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1. INTRODUCTION

A wide class of inclusion problems has been investigated to find the zeros of the monotone
operatorG from R" to itself that is findp € R™ such that0 € G(p). Many problems in
management sciences, economics, operations research, physics, and applied sciences can be
formulated as an inclusion probleine G(p), for a given multi-valued mapping in Hilbert
spaces. The resolvent operator elegant methods introduced to prove the existence of solution
and developed some iterative procedures for several types of variational inclusions and their
generalizations which provided us a powerful and novel framework for the study abroad class
of nonlinear problems arising in optimization, convex programming problems, tomography,
molecular biology, image restoring processing in applied and pure sciences (see) [1,/4, 7, 8, 9,
10,11)12[ 14,15, 16, 20, 21,122, 25]).

In 1972, Amann([8] established for computing the solutions of nonlinear equations and fixed
point theory with nonlinear mapping and applications have been studied with nonlinear increas-
ing operators in real ordered Hilbert space or Banach spaces investigated by! Du [13] which
is applicable in nonlinear analysis and developed the methods to solve original mathematical
problems. Future, many authors discussed and studied the idea of ordered nonlinear variational
inequalities (inclusions) in different settings which is available in the literature2008, Li
and his coauthors have investigated and analyzed the ordered variational inequality problem to
obtaint € B such thatl’(h(t)) > 0 and after that introduced and considered a general nonlinear
ordered variational inequalities problem to obtaia B such thatl’(t) @ G(t, h(t)) > 0 (b, T
andG(., .) are nonlinear mappings), and discussed the existence and convergence results in real
ordered Hilbert or Banach spaces with the help of restricted-accretive mapping techniques (see,
[17,(18]).

Very recently, many authors have been considered and studied ordered equations (inclusions)
problem which solved by using the different kinds of multi-valued mappings to find the solu-
tions of nonlinear ordered equations (inclusions) with XOR operations in different settings (see
[2,13,5,17] 18], 19, 23, 24]).

Motivated and inspired by the above research described above, the aim of this work is pro-
posed as follows. In section 2, contains certain basic results needed in this paper. In Section 3,
we consider a nonlinear system of mixed ordered variational inclusions with XOR operation in
real positive ordered Hilbert spaces with the help of the idea of XOR operation. We propose
the iterative algorithms which are more general than the previous iterative algorithms involving
XOR operation which is investigated by Li et al._[17,] 18] 19]. In section 4, we discuss the
existence of a solution of the considered problem and analyze the convergence criteria of the
proposed algorithm. Finally, we demonstrate an example that ensures that all the assumptions
of our consider problem are fulfilled.

2. PRELIMINARIES

In this article, we consider th& is a real ordered positive Hilbert space whose inner product
and norm are denoted Ry, -) and|| - ||, respectively. Letl be the metric induced by the norm
|- || and2? (respectivelyC B(B)) express the collection of all nonempty (respectively, bounded
and closed) subsets 6f and D(-, -) is the Hausdorff metric o6’ B(5) defined by

D(S,T) = max {sup d(s, T),sup d(S, t)} ,

seS teT

whered(s,T) = %ng d(s,t) andd(S,t) = inf d(s,t).
S

seS
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Definition 2.1 ([13,/25]). A non-empty subsét of 5 is called

(7) a normal cone if there exists a constant > 0 such that for0 < s < ¢, we have
[s]] < o[t
(77) for eachs,t € B, s < tifandonlyift — s € P;
(77i) s andt are said to be comparative to each other if and only if, we have eithert or
t < sandis denoted by  t.

Definition 2.2 ([[7}, [25]). For arbitrary elements;,t € B, lub{s,t} is denoted by least upper
bound of the sets, t} andglb{s, t} is denoted by greatest lower bound of the{set }, respec-
tively. Letglb{s,t} andlub{s,t} exist, binary operations, A, & and® which called as AND,
OR, XNOR and XOR operations, respectively are defined as follows:
(i) sNt = glb{s,t};

(17) sVt =lub{s,t};

(1ii) sO©t=(s—t) A (t—s);

(v) s@t=(s—t)V(t—s).

