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1. INTRODUCTION AND PRELIMINARIES

The theory of fixed point plays an important role in nonlinear functional analysis and is known

to be very useful in establishing the existence and uniqueness theorems for nonlinear differen-
tial and integral equations. Banach [8] in 1922 proved the well celebrated Banach contraction
principle in the frame work of metric spaces. The importance of the Banach contraction prin-
ciple cannot be over emphasized in the study of fixed point theory and its applications. Due to
its importance and fruitful applications, many authors have generalized this result by consid-
ering classes of nonlinear mappings which are more general than contraction mappings and in
other classical and important spaces (sé¢éel[1, 2, 14, 21] and the references therein). For exam-
ple, Berinde([9, 10] introduced and studied a class of contractive mappings, which is defined as
follows:

Definition 1.1. Let (X, d) be a metric space. A mappiflg: X — X is said to be a generalized
almost contraction if there existe [0, 1) andL > 0 such that
d(Tz,Ty) < dd(z,y) + Lmin{d(z, Tx),d(y, Ty),d(z, Ty),d(y, Tx)},
forall z,y € X.
Furthermore, in 2008, SuzuKi [28] introduced a class of mappings satisfying confition

known as Suzuki-type generalized nonexpansive mapping and he proved some fixed point the-
orems for this class of mappings.

Definition 1.2. Let (X, d) be a metric space. A mappiflg: X — X is said to satisfy condition
(C)ifforall z,y € X,

1
gd(z,Tw) < d(z,y) = d(Tw,Ty) < d(z,y).
Theorem 1.1.Let (X, d) be a compact metric space afid: X — X be a mapping satisfying
1
sdl@, Tz) < d(z,y) = d(Tw,Ty) < d(z,y),

forall =,y € X. ThenT has a unique fixed point.

In 2014, Ansaril[4] introduced the notion 6f-class function, he proved some fixed point
results using the concept 6f-class function and also established that@helass function is a
generalization of a whole lot of contractive conditions.

Definition 1.3. [4] A mappingF : [0, c0)* — R is called aC-class function if it is continuous
and the following axioms hold:

(1) F(s,t) < sforalls,t € [0,00);

(2) F(s,t) = simplies eithers =0 ort = 0.

Example 1.1. The following functiong” : [0, c0)? — R defined for alls, ¢ € [0, 00) by
(1) F(s,t) =s—t, F(s,t) = simpliest = 0;
(2) F(s,t) =ms,0<m < 1, F(s,t) = simpliess = 0;
(3) F(s,t) = spB(s), B : [0,00) — [0,1) is a continuous functionF'(s,t) = s implies
s=0.

For details abou€’-class functions seél[4], artidenote the class @f'-functions. In 2016,
Chandok et al.[[12] introduced a new type of contractive mappings using the notion of cyclic
admissible mappings in the framework of metric spaces.

Definition 1.4. [12] LetT : X — X be a mapping and let, 3 : X — R be two functions.
ThenT is called a cycliq «, 5)-admissible mapping, if
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(1) a(z) > 1 for somezr € X implies that3(T'z) > 1,
(2) B(x) > 1 for somexr € X implies thatw(7'z) > 1.

Definition 1.5. [12] Let (X, d) be a metric space and let 5 : X — [0, c0) be two mappings.
We say thafl" is a TAC-contractive mapping, if for all, y € X,

a(x)f(y) 2 1= ¢(d(Tz,Ty)) < f(¢(d(z,y)), p(d(x,y))),

where) is a continuous and nondecreasing function with) = 0 if and only if t = 0, ¢ is
continuous withim,, ... ¢(t,) = 0 = lim, .. t, =0andf € C.

Theorem 1.2.[12] Let (X, d) be a complete metric space and t: X — X be a cyclic
(o, B)-admissible mapping. Suppose thats a TAC contraction mapping. Assume that there
existszy € X such thatu(zg) > 1, 5(z9) > 1 and either of the following conditions hold:

(1) T is continuous,

(2) if for any sequencézx,,} in X with 3(x,,) > 1, forall n > 0 andz,, — z asn — oo,

thens(z) > 1.

In addition, ifa(z) > 1 andF(y) > 1 forall z,y € F(T) (whereF(T') denotes the set of fixed
points ofT"), thenT has a unique fixed point.

