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1. I NTRODUCTION

A wide class of inclusion problems has been investigated to find the zeros of the monotone
operatorG from Rn to itself that is findp ∈ Rn such that0 ∈ G(p). Many problems in
management sciences, economics, operations research, physics, and applied sciences can be
formulated as an inclusion problem0 ∈ G(p), for a given multi-valued mappingG in Hilbert
spaces. The resolvent operator elegant methods introduced to prove the existence of solution
and developed some iterative procedures for several types of variational inclusions and their
generalizations which provided us a powerful and novel framework for the study abroad class
of nonlinear problems arising in optimization, convex programming problems, tomography,
molecular biology, image restoring processing in applied and pure sciences (see, [1, 4, 7, 8, 9,
10, 11, 12, 14, 15, 16, 20, 21, 22, 25]).

In 1972, Amann [8] established for computing the solutions of nonlinear equations and fixed
point theory with nonlinear mapping and applications have been studied with nonlinear increas-
ing operators in real ordered Hilbert space or Banach spaces investigated by Du [13] which
is applicable in nonlinear analysis and developed the methods to solve original mathematical
problems. Future, many authors discussed and studied the idea of ordered nonlinear variational
inequalities (inclusions) in different settings which is available in the literature. In2008, Li
and his coauthors have investigated and analyzed the ordered variational inequality problem to
obtaint ∈ B such thatT (h(t)) ≥ 0 and after that introduced and considered a general nonlinear
ordered variational inequalities problem to obtaint ∈ B such thatT (t) ⊕ G(t, h(t)) ≥ 0 (h, T
andG(., .) are nonlinear mappings), and discussed the existence and convergence results in real
ordered Hilbert or Banach spaces with the help of restricted-accretive mapping techniques (see,
[17, 18]).

Very recently, many authors have been considered and studied ordered equations (inclusions)
problem which solved by using the different kinds of multi-valued mappings to find the solu-
tions of nonlinear ordered equations (inclusions) with XOR operations in different settings (see
[2, 3, 5, 17, 18, 19, 23, 24]).

Motivated and inspired by the above research described above, the aim of this work is pro-
posed as follows. In section 2, contains certain basic results needed in this paper. In Section 3,
we consider a nonlinear system of mixed ordered variational inclusions with XOR operation in
real positive ordered Hilbert spaces with the help of the idea of XOR operation. We propose
the iterative algorithms which are more general than the previous iterative algorithms involving
XOR operation which is investigated by Li et al. [17, 18, 19]. In section 4, we discuss the
existence of a solution of the considered problem and analyze the convergence criteria of the
proposed algorithm. Finally, we demonstrate an example that ensures that all the assumptions
of our consider problem are fulfilled.

2. PRELIMINARIES

In this article, we consider thatB is a real ordered positive Hilbert space whose inner product
and norm are denoted by〈·, ·〉 and‖ · ‖, respectively. Letd be the metric induced by the norm
‖·‖ and2B (respectively,CB(B)) express the collection of all nonempty (respectively, bounded
and closed) subsets ofB, andD(·, ·) is the Hausdorff metric onCB(B) defined by

D(S, T ) = max

{
sup
s∈S

d(s, T ), sup
t∈T

d(S, t)

}
,

whered(s, T ) = inf
t∈T

d(s, t) andd(S, t) = inf
s∈S

d(s, t).

AJMAA, Vol. 18 (2021), No. 1, Art. 21, 15 pp. AJMAA

https://ajmaa.org


NONLINEAR SYSTEM OF MIXED ORDERED VARIATIONAL INCLUSIONS 3

Definition 2.1 ([13, 25]). A non-empty subsetP ofB is called

(i) a normal cone if there exists a constantδP > 0 such that for0 ≤ s ≤ t, we have
||s|| ≤ δP ||t||;

(ii) for eachs, t ∈ B, s ≤ t if and only ift− s ∈ P ;
(iii) s andt are said to be comparative to each other if and only if, we have eithers ≤ t or

t ≤ s and is denoted bys ∝ t.

Definition 2.2 ([7, 25]). For arbitrary elementss, t ∈ B, lub{s, t} is denoted by least upper
bound of the set{s, t} andglb{s, t} is denoted by greatest lower bound of the set{s, t}, respec-
tively. Letglb{s, t} andlub{s, t} exist, binary operations∨,∧, ⊕ and� which called as AND,
OR, XNOR and XOR operations, respectively are defined as follows:

(i) s ∧ t = glb{s, t};
(ii) s ∨ t = lub{s, t};

(iii) s� t = (s− t) ∧ (t− s);
(iv) s⊕ t = (s− t) ∨ (t− s).

Lemma 2.1([13]). For any positive integern, s ∝ tn andtn → t∗ asn →∞, thens ∝ t∗.

Lemma 2.2([13, 19, 25]). Let� and⊕ be the XNOR and XOR operations, respectively. Then
the following properties satisfied:

(i) s� s = 0, s⊕ t = t⊕ s = −(s�) = −(t� s);
(ii) (λs)⊕ (λt) = |λ|(s⊕ t);

(iii) 0 ≤ s⊕ t, if s ∝ t;
(iv) if s ∝ t, thens⊕ t = 0 if and only ifs = t;
(v) (s + t)� (u + v) ≥ (s� u) + (t� v);

(vi) if s, t andw are comparative to each other, then(s⊕ t) ≤ s⊕ w + w ⊕ t;
(vii) if s ∝ t, then((s⊕ 0)⊕ (t⊕ 0)) ≤ (s⊕ t)⊕ 0 = s⊕ t;

(viii) (ms)⊕ (ls) = |m− l|s = (m⊕ l)s, if s ∝ 0, ∀ s, t, u, v, w ∈ B andm, l, λ ∈ R.