Lemma 2.1([13]). For any positive integen, s « t,, andt, — t* asn — oo, thens oc t*.

Lemma 2.2([13,/19,/25]) Let® and® be the XNOR and XOR operations, respectively. Then
the following properties satisfied:
(z) sOs=0,sPt=tDs=—(s0)=—(tOs);

(As) ® (ML) = |X|(s @ 1);

i)
(m) 0<sadt, if sxt
(i) if s oc t, thens &t = 0 if and only ifs = ¢;
0) (5+ 1) (utv) > (sOu) + (t©v);
(vi) if s,t andw are comparative to each other, thén® ¢) < s @ w + w & ¢;
(vid) Ifsoct then((s®0) B (t®0)) < (sBt)d0=sDt;
(viii) (ms) @ (Is) =|m —Ils=(m @ )s,if s x 0,V s,t,u,v,w € Bandm,l, X € R.

Lemma 2.3([13]). Let P be a normal cone with normal constafit in real ordered positive
Hilbert space, then for arbitrary, ¢t € 13, the following properties hold:

(@) lls VL < sl VI < sl + [I£1];
(i) s @t < |ls — | < dp|s @ 1];
(i79) if s o< t, then|[s @ t|| = ||s — ¢]|.

Definition 2.3 ([19]). A comparison mapping : B — B is called

(1) a strongly comparison mapping,x t if and only if S(s) oc S(t), for all s,t € B;
(i) a p-ordered compression mapping,dfis a comparison mapping and there exigts
Ag < 1 such that

S(s) @ S(t) < As(sdt), forall s, t € B.
(171) av-ordered non-extended mapping, if there exists 0 such that
S(s)®S(t) >v(sdt), forall s,t € B.

Definition 2.4. A multi-valued mapping’ : B — CB(B) is called D-Lipschitz continuous, if
for everys,t € B, s « t, there exists a constant- such that

D(F(s),F(t)) <dp(s@t), forall s,t € B.

Definition 2.5 ([17,[19]). Let A : B — B be a strong comparison mapping amebrdered
non-extended mapping, aid : B — 2% be a multi-valued mapping. The¥ is said to be
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(1) a weak comparison mapping, if for every € M(s), s o v, and if s o ¢, then for
everyv, € M(s) andv, € M(t), vs < vy, forall s, t € B;

(i) a as-weak-non-ordinary difference mapping with respectdtoif for everys,t € B,
there existvy > 0 andv, € M (A(s)) andv, € M(A(t)) such that

(vs D ve) D aa(A(s) @ A(t)) = 0;

(737) a A-XOR-ordered different weak compression mapping with respedt ibfor every
s,t € B, there exists a constant> 0 andv, € M (A(s)), v, € M(A(t)) such that

AMvs @) > sDt;

(iv) a(aa, A)-XOR-weak-ANODD multi-valued mappingif is a «4-weak-non-ordinary
difference mapping with respect tb and \-XOR-ordered different weak compression
mapping with respect td, and[A & AM|(B) = B, for A, 3,a > 0.

Definition 2.6. Let A : B — B be a strongly comparison ang-ordered non-extended map-
ping. LetM : B — 28 be a(a4, \)-XOR-weak-ANODD multi-valued mapping. The resolvent
operator 7y}, : B — B associated withd and M is defined by

(2.1) Tit(s) = [A® AM] ' (s),Vs € B,
where) > 0 is a constant.

Lemma 2.4. ([6]) Let A : B — B be a strongly comparison;-ordered non-extended mapping
and M : B — 25 be aa4-weak-non-ordinary difference multi-valued mapping with respect to
A with A\a4 # 1. Then the resolvent operatd{}M : B — Bis well-defined and single-valued,
forall a, A > 0.