One of the interesting generalization of metric spaces is the concéphefric spaces intro-
duced by Czerwik in[[13]. He established the Banach contraction principle in this framework
with the fact thab need not be continuous. Thereafter, several results has been extended from
metric spaces té-metric spaces, more so, a lot of results on the fixed point theory of various
classes of mappings in the frame workbafnetric spaces has been established by different re-
searchers in this area (séel[11} 13, 19] and the references therein). Yamaod and Sintunawarat
[30] introduced the notion of«, 5)-(1), ¢)-contraction mapping in the frame work &imetric
spaces as follows:

Definition 1.6. Let (X, d) be ab-metric space with coefficient> 1 and«, 5 : X — [0, 00) be
two given mappings. We say that: X — X is an(«, 5)-(¢, ¢)-contraction mapping if the
following conditions holds: for alk, y € X with a(x)3(y) > 1 implies that

1/)(83d(T£L’,Ty>) S w(MS<I7y)) - QO(MS(I, y))’
whereM,(z, y) = max{d(z,y), d(z, Tx), d(y, Ty), LTI andip, - [0, 00) — [0, 00)
are alternating distance functions.
Theorem 1.3.Let (X, d) be a completé-metric space with coefficient> 1 and7 : X — X
an (a, §)-(v, ¢)-contraction mapping. Suppose that one of the following conditions holds:

(1) there existsy € X such thato(zg) > 1,
(2) there existgy, € X such thatx(yy) > 1,

and the following holds:

(1) T is continuous,

(2) T is cyclic(a, 5)-admissible.
ThenT has a fixed point.

Recently, Babu et al.[ [6] generalized the result of Chandok etlal. [12] by introducing a
generalized TAC-contractive mapping in the frame work-ofietric spaces.

Definition 1.7. Let (X, d) be ab-metric spaceg, 5 : X — [0, 00) be two given mappings and
T be a self map otX. The mappindl’ is said to be generalized TAC-contrative map-metric
spaces, if for alk, y € X,

a(@)B(y) > 1 = ¢(s°d(Tx, Ty)) < f((Ms(,y)), o(Mi(z, 1)),
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where M,(z,y) = max{d(z,y),d(z, Tx),d(y, Ty), LTI o) s an alternating dis-

tance functiong is continuous witlim,, ., ¢(¢,) = 0 = lim,,_.. t, = 0andf € C.

Theorem 1.4.Let (X, d) be a completé-metric space with coefficient> 1. Let7T : X — X
be a generalized TAC-contraction mapping. Suppose the following conditions hold:

(1) T is a cyclic(«, 5)-admissible mapping,

(2) there existsy € X such thatw(zo) > 1 and3(zg) > 1,

(3) T is continuous,

(4) if for any sequencézx,,} in X with 3(x,,) > 1, forall n > 0 andz,, — = asn — oo,

theng(z) > 1

ThenT has a fixed point.

In mathematics researchers try to come up with new algebraic structures in order to improve
and extend results obtained in the literature In [5] Azam et al. introduce the notion of complex
valued metric space and established some common fixed point results for mapping satisfying
generalized contractive conditions. Thereafter, several results and applications has been ex-
tended from metric spaces to complex valued metric spaces, more so, a lot of results on the
fixed point theory and common fixed point results of various classes of mappings in the frame-
work of complex valued metric spaces has been established by different researchers in this area
(seel25, 26, 27] and the references therein).

The following symbols, notation and definition can be found in [5] will be useful in this study.

Let C be the set of complex numbers andz; € C. Define a partial orders on C as follows:

21 3z ifandonlyif Re(z) < Re(za), Im(z1) < Im(z).
It follows thatz; = z, if one of the following conditions is satisfied:
(1) Re(z1) = Re(z), Im(z) < Im(z);
(2) Re(z1) < Re(zs), (z1) = Im(z2);
(3) Re(z) < Re(ZQ), Im(z) < Im(z);
(4) Re(z1) = Re(z), Im(z1) < Im(z).
In particular, we writex; 3 2, if z; # 2, and one of 1), (2) and(3) is satisfied and we we write
21 < zo if Only (3) is satisfied. Note that
(1) a,b € Randa < bimplies thataz =< bz for all z € C;
20= 21 = z implies that|z;| < |z];
(3) 21 = 2z andzy < z, implies thatz; < 2.
Definition 1.8. Let X be a nonempty set. Suppose that the mapging x X — C, satisfies:
(1) 0 2 d(z,y) forall z,y € X andd(z,y) = 0 if and only if z = y;
(2) d(x,y) = d(y,x) forall z,y € X;
(3) d(z,y) S d(x,z) +d(z,y) forall z,y, z € X.
Thend is called a complex valued metric afd, d) is called a complex valued metric space.

