 pp. AJMAA

https://ajmaa.org


EXISTENCE OFSOLUTION OF DIFFERENTIAL AND RIEMANN -L IOUVILLE EQUATION 13

which is equivalent to

u(t) =

∫ 1

0

G(t, s)[f(s, u(s)) + 2u(s)]ds.

The Green functionG(t, s) associated with (3.3) is given by

G(t, s) =

{
e2(1+s−t)

e2−1
if 0 ≤ s ≤ t ≤ 1

e2(s−t)

e2−1
if 0 ≤ t ≤ s ≤ 1.

It is easy to see thatmaxt∈[0,1]

∫ 1

0
G(t, s)ds = 1

2
. Let X = C([0, 1],Rn) be the space of con-

tinuous function,u : [0, 1] → Rn and ‖(u1, u2, · · · , un)‖ = max{|u1|, |u2|, · · · , |un|} and
d : X ×X → C be defined as

d(u, v) =

[
max
t∈[0,1]

‖u(t)− v(t)‖
√

1 + a2ei tan−1 a

]2

wheres = 2. It is well-known that(X, d) is a complete complex valuedb-metric space. Define
T : X → X as

Tu(t) =

∫ 1

0

G(t, s)[f(s, u(s)) + 2u(s)]ds

Theorem 3.2.X = C([0, 1],Rn) and suppose that

‖f(t, u) + 2u(s)− f(t, v) + 2v(s)‖ - ‖u(s)− v(s)‖,(3.5)

then Equation 3.3 has a solution.

Proof. It is well-known thatu ∈ X is a fixed point ofT if and only if u is a solution of problem
(3.3). Now observe that for allu, v ∈ X, we have that

d(Tu, Tv)

=

[
max
t∈[0,1]

‖Tu(t)− Tv(t)‖
√

1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

∥∥∥∥∫ 1

0

G(t, s)[f(s, u(s)) + 2u(s)− f(s, v(s))− 2v(s)]ds

∥∥∥∥√1 + a2ei tan−1 a

]2

-

[
max
t∈[0,1]

∫ 1

0

G(t, s)|u(s)− v(s)|ds
√

1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

|u(s)− v(s)|
√

1 + a2ei tan−1 a

]2(
max
t∈[0,1]

∫ 1

0

G(t, s)ds

)2

= d(u, v)
1

4

= d(u, v)
1

s2
.

Thus, we have thats2d(Tu, Tv) - d(u, v). Clearly, all conditions in Corollary 2.8 are satis-
fied and guarantees the existence of the fixed pointx ∈ X. Thus,x is the solution of the integral
equation 3.3.
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