Lemma 2.5. ([6]) Let M : B — 25 be a(ay, \)-XOR-weak-ANODD multi-valued mapping
with respect tQ7;}M. Let A : B — B be a comparison ang-ordered non-extended mapping
with respect tQ7{}M, for n > 1 and a4 > p. Then the resolvent operat(ﬂfM IS comparison
and the following condition holds:

T (s) @ T (t) < —

————(s@t), foralls,tebB.
(/\CVA@M)( ) f

3. EXISTENCE RESULT FOR NSMOVI| PROBLEM AND | TERATIVE ALGORITHMS

Fori = 1,2, let B; be the real ordered positive Hilbert spaces ahte the normal cones with
normal constantsp,. Let A;, fi,g; : B; — B, andT; : By x B, — B; be the single-valued
mappings. LetF; : B; — 25 be a multi-valued mapping antl; : B, x B, — 2% be a
(ca, A)-XOR-weak-ANODD multi-valued mapping. We propose the following problem:

For eachw; > 0, find (s,t) € By x By, fory € Fi(s), z € F»(t) such that
wp € Tl(‘s - 91(5)72) D lel(fl(S)7t)v

(3.1)
wy € T(y,t® ga(t)) + paMa(s, fat)).

We call this problem as nonlinear system of mixed ordered variational inclusions involving
XOR operation (in short, NSMOVI).

By applying the resolvent operator method, we establish an equivalence result for NSMOVI
(3.7) and a nonlinear equations.
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Lemma 3.1. Let (s,t) € By x By, y € Fi(s), z € F5(t). Then(s,t,y, z) is a solution of
NSMOVI [3.1) if and only ifs, ¢, y, z) satisfies the following relations:

1) @ Tl (A1002)(8) € 32 [ @ Ta(s = a(5). 2)] ) =
(3.2)

10 Ty (A20£)(1) @ 2 [y = To(y,t @ g2())]) = 0.
Proof. The proof is a direct consequence of the resolvent ope(@ﬁg; defined in Definition
2.6.1

Now, we construct the iterative algorithms based on Lerima 3.1 to find the approximate
solutions of NSMOVI[(3.1L).

Iterative Algorithm 3.1. Fori = 1,2, let f;,g; : B; — B; andT; : B; x By — B; be the
single-valued mappings. Lét : B; — 25 be a multi-valued mapping and; : B; x By — 25
be a(a4, A\)-XOR-weak-ANODD multi-valued mapping.

Choose(sg, tg) € By x By and choosey, € Fi(sg) andz, € Fy(ty). Lets,.; «x s, and
tn+1 X tn

Step 1. Let
filsna) = (1= an = B,) fals) + anT o (A102)(50)
A
(3.3) o=t [w1 ® T (s, — g1(sn), Zn>:|)7
P1
foltnr) = (1= = B)fata) + an Ty, (A202) (1)
A
(3.4) ®° w2 = Tolyst © 92(1a))] ).
2
whereq,, and3,, are non-negative constants such that «,, + 3,, < 1 andlimsup a,, < 1.
n>0
Step 2. Choosg, 1 € Fi(sp41) andz, 1 € Fy(t,41) such that
(35) yn—l—l@yn S (1+ 1+n) 1) Dl Fl Sn—l—l F( ))7
(3.6) i1 @2 < (L4 (14 0)7Y) Da(Faltus), Falta),

whereD,(., .) are the Hausdorff metrics ofi B(;).

Step 3. 15,11, tht1, Ynt1 @ndz, 4 satisfiying[(3.8) and (3]4) to a sufficient degree of accuracy,
stop; otherwise, set = n + 1 and return to step 2.

Iterative Algorithm 3.2. Choose(sy, ty) € By x By and choose, € Fi(sg) andty € Fi(t).
Lets, 1 o s, andt, 1 x t,.

Step 1. Let
filsna) = (1= a=B)fi(sa) + a5y, ((Ar0f)(50)
A1
(3.7) @pl (w1 ® T (s — 91(sn), zn)}),
foltars) = (1= a=B)faltn) + 0Ty, (A20f2) (1)
(3.9) 922 = Taln, tn gg<tn>>]),
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wherea and 3 are non-negative constants such that o + 5 < 1.