Example 1.2.Let X = Candd; : X x X — C, i =1, 2,3 be defined as
(1) d(Zl,ZQ) = |Zl — 22‘ for all 21,22 € X,
(2) d(z1,22) = €*|z; — 2| forall 21,2, € X andk € R;
(3) d(21,22) = €"|z1 — 2| forall z;, 2, € X andf € (0, ).

Motivated by the concept @dkmetric spaces and complex valued metric spaces [13, 5], Rao
et al. in [18], introduced the notion of complex valuethetric spaces and established some
common fixed point results. Thereafter, several results and applications has been extended from
metric spaces)-metric spaces and complex valued metric spaces to complex vaiunedric
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spaces (see [18] and the reference therein). The notion of complex Valuettic spaces
generalize, improves and unifies results in metric spdep®etric spaces and complex valued
metric spaces.

Definition 1.9. Let X be a nonempty set and> 1 be a given real number. Suppose that the
mappingd, : X x X — C, satisfies:

(1) 0 2 dy(z,y) forall z,y € X andd,(x,y) = 0ifand only if z = y;

(2) dp(x,y) = dp(y,z) forall x,y € X;

(3) dp(x,y) 2 sld(x, z) + d(z,y)] forall z,y, z € X.
Thend, is called a complex valugdmetric and X, d,) is called a complex valued metric space.

Example 1.3.[18] Let X = C defined the mapping, : X x X — C bydy(z1,22) = |21 —
22‘2 -+ ’i’Zl — 22|2 for all 21,22 € X.

Definition 1.10. Suppose thdtX, d,) is a complex valuet-metric space ank,, } is a sequence
in X, then the sequende, }

(1) converges to an element to and elemgnk X if for every0 < ¢ € C, there exist an
integerN such thati,(z,, zy) < cforalln € N.

(2) is a Cauchy sequence if for evety < ¢ € C, there exist an integelN such that
dp(zn, 2m) < cforalln,m € N.

Definition 1.11. Suppose thatX, d,) is a complex valued-metric space, the spac&’, d,) is
said to be complete if every Cauchy sequenc&’ioonverges to a point ixX.

Definition 1.12. [16] Let X be a nonempty setarfl 7 : X — X be any two mappings.

(1) A pointz € X is called:

(a) coincidence point of and7' if Sx = Tz,

(b) common fixed point of andT if x = Sz = Tx.
(2) If y = Sx = Tx for somex € X, theny is called the point of coincidence 6fandT.
(3) Apair(S,T) is said to be:

(a) commuting ifl’'Sz = STz forall x € X,

(b) weakly compatible if they commute at their coincidence points, thatlis =

TSz, wheneverSx = Tx.

Motivated by the current research interest in this direction, the purpose of this work is to
further develop the concept @éf-class function and establish some fixed point and common
fixed point results for a new type of generalized contractive mapping using the not@n of
class function in the framework of complex valugdnetric spaces. As an application, we
establish the existence of a solution for Riemann-Liouville integral and ordinary differential
eqguation in the framework of a complete complex valtiedetric spaces.

2. MAIN RESULT

In this section, we define a complékclass function, established some common fixed point
and fixed point results. Throughout this work, we will usistead ofd, to denoted a complex
valuedb metric. We define

S={z€C:0Z =z}

Definition 2.1. A mappingF : S x S — C is called aC'-class function if it is continuous and
the following axioms holds:

(1) F(s,t) 2 s;

(2) F(s,t) = simplies eithers = 0ort =0
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forallt,s € S.
In the course of this worlC denote the class @f-functions. Letl denote the class of functions
1 : S — S satisfying the following condition:

(1) ¢ is continuous;
(2) ¥(t) = tforallt = 0andy(t) = 0ifand only if ¢t = 0.