Lemma 2.3 ([13]). Let P be a normal cone with normal constantδP in real ordered positive
Hilbert space, then for arbitrarys, t ∈ B, the following properties hold:

(i) ‖s ∨ t‖ ≤ ‖s‖ ∨ ‖t‖ ≤ ‖s‖+ ‖t‖;
(ii) ‖s⊕ t‖ ≤ ‖s− t‖ ≤ δP |s⊕ t‖;

(iii) if s ∝ t, then‖s⊕ t‖ = ‖s− t‖.

Definition 2.3 ([19]). A comparison mappingS : B → B is called

(i) a strongly comparison mapping,s ∝ t if and only ifS(s) ∝ S(t), for all s, t ∈ B;
(ii) a β-ordered compression mapping, ifS is a comparison mapping and there exists0 <

λS < 1 such that

S(s)⊕ S(t) ≤ λS(s⊕ t), for all s, t ∈ B.

(iii) a ν-ordered non-extended mapping, if there existsν > 0 such that

S(s)⊕ S(t) ≥ ν(s⊕ t), for all s, t ∈ B.

Definition 2.4. A multi-valued mappingF : B → CB(B) is calledD-Lipschitz continuous, if
for everys, t ∈ B, s ∝ t, there exists a constantδF such that

D(F (s), F (t)) ≤ δF (s⊕ t), for all s, t ∈ B.

Definition 2.5 ([17, 19]). Let A : B → B be a strong comparison mapping andν-ordered
non-extended mapping, andM : B → 2B be a multi-valued mapping. ThenM is said to be
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(i) a weak comparison mapping, if for everyvs ∈ M(s), s ∝ vs, and if s ∝ t, then for
everyvs ∈ M(s) andvt ∈ M(t), vs ∝ vt, for all s, t ∈ B;

(ii) a αA-weak-non-ordinary difference mapping with respect toA, if for everys, t ∈ B,
there existαA > 0 andvs ∈ M(A(s)) andvt ∈ M(A(t)) such that

(vs ⊕ vt)⊕ αA(A(s)⊕ A(t)) = 0;

(iii) a λ-XOR-ordered different weak compression mapping with respect toA, if for every
s, t ∈ B, there exists a constantλ > 0 andvs ∈ M(A(s)), vt ∈ M(A(t)) such that

λ(vs ⊕ vt) ≥ s⊕ t;

(iv) a (αA, λ)-XOR-weak-ANODD multi-valued mapping, ifM is a αA-weak-non-ordinary
difference mapping with respect toA andλ-XOR-ordered different weak compression
mapping with respect toA, and[A⊕ λM ](B) = B, for λ, β, α > 0.

Definition 2.6. Let A : B → B be a strongly comparison andγ-ordered non-extended map-
ping. LetM : B → 2B be a(αA, λ)-XOR-weak-ANODD multi-valued mapping. The resolvent
operatorJ A

λ,M : B → B associated withA andM is defined by

(2.1) J A
λ,M(s) = [A⊕ λM ]−1(s),∀s ∈ B,

whereλ > 0 is a constant.

Lemma 2.4. ([6]) LetA : B → B be a strongly comparison,γ-ordered non-extended mapping
andM : B → 2B be aαA-weak-non-ordinary difference multi-valued mapping with respect to
A with λαA 6= 1. Then the resolvent operatorJ A

λ,M : B → B is well-defined and single-valued,
for all α, λ > 0.

Lemma 2.5. ([6]) Let M : B → 2B be a(αA, λ)-XOR-weak-ANODD multi-valued mapping
with respect toJ A

λ,M . Let A : B → B be a comparison andγ-ordered non-extended mapping
with respect toJ A

λ,M , for µ ≥ 1 andλαA > µ. Then the resolvent operatorJ A
λ,M is comparison

and the following condition holds:

J A
λ,M(s)⊕ J A

λ,M(t) ≤ µ

(λαA ⊕ µ)
(s⊕ t), for all s, t ∈ B.

3. EXISTENCE RESULT FOR NSMOVI P ROBLEM AND I TERATIVE ALGORITHMS

For i = 1, 2, let Bi be the real ordered positive Hilbert spaces andPi be the normal cones with
normal constantsδPi

. Let Ai, fi, gi : Bi → Bi andTi : B1 × B2 → Bi be the single-valued
mappings. LetFi : Bi → 2Bi be a multi-valued mapping andMi : B1 × B2 → 2Bi be a
(αA, λ)-XOR-weak-ANODD multi-valued mapping. We propose the following problem:

For eachωi ≥ 0, find (s, t) ∈ B1 × B2, for y ∈ F1(s), z ∈ F2(t) such that

(3.1)
ω1 ∈ T1(s− g1(s), z)⊕ ρ1M1(f1(s), t),

ω2 ∈ T2(y, t⊕ g2(t)) + ρ2M2(s, f2(t)).