Step 2. Choosg, 1 € Fi(sp41) andz, 1 € Fy(t,41) such that

(3.9) Yni1 @ yn < (14+ (1+n)"") Di(Fi(sns), Fisn),
(3.10) 21 @2 < (14 (14 n0)7Y) Da(Fa(tng), Fa(tn)),
whereD;(., .) are the Hausdorff metric o6'B(;).

Step 3. Ifs,, 41, tnt1, Ynt1 andz,,; satisfying[(3.J7) and (3]8) to a sufficient degree of accuracy,
stop; otherwise, set = n + 1 and return to step 2.

Iterative Algorithm 3.3. Choose(s, ty) € By x By and choosey, € Fi(sg) andzy € Fy(to)
and lets, .1 < S,, thi1 X ty, Yni1 X Yp @ANA 2,11 X 2.

Step 1. Let
filsnn) = (1=a)fi(sn) + T o ((Alofl)(sn> & 2—1 [1
(3.11) BT ($n — 91(Sn), zn)}),
foltnsr) = (1= a)falta) + a2, (20fo) (k) @

(3.12) T3 (Yn, tn © gz(tn))D,

wherea is non-negative constants such that o < 1.

X

P2 [wz

Step 2. Choosg, 1 € Fi(sp11) andz, 1 € Fy(t,,1) such that

(3.13) Ynt1 @y < (14 (1 +7)7Y) Di(Fi(sn41), Fi(sn)),
(3.14) Zn1 @z < (14 (14 n)7") Da(Fa(tnga), Fa(tn)),
whereD;(.,.) are the Hausdorff metric o6’ B(1;).

Step 3. Ifs,41,thi1, yne1 @and z,; satisfying [(3.111) and (3.12) to a sufficient degree of accu-
racy, stop; otherwise, set=n + 1 and return to step 2.

4. MAIN RESULTS

In this section, we able to discuss the existence and convergence analysis of the proposed
algorithms for NSMOVI [(3.]L).

Theorem4.1.Fori: = 1,2, let A;, f;, 9; : B; — B; andT; : B; x B, — B; be the single-valued
mappings such that; are comparison and 4,-ordered copmression mappingsare compar-
ison, \;,-ordered copmression ang-ordered non-extended mappingsare comparison and

Mg, -ordered copmression mappings,are comparison and ordered copmression mappings with
respect to first and second arguments with constantand\’., respectively. Lef; : B, — 25

be the comparison andl,, -ordered Lipschitz type continuous multi-valued mappings. Suppose
M; : By x By — 2Biis (aa,, \;)-XOR-weak-ANODD multi-valued mapping with respectifo
and f;, and D-Lipschitz type continuous with constanis. In addition, ifA;, f;, g;, F;, M; and
ijMi(.,) are compared to each other, and for all > 0, the following conditions are satisfied:

(43) pvamn (pda s ©MAL (L4 Ag)) < | pi0p&s (s, © )viNy,dr, |

(42) 5p2V1,L62 (pQ)\A2)\f2 D )‘2)‘T2(1 D )‘gz)) < |:p25P1£2<)\2aA2 D M2)V2)‘/T15F2:| )
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and
(4.3) j)\l M (s (p) D j A1, M (y,.) (p), < &(say),
(4.4) j,\2 Ma(.,t) (p) ® «7)\2 Mo (p) < S(tdw).

Then, the NSMOM3.1|) admits a solutior{s, t) € B; x Bs. Moreover,s,, — s andt,, — t, as
n — oo, where{s, } and{t,} are the sequences defined in iterative Algorithn 3.1.