Let ® denote the class of functioms: S — S satisfying the following condition:
(1) ¢ is continuous;
(2) ¢(t) = tforallt = 0andp(0) > 0.

Theorem 2.1.Let (X, d,) be a complex valuettmetric space witts > 1 and S, T be a self
map onX satisfying

@Y od(e,50) 2 d(e,y) > Ul AT, Sy) X F(M(w,9)), 6(M (2, )

2s

forall z,y € X,wheree > 1, FF €C,¢ € ,9 € ¥V and

d(z, Tz)d(y, Sy)
s+ d(z,y)

M (z,y) = max{d(z,y),d(z, Tx),d(y, Sy), }.

Then the pairS andT have a unique common fixed point.

Proof. Let xy be any arbitrary point i’ and we define:,,,. | = Tz,, andxsy, 1o = Sxg,,1 fOr
alln =0,1,2,--- . Sincey-d(x2n11, Stant1) = 5d(Tant1, Tans2) < d(Taps1, Tons2), USING
(2.7) and the properties df, we have
¢(5€d($2n+17 I2n+2)) = w((sed(szm S$2n+1)))
(2.2) = F(p(M (22, Tant1)), O(M (22n, Tont1))
= YP(M(z2n, Tont1)),

where

M (x9p, Tont1)

d(z9n, Tx9n)d(Ton11, STont1) }
5+ d(w2n, Tony1)
d($2n, $2n+1)d($2n+1, $2n+2) }
s+ d(x2n, Tonyi1) ’

= max {d(iCQm $2n+1), d(x2n7 T%n), d($2n+1, S:C2n+1)7

= max {d($2m $2n+1); d($2m $2n+1)7 d($2n+17 $2n+2)>

; d(z2n,T2ny1) f@2n,22nt1)d(T2n11,22n12)
since Tt < 1, we have that P — =< d(Tops1, Tant2), @S such, we

have that

M(l’zn, 372n+1) = maX{d(QCQm $2n+1), d(9€2n+1, 372n+2)}-

If we suppose thad/ (s, Zont1) = max{d(Tan, Tont1), d(Tani1, Tont2)} = d(Tont1, Tanta),
we then have (2]2) becomes

Y(s“d(Tant1, Tant2)) 2 V(d(Tant1, Tant2))

= $d(Tont1, Tonte) = d(Tani1, Tans2),

which is a contradiction, as such we must have that

M(@m $2n+1) = max{d(mgn, $2n+1), d($2n+1, $2n+2)} = d(Izn, $2n+1),
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we then have (2]2) becomes

Y(s d(Ton11, Tont2)) = V(d(xon, Tont1))
= $°d(Tan41, Tont2) = d(Ton, Tant1),

1
= d(Tont1, Tont2) < ;d(x2n7x2n+1)-

Inductively, we have that
1 n
d(‘rmxn—l-l) = (;) d(l’o,l‘l)
1 n
e nsn)] < () W)L

Now for anym > n, wherem,n € N, observe that
d(xp, Tm) =2 8A(Ty, Tpa1) + SA(Tpy1, Tm)

Tns L+l + 32d(l‘n+17 xn—s—Q) + SQd(an+2, CCm)

+ Sgd(xn—&—l) $n+2) + Sgd(xn+27 xn—i—S) + S3d(xn+37 xm)

AT T TA

sd( )

sd(xp, Tpi1)

Sd(xna xn-i—l) + 82d(xn+17 $n+2) + sgd(xn-i-% xn+3)
(

cee gm—n Tim—1, l’m)
1\" 1\ 1\""

= S(—> d(zo, 1) + (_) d(xo, 11) + 5° <_> d(xo, 11)
s€ s¢

1 m—1
+o s (7) d(xo, 1)

S

;gs<§;>n[1+-<8i4>-+--~+»<§£1>m_m4}d@maxﬁ
e RO

We then have
1 n 85—1
|d(@n, Tm)| < s +) a1 |d(o, 1)),

sinces > 1,¢ > 1, taking limit asm,n — oo, we have
(2.3) lim |d(zy, zm)| = 0.