We call this problem as nonlinear system of mixed ordered variational inclusions involving
XOR operation (in short, NSMOVI).

By applying the resolvent operator method, we establish an equivalence result for NSMOVI
(3.1) and a nonlinear equations.
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Lemma 3.1. Let (s, t) ∈ B1 × B2, y ∈ F1(s), z ∈ F2(t). Then(s, t, y, z) is a solution of
NSMOVI (3.1) if and only if(s, t, y, z) satisfies the following relations:

(3.2)

f1(s)⊕ J A1

λ1,M1(.,t)

(
(A1of1)(s)⊕ λ1

ρ1

[
ω1 ⊕ T1(s− g1(s), z)

])
= 0,

f2(t)⊕ J A2

λ2,M2(s,.)

(
(A2of2)(t)⊕ λ2

ρ2
[ω2 − T2(y, t⊕ g2(t))]

)
= 0.


Proof. The proof is a direct consequence of the resolvent operatorJ A

λ,M defined in Definition
2.6.

Now, we construct the iterative algorithms based on Lemma 3.1 to find the approximate
solutions of NSMOVI (3.1).

Iterative Algorithm 3.1. For i = 1, 2, let fi, gi : Bi → Bi and Ti : B1 × B2 → Bi be the
single-valued mappings. LetFi : Bi → 2Bi be a multi-valued mapping andMi : B1×B2 → 2Bi

be a(αA, λ)-XOR-weak-ANODD multi-valued mapping.

Choose(s0, t0) ∈ B1 × B2 and choosey0 ∈ F1(s0) and z0 ∈ F2(t0). Let sn+1 ∝ sn and
tn+1 ∝ tn.

Step 1. Let

f1(sn+1) = (1− αn − βn)f1(sn) + αnJ A1

λ1,M1(.,tn)

(
(A1of1)(sn)

⊕λ1

ρ1

[
ω1 ⊕ T1(sn − g1(sn), zn)

])
,(3.3)

f2(tn+1) = (1− αn − βn)f2(tn) + αnJ A2

λ2,M2(sn,.)

(
(A2of2)(tn)

⊕λ2

ρ2

[
ω2 − T2(yn, tn ⊕ g2(tn))

])
,(3.4)

whereαn andβn are non-negative constants such that0 < αn + βn ≤ 1 andlim sup
n≥0

αn < 1.

Step 2. Chooseyn+1 ∈ F1(sn+1) andzn+1 ∈ F2(tn+1) such that

yn+1 ⊕ yn ≤
(
1 + (1 + n)−1

)
D1(F1(sn+1), F1(sn)),(3.5)

zn+1 ⊕ zn ≤
(
1 + (1 + n)−1

)
D2(F2(tn+1), F2(tn)),(3.6)

whereDi(., .) are the Hausdorff metrics onCB(Bi).

Step 3. Ifsn+1, tn+1, yn+1 andzn+1 satisfiying (3.3) and (3.4) to a sufficient degree of accuracy,
stop; otherwise, setn = n + 1 and return to step 2.

Iterative Algorithm 3.2. Choose(s0, t0) ∈ B1 × B2 and chooses0 ∈ F1(s0) andt0 ∈ F2(t0).
Letsn+1 ∝ sn andtn+1 ∝ tn.

Step 1. Let

f1(sn+1) = (1− α− β)f1(sn) + αJ A1

λ1,M1(.,tn)

(
(A1of1)(sn)

⊕λ1

ρ1

[
ω1 ⊕ T1(sn − g1(sn), zn)

])
,(3.7)

f2(tn+1) = (1− α− β)f2(tn) + αJ A2

λ2,M2(sn,.)

(
(A2of2)(tn)

⊕λ2

ρ2

[
ω2 − T2(yn, tn ⊕ g2(tn))

])
,(3.8)
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whereα andβ are non-negative constants such that0 < α + β ≤ 1.

Step 2. Chooseyn+1 ∈ F1(sn+1) andzn+1 ∈ F2(tn+1) such that

yn+1 ⊕ yn ≤
(
1 + (1 + n)−1

)
D1(F1(sn+1), F1(sn)),(3.9)

zn+1 ⊕ zn ≤
(
1 + (1 + n)−1

)
D2(F2(tn+1), F2(tn)),(3.10)

whereDi(., .) are the Hausdorff metric onCB(Bi).

Step 3. Ifsn+1, tn+1, yn+1 andzn+1 satisfying (3.7) and (3.8) to a sufficient degree of accuracy,
stop; otherwise, setn = n + 1 and return to step 2.

Iterative Algorithm 3.3. Choose(s0, t0) ∈ B1 × B2 and choosey0 ∈ F1(s0) andz0 ∈ F2(t0)
and letsn+1 ∝ sn, tn+1 ∝ tn, yn+1 ∝ yn andzn+1 ∝ zn.

Step 1. Let

f1(sn+1) = (1− α)f1(sn) + αJ A1

λ1,M1(.,tn)

(
(A1of1)(sn)⊕ λ1

ρ1

[
ω1

⊕T1(sn − g1(sn), zn)
])

,(3.11)

f2(tn+1) = (1− α)f2(tn) + αJ A2

λ2,M2(sn,.)

(
(A2of2)(tn)⊕ λ2

ρ2

[
ω2

−T2(yn, tn ⊕ g2(tn))
])

,(3.12)

whereα is non-negative constants such that0 < α ≤ 1.