Proof. By using Algorithn{ 3.1, Lemma 2.2 and Leminal2.5, we have

filsnen) @ filsn) = [(1=an = B,)filsn) + i o ((A10f1) (50)
A1

2 (@ @ Tilsn —g(sn) 2) )| @ [(1 = = B0 (500

A
03 v ((A10f1)(8n—1) ® = (w1 ® Ti (s

P1
~g(s-1),701)) ) |
(1= = B,) (fi(sn) @ fi(sn-1))

At
T, [JilMl ((Alo F)(50) @ > 2L (wy © To(sn
—g(sa)s %)) ) & Sty (A1) (50m1)

@z—i(wl & Ti(sp—1 — g(Sn-1), Zn—l)))}

(1= A (50 @ su1) + | (S, oy ((A10S1)(50)
At
P1

b—
((Alofl)(sn_1) &) ﬁ (w1 ®T1(8n-1 — g(Sn-1); 2n-1)) ))

P1

IN

IA

(w1 @ T1(5n — 9(5n), 2n)) ) D J;lll,Ml(.,tn)

A
(‘];11 Mi(t )<(A10f1)(8n—1) ® p—l (wl ® T (5p-1

1

~g(sn-1):201)) ) @ Ty (A10£)(50-1)
@2—1 <w1 ® T (sp—1 — 9(Sn-1), Zn—l))))]

(1 = an) s, (Sn @ Sp_1) + o [@1 (((Alofl)(sn)

A1
@pl (w1 ® T1(Sn — g(sn), zn))) D ((A10f1)(8n71)

&2 (61 6 Tt — g(sur).200) ) )

P1
+&5(tn B tn1)

IN
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< (1= 0an)(8n @ sp1) + @01 [(A10f1>(3n) ® (Ar10f1)(5n-1)

A
&= (Ti(s0 = 91(50)s 20) © Ti(5n-1 = 91 (501, 201))|
P1
(4.5) +€2(tn D tn_l),
where
Hq
O=————.
! ()\105,41 S ,ul)
Now,

T1<Sn - gl(sn)a Zn) S¥ Tl(sn—l - gl(sn—1)7 Zn—l)

< Ti(sn— g1(sn): 2n) @ T1(sn-1 — 91(Sn-1), 2n)
+T1(sn-1 = 91(8n-1), 2n) © T1(8n-1 — g1(Sn-1), 2n-1)
< 0y (50 = 91(50) @ (501 = 91(50-1))) + X5y (20 @ 20m1)
< g [(sn B 5n1) + Agy (S0 @ sn_l)}
A, (1 + (14 n)*l)(SFQ (th ©tn 1)
< Ap (1 + (1 + n>_1)5Fg(tn D©tn1)

+<)‘Tl(1 + Agl)) (Sn S Sn—l),

Tl (Sn - gl(sn)a Zn) S Tl (Sn—l - gl(sn—l)a Zn—l)
< (A (1 A00)) (50 @ 501) + g, (14 (14 0) ™) O (b ).
Eq. (4.5) becomes as

Ji(8p41) @ fi(sn) < (11— O‘n))‘h(sn D Sp-1) + 0,01 <)‘A1)‘f1(5n D Sp-1)
A1

@p_()‘Tl(l + )\91))(8” D® 5p-1)

+<an52XTl (1 T (1 n)*1>5F2>) (tn @ o)
A

P1

= [ = A + @01 (A ds @ 20 (14 2g)) (50 @ 5001)

(4.6) +<an§2A’Tl (1 +(1+ n)_1>5p2>> (tn © tn_l)] .
Eq. (4.6) becomes as

1 A
Sp+1 @ Sn < o [(1 —ap)Ap + 0,04 (/\A1)‘f1 b p_l(/\T1<1 + /\91))(Sn ® Sn-1)
1 1

Jr(ozngng1 (1 +(1+ n)—1>5F2>> (t, @ tn_l)} .
By definition of normal cone, we have
(M @ 24 0 (14 4) s = 50

1

)\f15P1 + 5P1@1
1241 " 121

||3n+1_5n|| < [(1_0%)

AJMAA Vol. 18(2021), No. 1, Art. 21, 15 pp. AIMAA
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Ag,0
+%£2VT_1F2<1 + (14 n) ) [ = o
1

< a1~ 5Pf1 (Aads %(Aﬂu #2500 lse = s
(4.7) an%@ +(1+ n)’1> [t — toa]-

Similarly, we have
foltni) @ falta) = (1= an = B, falta) + anTiiypy, ((A20f2) (1)