n,Mm—00

+

Thus, then sequende:, } is a complex valued-Cauchy sequence. Sinééis complete there
existsr € X such thatlim |d(z,,z)| = 0. We also havé(x,,1,z) = sd(xn41, Tp)+sd(x,, x)

using [2.8) and the fact thdtm |d(x,,x)| = 0, we havelim |d(x,.1,2)| = 0. Using a similar
approach, we havéim |d(z,2,z)| = 0. Now, we claim that

1 1
2_d<-rn7 anrl) j d(l’n, iIZ') or 2_d($n+17 xn+2) j d(xn+17 iIZ')
S S
Suppose on the contrary that there exists 0, such that
1 1
(2.4) Q—Sd(xm, Tm+1) = (T, T) OF 2_Sd(xm+1vxm+2) = d(Tm1, T).
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Now observe that
25d(Tpm, ) < d(Tyy Trpy1)
(2.5) = 5d(Tm, x) + sd(z, Tppi1)
= sd(Tm,x) < sd(x, Tpy1).
It follows from (2.4) and[(2.b) that

1
(26) Sd(‘rmvx) = Sd(xaxm+1) = §d(xm+17xm+2>'

Sinces-d(Zm1, Tms2) < d(Ti1, Tmy2), We have that

V(5 A(Tmi1; Tmia)) = V(AT T, STpi1))
(2.7)

We then have thal (3.7) becomes
(2.8) (s d(Tmi1, Tmr2)) = U(d(Tm, Tmr1)).
Using the properties af, we have that
(29) S€d<l’m+17 xm+2) = d([)’}m, xm-l-l)'
Using this fact,[(2.4) and (2.5),we have
3€d<xm+la xm—i—?) j d(xmv xm—‘rl)

j Sd<xm7 l’) + Sd(l‘, merl)

(2.10) = sd(@, Tpy1) + 5d(T, Tim1)

1 1
= §d($m+1, Tpny2) + §d($m+17 Tpt2)

= d<xm+17 xm+2)7

which is a contradiction. Thus, we must have that

1 1
§d<xn7 anrl) j d(-rn; :U> or Ed(anrla xn+2) j d(anrla iL')

We then have
U(s°d(wnt, St))
= Y(sd(Txp, Sx))
2 (M (2, 7)), p(M (2, 7)))
d(xy, Txy,)d(x, Sx)

= Y(max{d(z,, ), d(zp, xpi1),d(z, ST), e Y
< pmax{d(e, 2),sd(w, ) + (o 20), de So), LT Z’Ziff(i’f“ b,

this imp_lies Fha..EEd(an, Sz) = max{d(zn, ), sd(z,,x)+sd(x,x,11),d(x, St), %}
and taking limit as: — oo, we have

1
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which is a contradiction, as such we must have that
(2.12) Sx = .
More so, we have

w(sed(Tx, xn+2)

= (sd(Tx, Sxpit))

= F((M (2, 241)), o(M (2, 2p41)))

j ’QD(M(ZE, xn-i—l))

= Qﬂ(maX{d(ib’, $n+1), d(l’, T:U)? d('rnJrla anJrl)a d(x7 iji;(:;-l-l;?xn-i-l)

d(x, Tz)d(Tpi1, STpi1)
s+ d(zp, x)

)

< Y(max{d(z,,x),d(Tni1, Tnio), d(x, TT), b,

this imp_lies_thfitsed(T:U,:an) =< max{d(z,, ), d(Tni1, Tni2), d(x, TT), d(x’sziEf(’;:y)%”J“l)}
and taking limit as» — oo, we have

1

SE
which is a contradiction, as such we must have that
(2.14) Txr =x.

From (2.12) and (2.14), we have that
r=Tx = Sx.

Hencez is the common fixed point for the pasrand?.
Let z andy be two common fixed points for the pairand7’, such that: # y. Now observe
that

P(s d(x,y))

(s d(T, Sy))

(V(M(z,y)), o(x,y))
(M(z,y))
(d(z, y)),

which implies thatd(z, y)| < +|d(z, y)|, we get a contradiction, as such, we have y. g

LA 1A

F
¥
v

Theorem 2.2. Let (X, d,) be a complex valuetmetric space witly > 1 and7 be a self map
on X satisfying

(215)  -de,T) = d(e,y) = (LATE Ty) = PO (,0)), 6(M (2,0))

forall z,y € X,wheree > 1,F €C,¢p € ®,¢ € ¥V and

d(y, Tx)d(y, T'y)
s+ d(z,y)

M(z,y) = max{d(x,y),d(z,Tz),d(y, Ty), 1.