Step 2. Chooseyn+1 ∈ F1(sn+1) andzn+1 ∈ F2(tn+1) such that

yn+1 ⊕ yn ≤
(
1 + (1 + n)−1

)
D1(F1(sn+1), F1(sn)),(3.13)

zn+1 ⊕ zn ≤
(
1 + (1 + n)−1

)
D2(F2(tn+1), F2(tn)),(3.14)

whereDi(., .) are the Hausdorff metric onCB(Bi).

Step 3. Ifsn+1, tn+1, yn+1 andzn+1 satisfying (3.11) and (3.12) to a sufficient degree of accu-
racy, stop; otherwise, setn = n + 1 and return to step 2.

4. M AIN RESULTS

In this section, we able to discuss the existence and convergence analysis of the proposed
algorithms for NSMOVI (3.1).

Theorem 4.1.For i = 1, 2, let Ai, fi, gi : Bi → Bi andTi : B1 ×B2 → Bi be the single-valued
mappings such thatAi are comparison andλAi

-ordered copmression mappings,fi are compar-
ison,λfi

-ordered copmression andνi-ordered non-extended mappings,gi are comparison and
λgi

-ordered copmression mappings,Ti are comparison and ordered copmression mappings with
respect to first and second arguments with constantsλTi

andλ′Ti
, respectively. LetFi : Bi → 2Bi

be the comparison andδFi
-ordered Lipschitz type continuous multi-valued mappings. Suppose

Mi : B1 × B2 → 2Bi is (αAi
, λi)-XOR-weak-ANODD multi-valued mapping with respect toAi

andfi, andD-Lipschitz type continuous with constantsδFi
. In addition, ifAi, fi, gi, Fi, Mi and

J Ai

λi,Mi(.,.)
are compared to each other, and for allωi ≥ 0, the following conditions are satisfied:

δP1ν2µ1

(
ρ1λA1λf1 ⊕ λ1λT1(1 + λg1)

)
<

[
ρ1δP2ξ1(λ1αA1 ⊕ µ1)ν1λ

′
T2

δF1

]
,(4.1)

δP2ν1µ2

(
ρ2λA2λf2 ⊕ λ2λT2(1⊕ λg2)

)
<

[
ρ2δP1ξ2(λ2αA2 ⊕ µ2)ν2λ

′
T1

δF2

]
,(4.2)
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and

J A1

λ1,M1(s,.)(p)⊕ J A1

λ1,M1(y,.)(p), ≤ ξ1(s⊕ y),(4.3)

J A2

λ2,M2(.,t)(p)⊕ J A2

λ2,M2(.,w)(p) ≤ ξ2(t⊕ w).(4.4)

Then, the NSMOVI(3.1) admits a solution(s, t) ∈ B1 × B2. Moreover,sn → s andtn → t, as
n →∞, where{sn} and{tn} are the sequences defined in iterative Algorithm 3.1.

Proof. By using Algorithm 3.1, Lemma 2.2 and Lemma 2.5, we have

f1(sn+1)⊕ f1(sn) =
[
(1− αn − βn)f1(sn) + αnJ A1

λ1,M1(.,tn)

(
(A1of1)(sn)

⊕λ1

ρ1

(ω1 ⊕ T1(sn − g(sn), zn))
)]

⊕
[
(1− αn − βn)f1(sn−1)

+αnJ A1

λ1,M1(.,tn−1)

(
(A1of1)(sn−1)⊕

λ1

ρ1

(
ω1 ⊕ T1(sn−1

−g(sn−1), zn−1)
))]

≤ (1− αn − βn) (f1(sn)⊕ f1(sn−1))

+αn

[
JA1

λ1,M1(.,tn)

(
(A1of1)(sn)⊕ λ1

ρ1

(
ω1 ⊕ T1(sn

−g(sn), zn)
))
⊕ JA1

λ1,M1(.,tn−1)

(
(A1of1)(sn−1)

⊕λ1

ρ1

(
ω1 ⊕ T1(sn−1 − g(sn−1), zn−1)

))]
≤ (1− αn)λf1(sn ⊕ sn−1) + αn

[(
JA1

λ1,M1(.,tn)

(
(A1of1)(sn)

⊕λ1

ρ1

(ω1 ⊕ T1(sn − g(sn), zn))
)
⊕ JA1

λ1,M1(.,tn)(
(A1of1)(sn−1)⊕

λ1

ρ1

(ω1 ⊕ T1(sn−1 − g(sn−1), zn−1))
))

+
(
JA1

λ1,M1(.,tn)

(
(A1of1)(sn−1)⊕

λ1

ρ1

(
ω1 ⊕ T1(sn−1

−g(sn−1), zn−1)
))

⊕ JA1

λ1,M1(.,tn−1)

(
(A1of1)(sn−1)

⊕λ1

ρ1

(
ω1 ⊕ T1(sn−1 − g(sn−1), zn−1)

)))]
≤ (1− αn)λf1(sn ⊕ sn−1) + αn

[
Θ1

((
(A1of1)(sn)

⊕λ1

ρ1

(ω1 ⊕ T1(sn − g(sn), zn))
)
⊕

(
(A1of1)(sn−1)

⊕λ1

ρ1

(ω1 ⊕ T1(sn−1 − g(sn−1), zn−1))
))]

+ξ2(tn ⊕ tn−1)
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≤ (1− αn)(sn ⊕ sn−1) + αnΘ1

[
(A1of1)(sn)⊕ (A1of1)(sn−1)

⊕λ1

ρ1

(
T1(sn − g1(sn), zn)⊕ T1(sn−1 − g1(sn−1), zn−1)

)]
+ξ2(tn ⊕ tn−1),(4.5)

where

Θ1 =
µ1

(λ1αA1 ⊕ µ1)
.