922 (28 Tagnota @ (1)) )] @ [(1 = 0 = )

f2(tn—1) + O‘nj,\2 Mo (Sn—1, ((A20f2)( ) © &

P2
(w2 @ To(Yn—1,tn1 ® gz(tn—l)))ﬂ

S (1 - an))‘fz (tn @ tn—l) + Oy [@2 </\A2)‘f2 (tn @ tn—l)
Ao
2 (13m0 © 92(40)) & Talynr, bt © 02ltn))) )|
(48) +05n€1(8n ¥ 5n71)>
where
25
Oy = — =
2 (AQO{Az S ,u2)

Now,

To(Yn,tn @ 92(tn)) ® To(Yn-1,tn-1® go(tn_1))
= T2<ynat @92( ))@TQ(Z%M n— 1@92(tn l))
+T5(Yny b1 @ g2(tn-1)) ® To(Yn-1,tn—1 D g2(tn-1))

< An [(tn D g2(tn)) & (L1 ® gz(tn—l))}
+ A7, (1 +(1+ n)71>5F1(5n D Sp_1)
<

Ay (10 Agy) (b ® ) + Xy (14 (14 0) ™) 0, (50 ® 501).

From (4.8), we have
foltng1) @ foltn) < (11— an))‘fg (th ® tn1) + @nO2 </\A2>‘f2
A
92t (n(1e As)) )t © 1)

Ny, O, (1 F(1 n)-1> (Sn @ Sn_1)

IA

[(1 — )\, + an@2<)\A2)\f2 ® ,/0\_2()%(1 = /\gz))ﬂ (tn ® tn_1)

€ Ny (1 (14 1) ™) (50 © 5001)
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By definition, we have

thrl EB tn S

Faltnsn) © filt)|
< (- a)t2 + 222 (0, © 22 0n (10 4) ) (@t

+O{ 51)\{1—‘2 5F1

Vo

By definition of normal cone, we have

1
vy

(1 +Q +n)_1>(sn ® 5n_1).

(51:)2 )\f2 + an@2(5p2

It =t < (1 - ) (Mo
A2

22 (1@ X)) )| lln 0]

tay, 5P2£1)‘/T25F1

Vg

_ [1 - an(l _ Oadp, (AAQAE ® 2—2(@(1 @ )\92))>>] [t — toall

Vg

Ty, 5P2§1)‘£F25F1

Va

Vg Vo

(1 + (1+ n)_1> (S B Sn_1)

(4.9) (1 (14 n)*l) 150 — Sn_]l-
From Eq. [(4.F) and Eq[ (4.9), we have
s = sall + ltwsr =t < |1 = (1=

. 5P2£1)\/T’25F1

Vg

+1—an(1-

5p,0;

V1

A
<)‘A1)‘f1 S _1(/\T1<1 + )‘91)))
P1

(1 +(1+ n)*l))} [E |

(5P2@2 )\2 (/\T2(1 ® )\92))>

Vo p_2
_ 5P1 §2>‘,T1 5F2

CLTSCRSY) PR
< (1 — Ozn(l - Qn))Hsn—f—l - SnH
0 = (1= D) s — ol

(AAQAfQ ®

where

Q= [513;161 (Ads @ %(An(l ) - W@ + (147
and

Q, = [51’;2@2 (M @ 2—2(@(1  A))) — @ (1+@+m)]
Now,

snar = sall + s = tall < (1= (1= A0) (llsn = suill + 1tn = tasl}).

< (1=l =82)(lIsw = sutll + lltn = tuall),
(4.10)
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whereA,, = max{Q,, (2, } anda = limsup,,»; o, < 1. If we setA = max{Q, '}, where

. '5131@1 A 5P2£1)‘,TQ(SF1-
Q= 2 (>‘A1)‘f1 S p_l(/\Tl(l + /\91))> - Vo ]
and
" '5]32@2 )\2 5P1€2>‘/T15F2-
0 = L, <)‘A2/\f2 S p_z()‘T2(1 S /\92))> - Vl .