ThenT has a unique fixed point.

Proof. The prove follows a similar approach as in Theofem 2.1 as such we omit it.
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Corollary 2.3. Let (X, d,) be a complex valuettmetric space witts > 1 and S, T be a self
map onX satisfying

forall z,y € X,wheree > 1,¢ € ,9 € ¥ and

d(z, Tx)d(y, Sy)

M(z,y) = max{d(z,y), d(z, Tx),d(y, Sy), — _— d(z,y)

}.
Then the pairS andT have a unique common fixed point.

Corollary 2.4. Let (X, d,) be a complex valuettmetric space witty > 1 and S, T be a self

map onX satisfying

(2.17) (s“d(Tx, Ty) 2 P(M(z,y)) — (M (z,y))

forall z,y € X, wheree > 1,¢ € ,9 € ¥ and

d(xz,Tz)d(y, Tx)
s+ d(z,y)

M(z,y) = max{d(x,y),d(z,Tz),d(y, Ty), 1.

ThenT has a unique fixed point.

Corollary 2.5. Let (X, d,) be a complex valuedmetric space witly > 1 and .S, T be a self
map onX satisfying

(2.1 -, 82) % d(w,y) = G(d(Te, Sy) < ko(M(z,p))

forall x,y € X, wherek € (0,1),e > 1,% € ¥ and
d(z, T'z)d(y, Sy)
s+d(x,y)

M (z,y) = max{d(z,y),d(z, Tx),d(y, Sy), }.

Then the pairS andT have a unique common fixed point.

Corollary 2.6. Let (X, d,) be a complex valueltmetric space witls > 1 and7 be a self map
on X satisfying

(2.19) 21 d(z,T) < d(z,y) = B(s°d(Tx, Ty) < k(M (z, 1))

2s

forall z,y € X, wherek € (0,1),e > 1,¢ € ¥ and

d(y, Tz)d(y, Ty)
s+ d(z,y)

M (z,y) = max{d(z,y),d(xz,Tz),d(y, Ty), }.

ThenT has a unique fixed point.

Corollary 2.7. Let (X, d,) be a complex valuettmetric space witts > 1 and S, T be a self
map onX satisfying

(2.20) sd(Tx,Sy) = kd(z,y)
forall x,y € X, wherek € (0,1). Then the paitS andT" have a uniqgue common fixed point.

Corollary 2.8. Let (X, d,) be a complex valuedtmetric space witls > 1 and7" be a self map
on X satisfying

(2.21) s*d(Tx, Ty) =< d(z,y)

forall =,y € X. ThenT has a unique fixed point.
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3. APPLICATION

3.1. Application to Riemann-Liouville Equation. In this section, we establish the existence
of a solution of a Riemann-Liouville of the form:

(3.1) RLerig(t) = F(u)/ (t —s)" ta(s)ds, R(u) > 0

whereu € C,z(t) € X = C([0,1],R) andt, s € [0, 1] which is the fractional integral. Let
X = C([0,1],R) be the space of continuous function, ahdX x X — C be defined as

2

d(u,v) = | max |Ju(t) — v(t)|V1 + a2’ @

t€(0,1]

wheres = 2. It is well-known that( X, d) is a complete complex valuédmetric space. Define
T: X — X by

(3.2) Tx(t) = F(u)/ (t —s)“ta(s)ds.

Theorem 3.1. X = ([0, 1], R) and suppose that

1 (t—s)t—c)]?