Now,

T1(sn − g1(sn), zn) ⊕ T1(sn−1 − g1(sn−1), zn−1)

≤ T1(sn − g1(sn), zn)⊕ T1(sn−1 − g1(sn−1), zn)

+T1(sn−1 − g1(sn−1), zn)⊕ T1(sn−1 − g1(sn−1), zn−1)

≤ λT1

(
(sn − g1(sn))⊕ (sn−1 − g1(sn−1))

)
+ λ

′

T1
(zn ⊕ zn−1)

≤ λT1

[
(sn ⊕ sn−1) + λg1(sn ⊕ sn−1)

]
+λ

′

T1

(
1 + (1 + n)−1

)
δF2(tn ⊕ tn−1)

≤ λ
′

T1

(
1 + (1 + n)−1

)
δF2(tn ⊕ tn−1)

+
(
λT1(1 + λg1)

)
(sn ⊕ sn−1),

i.e.

T1(sn − g1(sn), zn)⊕ T1(sn−1 − g1(sn−1), zn−1)

≤
(
λT1(1 + λg1)

)
(sn ⊕ sn−1) + λ

′

T1

(
1 + (1 + n)−1

)
δF2(tn ⊕ tn−1).

Eq. (4.5) becomes as

f1(sn+1)⊕ f1(sn) ≤ (1− αn)λf1(sn ⊕ sn−1) + αnΘ1

(
λA1λf1(sn ⊕ sn−1)

⊕λ1

ρ1

(
λT1(1 + λg1)

)
(sn ⊕ sn−1)

+
(
αnξ2λ

′

T1

(
1 + (1 + n)−1

)
δF2

))
(tn ⊕ tn−1)

=
[
(1− αn)λf1 + αnΘ1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

)
(sn ⊕ sn−1)

+
(
αnξ2λ

′

T1

(
1 + (1 + n)−1

)
δF2

))
(tn ⊕ tn−1)

]
.(4.6)

Eq. (4.6) becomes as

sn+1 ⊕ sn ≤ 1

ν1

[
(1− αn)λf1 + αnΘ1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

)
(sn ⊕ sn−1)

+
(
αnξ2λ

′

T1

(
1 + (1 + n)−1

)
δF2

))
(tn ⊕ tn−1)

]
.

By definition of normal cone, we have

‖sn+1 − sn‖ ≤
[
(1− αn)

λf1δP1

ν1

+ αn
δP1Θ1

ν1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

))]
‖sn − sn−1‖
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+αn

ξ2λ
′

T1
δF2

ν1

(
1 + (1 + n)−1

)
‖tn − tn−1‖

≤
[
1− αn

(
1− δP1Θ1

ν1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

)))]
‖sn − sn−1‖

+αn

ξ2λ
′

T1
δF2

ν1

(
1 + (1 + n)−1

)
‖tn − tn−1‖.(4.7)

Similarly, we have

f2(tn+1)⊕ f2(tn) =
[
(1− αn − βn)f2(tn) + αnJ A2

λ2,M2(sn,.)

(
(A2of2)(tn)

⊕λ2

ρ2

(
ω2 ⊕ T2(yn, tn ⊕ g2(tn))

))]
⊕

[
(1− αn − βn)

f2(tn−1) + αnJ A2

λ2,M2(sn−1,.)

(
(A2of2)(tn−1)⊕

λ2

ρ2(
ω2 ⊕ T2(yn−1, tn−1 ⊕ g2(tn−1))

))]
≤ (1− αn)λf2(tn ⊕ tn−1) + αn

[
Θ2

(
λA2λf2(tn ⊕ tn−1)

⊕λ2

ρ2

(
T1(yn, tn ⊕ g2(tn))⊕ T2(yn−1, tn−1 ⊕ g2(tn−1))

))]
+αnξ1(sn ⊕ sn−1),(4.8)

where

Θ2 =
µ2

(λ2αA2 ⊕ µ2)
.

Now,

T2(yn, tn ⊕ g2(tn)) ⊕ T2(yn−1, tn−1 ⊕ g2(tn−1))

= T2(yn, tn ⊕ g2(tn))⊕ T2(yn, tn−1 ⊕ g2(tn−1))

+T2(yn, tn−1 ⊕ g2(tn−1))⊕ T2(yn−1, tn−1 ⊕ g2(tn−1))

≤ λT2

[
(tn ⊕ g2(tn))⊕ (tn−1 ⊕ g2(tn−1))

]
+λ′T2

(
1 + (1 + n)−1

)
δF1(sn ⊕ sn−1)

≤ λT2(1⊕ λg2)(tn ⊕ tn−1) + λ′T2

(
1 + (1 + n)−1

)
δF1(sn ⊕ sn−1).

From (4.8), we have

f2(tn+1)⊕ f2(tn) ≤ (1− αn)λf2(tn ⊕ tn−1) + αnΘ2

(
λA2λf2

⊕λ2

ρ2

(
λT2(1⊕ λg2)

))
(tn ⊕ tn−1)

+αnξ1λ
′
T2

δF1

(
1 + (1 + n)−1

)
(sn ⊕ sn−1)

≤
[
(1− αn)λf2 + αnΘ2

(
λA2λf2 ⊕

λ2

ρ2

(
λT2(1⊕ λg2)

))]
(tn ⊕ tn−1)

+αnξ1λ
′
T2

δF1

(
1 + (1 + n)−1

)
(sn ⊕ sn−1)
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By definition, we have

tn+1 ⊕ tn ≤ 1

ν2

[
f2(tn+1)⊕ f1(tn)

]
≤ (1− αn)

λf2

ν2

+
αnΘ2

ν2

(
λA2λf2 ⊕

λ2

ρ2

(
λT2(1⊕ λg2)

))
(tn ⊕ tn−1)

+αn

ξ1λ
′
T2

δF1

ν2

(
1 + (1 + n)−1

)
(sn ⊕ sn−1).

By definition of normal cone, we have

‖tn+1 − tn‖ ≤
[
(1− αn)

δP2λf2

ν2

+
αnΘ2δP2

ν2

(
λA2λf2

⊕λ2

ρ2

(
λT2(1⊕ λg2)

))]
‖tn ⊕ tn−1‖

+αn

δP2ξ1λ
′
T2

δF1

ν2

(
1 + (1 + n)−1

)
(sn ⊕ sn−1)

=
[
1− αn

(
1− Θ2δP2

ν2

(
λA2λf2 ⊕

λ2

ρ2

(
λT2(1⊕ λg2)

)))]
‖tn − tn−1‖

+αn

δP2ξ1λ
′
T2

δF1

ν2

(
1 + (1 + n)−1

)
‖sn − sn−1‖.(4.9)

From Eq. (4.7) and Eq. (4.9), we have

‖sn+1 − sn‖+ ‖tn+1 − tn‖ ≤
[
1− αn

(
1− δP1Θ1

ν1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

))
−

δP2ξ1λ
′
T2

δF1

ν2

(
1 + (1 + n)−1

))]
‖sn − sn−1‖

+
[
1− αn

(
1− δP2Θ2

ν2

(
λA2λf2 ⊕

λ2

ρ2

(
λT2(1⊕ λg2)

))
−

δP1ξ2λ
′
T1

δF2

ν1

(
1 + (1 + n)−1

))]
‖tn − tn−1‖

≤ (1− αn(1− Ωn))‖sn+1 − sn‖
+(1− αn(1− Ω′

n))‖tn+1 − tn‖,

where

Ωn =
[δP1Θ1

ν1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

))
−

δP2ξ1λ
′
T2

δF1

ν2

(
1 + (1 + n)−1

)]
and

Ω′
n =

[δP2Θ2

ν2

(
λA2λf2 ⊕

λ2

ρ2

(
λT2(1⊕ λg2)

))
−

δP1ξ2λ
′
T1

δF2

ν1

(
1 + (1 + n)−1

)]
Now,

‖sn+1 − sn‖+ ‖tn+1 − tn‖ ≤ (1− αn(1−∆n))
(
‖sn − sn−1‖+ ‖tn − tn−1‖

)
,

≤ (1− α(1−∆n))
(
‖sn − sn−1‖+ ‖tn − tn−1‖

)
,

(4.10)
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where∆n = max{Ωn, Ω
′
n} andα = lim supn≥1 αn < 1. If we set∆ = max{Ω, Ω′}, where

Ω =
[δP1Θ1

ν1

(
λA1λf1 ⊕

λ1

ρ1

(
λT1(1 + λg1)

))
−

δP2ξ1λ
′
T2

δF1

ν2

]
and

Ω
′
=

[δP2Θ2

ν2

(
λA2λf2 ⊕

λ2

ρ2

(
λT2(1⊕ λg2)

))
−

δP1ξ2λ
′
T1

δF2

ν1

]
.

It follows that∆n → ∆ asn →∞. From conditions (4.1) and (4.2) that0 < ∆ < 1. Therefore,
by (4.10) and0 < αn + βn ≤ 1 implies that{sn} and{tn} are Cauchy sequences. Thus there
existss, t ∈ B such thatsn → s andtn → t, asn →∞.

From (3.5) and (3.6), we have

yn+1 ⊕ yn ≤
(
1 + (1 + n)−1

)
D1(F1(sn+1), F1(sn))

≤
(
1 + (1 + n)−1

)
δF1(sn+1 ⊕ sn)

zn+1 ⊕ zn ≤
(
1 + (1 + n)−1

)
D2(F2(tn+1), F2(tn))

≤
(
1 + (1 + n)−1

)
δF2(tn+1 ⊕ tn).

By the definition of normal cone, we have

‖yn+1 − yn‖ ≤ δP1

(
1 + (1 + n)−1

)
δF1‖sn+1 − sn‖(4.11)

‖zn+1 − zn‖ ≤ δP2

(
1 + (1 + n)−1

)
δF2‖tn+1 − tn‖.(4.12)

It follows from (4.11) and (4.12) that{yn} and{zn} are also Cauchy sequences. Therefore,
there existy ∈ B1 andz ∈ B2 such thatyn → y andzn → z, asn →∞. Next, we show that

yn → y ∈ F1(s) andzn → z ∈ F2(t), asn →∞.