IA
o |

then Equatiof 3]1 has a solution.
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Proof. Itis well-known thatr € X is a fixed point off” if and only if = is a solution of problem
(3.1). Note that at some pointl Now observe that foralt € X, we have that

d(Tx,Ty)

2
= | max [Ta(t) = Ty() VT a?et }
te|0,
1 . 1 . : ?
= - _ g\u— o _oo\u— 5 itan"la
_ggﬁ}ﬁ F(u)/c(t s)" " x(s) I‘(u)/c(t s)* y(s)|V1+ ae }
I tan-ta]”
=< _ e\u—l _ 1 2 ttan™ " a
3 s | [ 0= 9|t - VT ]
r 1 t . . 2
< - _ u—1 _ 2 itan” " a
< s s [ 10 sl (ol VI ]
B 1 (t _ S)u—l t . ' . 2
=< _ e\U o o itan"la
% | max i [0 ) — (o)) e
=< | max — Lo (s [ “dg(|z(s) — y(s)|)V1 + a2eit @ 2 where g=t-s
= L T - S Y | *
< [~ L UZ (Y gy e]
= L T - s e ), T T w
_ [ 1 (t_s)u_l (t_c>u 2 itan"la ?
- _%g}ﬁ F(u) ’(t— S)“_1| u (‘l’(s) _y<8)|> 1 +ae
1 (=)t — )" gl
< _ 2, ttan™ " a
S R S I CES =T (Jz(s) —y(s))V1 + a?e
r 2 _ 2
- 1 (=) tt—o)"
— _ /1 2 ittan™ " a
e lets) —y(s) VL + ae 1{2ﬁﬁr@+1) =) 1|
1
1
:d(x,y)g.

Thus, we have that’d(Tz, Ty) 3 d(x,y). Clearly, all conditions in Corollary 2|8 are satis-
fied and guarantees the existence of the fixed pomtX. Thus,x is the solution of the integral

equatior) 3.[La

3.2. Application to Differential Equation. In this section, we establish the existence of a
solution of a differential equation of the form:

W () = f(t,u(t), tel=]01]
(3.3) u(0) = u(1),

wheref : [0,1] x R" — R" is a continuous function. It is easy to see that](3.3) is can be
rewritten as

u'(t) + 2u(t) = f(t,u(t) +2u(t), tel=][0,1]
(3.4) u(0) = u(1),

AJMAA Vol. 18(2021), No. 1, Art. 19, 15 pp. AIMAA


https://ajmaa.org

EXISTENCE OFSOLUTION OF DIFFERENTIAL AND RIEMANN-LIOUVILLE EQUATION 13

which is equivalent to

:/O G(t, 5)[f(s, uls)) + 2u(s)]ds.

The Green functioli7(¢, s) associated witH (3] 3) is given by

2(14+s—t) .
£ if 0<s

G(t,s) = e?-1 -
(t:5) {fg_f if 0<t<

VA
IN =+

<1
1

It is easy to see thahax;cj ] fol (t,s)ds = 3. Let X = C([0,1],R") be the space of con-
tinuous function,u : [0,1] — R" andH(ul,ug, e up)|] = max{|u], |usl, -+, |unl} and
d: X x X — C be defined as

i0.0) = | ma () — VI F e

t€(0,1]

wheres = 2. It is well-known that( X, d) is a complete complex valuédmetric space. Define
T: X — Xas

1
Tu(t) = / G(t,s)[f(s,u(s)) + 2u(s)]ds
0
Theorem 3.2. X = ([0, 1], R™) and suppose that
(3.5) 1f(t w) + 2us) = f(t,0) + 20(s) ]| Z Jluls) = v(s)];
then Equatiof 3]3 has a solution.

Proof. It is well-known thatu € X is a fixed point ofl" if and only if u is a solution of problem
(3.3). Now observe that for all, v € X, we have that

d(Tu,Tv)
[ 2
Ll ITu®) = U(t>||v1+a2e“anla]
te
i 2
= | max / G(t,s)[f(s,u(s)) + 2u(s) — f(s,v(s)) — 2v(s)]ds 1+a2e”an_1“]
L telo, 0
- ) ,
S m@"ﬁ/ G<tas>|u<s>—v<s>|ds¢*1+a2@itan1a}
L t€l01] Jo
= | max [u(s) — (S)’V1+a2e”a"_1“] (max/ G(t,s)d )
L t€lo1] t€[0,1]
1
:d(u,ﬂ)z
1
:d(u,v)s—z.

Thus, we have that’d(Tu, Tv) 3 d(u,v). Clearly, all conditions in Corollary 2|8 are satis-
fied and guarantees the existence of the fixed pomtX. Thus,x is the solution of the integral

equatior) 3.3
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