Furthermore,

d(y, F1(s)) = inf{‖y − t‖ : t ∈ F1(s)}
≤ ‖y − yn‖+ d(yn, F1(s))

≤ ‖y − yn‖+ d(F1(sn), F1(s))

≤ ‖y − yn‖+ δF1(sn ⊕ s)

≤ ‖y − yn‖+ δF1δP1‖sn − s‖ → 0, asn →∞.

SinceF1(s) is closed, we havey ∈ F1(s). Similarly, we can show thatz ∈ F2(t). Finally apply
the continuity,s, t, y andz satisfy the following relations:

f1(s) = JA1

λ1,M1(.,t)

[
(A1of1)(s)⊕

λ1

ρ1

[ω1 ⊕ T1(s− g1(s), z)]

]
,

f2(t) = JA2

λ2,M2(s,.)

[
(A2of2)(t)⊕

λ2

ρ2

[ω2 ⊕ T2(y, t− g2(s))]

]
,

which implies that

f1(s)⊕ JA1

λ1,M1(.,t)

[
(A1of1)(s)⊕

λ1

ρ1

[ω1 ⊕ T1(s− g1(s), z)]

]
= 0,

f2(t)⊕ JA2

λ2,M2(s,.)

[
(A2of2)(t)⊕

λ2

ρ2

[ω2 ⊕ T2(y, t− g2(s))]

]
= 0.

Therefore(s, t) are solution of NSMOVI (3.1).
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Theorem 4.2. Let Ai, fi, gi : Bi → Bi and Ti : B1 × B2 → Bi be the single-valued map-
pings such thatAi are comparison andλAi

-ordered copmression mappings,fi are comparison,
λfi

-ordered copmression andνi-ordered non-extended mappings,gi are comparison andλgi
-

ordered copmression mappings,Ti are comparison and ordered copmression mappings with re-
spect to first and second arguments with constantsλTi

andλ′Ti
, respectively. LetFi : Bi → 2Bi

be the comparison andδFi
-ordered Lipschitz type continuous multi-valued mappings. Suppose

Mi : B1 × B2 → 2Bi are (αAi
, λi)-XOR-weak-ANODD multi-valued mappings with respect to

Ai andfi, , andD-Lipschitz type continuous with constantsδFi
. In addition, ifAi, fi, gi, Fi, Mi

andJ Ai

λi,Mi(.,.)
are compared to each other, and for allωi ≥ 0, the following conditions are

satisfied:

(ρ1λA1λf1 ⊕ λ1λT1(1 + λg1)
)

<
[ρ1δP2ξ1(λ1αA1 ⊕ µ1)ν1λ

′
T2

δF1

ν2µ1

]
min

{ 1

δP1

, 1
}

,(4.13)

(
ρ2λA2λf2 ⊕ λ2λT2(1⊕ λg2)

)
<

[ρ2δP1ξ2(λ2αA2 ⊕ µ2)ν2λ
′
T1

δF2

ν1µ2

]
min

{ 1

δP2

, 1
}

,(4.14)

and

J A1

λ1,M1(s,.)(p)⊕ J A1

λ1,M1(y,.)(p) ≤ ξ1(s⊕ y),(4.15)

J A2

λ2,M2(.,t)(p)⊕ J A2

λ2,M2(.,w)(p) ≤ ξ2(t⊕ w).(4.16)

Then, the NSMOVI(3.1) admits a solution(s, t) ∈ B1 × B2. Moreover,sn → s andtn → t, as
n →∞, where{sn} and{tn} are the sequences defined in iterative Algorithm 3.2.

Proof. The proof is same as Theorem 4.1 except Algorithm 3.2 is applied instead.

Theorem 4.3. Let Ai, fi, gi : Bi → Bi and Ti : B1 × B2 → Bi be the single-valued map-
pings such thatAi are comparison andλAi

-ordered copmression mappings,fi are comparison,
λfi

-ordered copmression andνi-ordered non-extended mappings,gi are comparison andλgi
-

ordered copmression mappings,Ti are comparison and ordered copmression mappings with re-
spect to first and second arguments with constantsλTi

andλ′Ti
, respectively. LetFi : Bi → 2Bi

be the comparison andδFi
-ordered Lipschitz type continuous multi-valued mappings. Suppose

Mi : B1 × B2 → 2Bi are (αAi
, λi)-XOR-weak-ANODD multi-valued mapping with respect to

Ai andfi, , andD-Lipschitz type continuous with constantsδFi
. In addition, ifAi, fi, gi, Fi, Mi

andJ Ai

λi,Mi(.,.)
are compared to each other, and for allωi ≥ 0, the following conditions are

satisfied:

(ρ1λA1λf1 ⊕ λ1λT1(1 + λg1)
)

<
[ρ1δP2ξ1(λ1αA1 ⊕ µ1)ν1λ

′
T2

δF1

ν2µ1

]
min

{ 1

δP1

, 1
}

,(4.17)

(
ρ2λA2λf2 ⊕ λ2λT2(1⊕ λg2)

)
<

[ρ2δP1ξ2(λ2αA2 ⊕ µ2)ν2λ
′
T1

δF2

ν1µ2

]
min

{ 1

δP2

, 1
}

,(4.18)

and

J A1

λ1,M1(s,.)(p)⊕ J A1

λ1,M1(y,.)(p) ≤ ξ1(s⊕ y),(4.19)

J A2

λ2,M2(.,t)(p)⊕ J A2

λ2,M2(.,w)(p) ≤ ξ2(t⊕ w).(4.20)

Then, the NSMOVI(3.1) admits a solution(s, t) ∈ B1 × B2. Moreover,sn → s andtn → t, as
n →∞, where{sn} and{tn} are the sequences defined in iterative Algorithm 3.3.

Proof. The proof is same as Theorem 4.1 except Algorithm 3.3 is applied instead.

The following numerical example gives the guarantee that all the proposed conditions of
Theorem 4.1 are satisfied.
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Example 4.1.For eachi ∈ {1, 2}, letBi = R+∪{0} andAi, fi, gi : Bi → Bi andFi : Bi → 2Bi

be the mappings defined by

gi(si) =
si

103 + i
, fi(si) =

si

5i
, Ai(si) =

2i

15
si andFi(si) =

i + 3

15
si ∀ si ∈ Bi.

Suppose that the mappingsTi : B1 × B2 → Bi and are defined by

Ti(s1, s2) =
si

12 + i
, ∀ (s1, s2) ∈ B1 × B2,

and the mappingsMi : B1 × B2 → 2Bi are defined by

Mi(s1, s2) =
{ si

5i

}
, ∀ (s1, s2) ∈ B1 × B2.

Now,

fi(si)⊕ fi(ti) =
( si

5i
⊕ ti

5i

)
≤ 2

5i
(si ⊕ ti),

and

fi(si)⊕ fi(ti) =
( si

5i
⊕ ti

5i

)
=

1

5i
(si ⊕ ti) ≥

1

6i
(si ⊕ ti),

i.e.,fi are 2
5i

-ordered compression and1
6i

-ordered non-extended appings. In the similar way, it
is easy to check thatgi are 2

103+i
-ordered compression mappings,Ai are i

5
-ordered compression

mappings andFi are i
3
-ordered compression mappings,Ti ordered copmression mappings with

respect to first and second arguments with constants2
12+i

and 2+i
12+i

, respectively.

In addition, it is easy to verify thatMi are 3
2i2

-weak-non-ordinary-difference mappings with
respect tofi andλi-XOR-ordered different weak compression mapping with respect toAi, where
λi ≥ 55

i
. For λi ≥ 55

i
, [Ai + λiMi](Bi) = Bi, which shows thatMi are ( 3

2i2
, λi)-XOR-weak-

ANODD multi-valued mappings with respect toAi andfi, whereλi ≥ 55
i

. Hence, the resolvent
operatorsJ Ai

λi,Mi
: Bi → Bi associated withAi andMi are of the form:

J Ai
λi,Mi

(si) =
si(

2i
15
⊕ λi

5i

) =
( 75i

10i2 ⊕ 15λi

)
si, ∀si ∈ Bi.

It is clear that the resolvent operators defined above are single-valued and comparisons.
Now,

J Ai
λi,Mi

(si)⊕ J Ai
λi,Mi

(ti) =
( 75i

10i2 ⊕ 15λi

)
si ⊕

( 75i

10i2 ⊕ 15λi

)
ti

=
( 75i

10i2 ⊕ 15λi

)
(si ⊕ ti)

≤ 5i

λi

(si ⊕ ti), whereλi ≥
55

i
,

Hence, the resolvent operatorsJ Ai
λi,Mi

are 5i
λi

-Lipschitz type continuous mappings. Hence, all
the proposed conditions of Theorem 4.1 are fulfilled.

Remark 4.1. We chooseλfi
= 2

5i
, νi = 1

6i
, λgi

= 2
103+i

, λAi
= i

5
, δFi

= i
3
, λTi

= 2
12+i

,

λ′Ti
= 2+i

12+i
, αAi

= 3
2i2

, λi = 55
i
, µi = 165

i2
, Θi = 2, ξi = 7i, ωi = 0, ρi = 104i andN = 1, the

conditions(4.1) and (4.2) of Theorem 4.1 are satisfied.

Remark 4.2. We remark that the generalizations of the iterative method presented in this paper
need further research affords and the technique is helpful to solve the system ofn-variational
inclusions.
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5. CONCLUSION

In this article, we introduced and analyzed an NSMOVI involving XOR operation and proved
the existence of the solution to our main problem. We constructed the iterative algorithms
based on the fixed point formulation with XOR operation and discussed the convergence of
the iterative sequences generated by the proposed algorithms which suggested that algorithms
converge to a solution of the proposed problem. Finally, we constructed a numerical example
to show that all conditions are fulfilled for our main result in this paper. The obtained results in
this article are an important and significant generalization to recent known results in nonlinear
analysis and establish results that can be extended Banach spaces and other higher dimensional
spaces. Note that it needs further research on the forward as well as a backward splitting method
based on the inertial technique for solving ordered inclusion problems with XOR operation
technique and also it needs to develop the algorithms to solve the image deblurring and image
recovery problems by using the Tseng method and viscosity method in real ordered Hilbert
spaces.
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