It follows thatA,, — A asn — oo. From conditions (4]1) andl (4.2) thatc A < 1. Therefore,
by (4.19) and) < «a,, + 3, < 1 implies that{s, } and{t, } are Cauchy sequences. Thus there
existss, t € B such that,, — s andt,, — t, asn — oco.

From (3.5) and[(3]6), we have

Yni1 Oy < (14 (1+n)"") Di(Fi(snta), Fi(sn))
< (T+@+n)7") 0k (Sur1 ® 50)

Zn+1 ) Zn S (1 -+ (1 -+ n)fl) DQ(FQ(tn+1), Fg(tn))
< (T4 (1+n)") gt S tn).

By the definition of normal cone, we have
(4.11) 191 = 9all < 6p (14 (14 2)7) G [l5a1 — s
(412) “Zn—l—l - Zn” < 5P2 (1 + (1 + n)_l) 6F2||tn+1 - tn”'

It follows from (4.11) and|(4.12) th&ty,,} and{z,} are also Cauchy sequences. Therefore,
there existy € B; andz € B, such thaty,, — y andz, — z, asn — oco. Next, we show that

yn — Yy € Fi(s) andz, — z € Fy(t), asn — oc.
Furthermore,

d(y, Fi(s)) inf{[ly —t[| : t € Fi(s)}
1y = ynll + d(yn, Fi(s))
1y = yull + d(Fi(sn), Fi(s))
1Y = Ynll + F, (50 © 5)

|y = Ynll + 9r 6P [|5n — 5| = 0, asn — oo.

VAN VAN VANVAN

SinceF;(s) is closed, we have € Fi(s). Similarly, we can show that € Fy(¢). Finally apply
the continuity,s, ¢, y andz satisfy the following relations:

M$;%W@%mm®@ﬁM@Mww®@w

P1
fa(t)

which implies that

ﬁ@@ﬁmm@m%w>

- JAAZMQ(S,.) {(A20f2)(t) ® ;\—z [wa & To(y,t — QQ(S))]:| ,

@ﬁWﬁﬂW—m®&ﬂ _

P1

h@®ﬁwwkmmw@%M®Mm—qu=0

Therefore(s, t) are solution of NSMOVI[(3]1)x
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Theorem 4.2.Let A, f;,9; - B, — B, andT; : B; x By — B; be the single-valued map-
pings such thatl; are comparison and 4,-ordered copmression mapping$.are comparison,
Ar,-ordered copmression andg-ordered non-extended mappings,are comparison and,, -
ordered copmression mappings,are comparison and ordered copmression mappings with re-
spect to first and second arguments with constamtsind A7, respectively. LeF; : B; — 25
be the comparison andl-, -ordered Lipschitz type continuous multi-valued mappings. Suppose
M; : By x By — 25 are (au,, \;)-XOR-weak-ANODD multi-valued mappings with respect to
A; and f;, , and D-Lipschitz type continuous with constangs. In addition, if A;, f;, g;, F;, M;
and jiji(_’.) are compared to each other, and for al}f > 0, the following conditions are

p10p, &1 (Ma, & M1)V1XTQ5F1} : {

min

satisfied:
1},
Vaolty Py

L
1)
Pa0p € (Aacra, © Mz)V2/\/T15F2] i {%7 1}7

(4'13b)1)‘141)\f1 D >‘1)‘T1(1 + Agl)) < |:

(4141 Ap, ® Modr, (18 0,) < |

Vi
and
(4.15) jAl M (s ( ) & j)\l M (y (p) < &i(say),
(4.16) T @ jA%Mﬂ_,w)(p) < SHtdw).

Then, the NSMOM[3.1) admlts a solutior{s, t) € B, x B,. Moreover,s, — s andt, — t, as
n — oo, where{s, } and {t,} are the sequences defined in iterative Algorifhn 3.2.

Proof. The proof is same as Theor¢m]4.1 except Algorithm 3.2 is applied ingead.

Theorem 4.3.Let A, f;,9; : B, — B, andT; : By x By — B; be the single-valued map-
pings such thatl; are comparison and 4,-ordered copmression mapping$.are comparison,
Ar,-ordered copmression ang-ordered non-extended mappings,are comparison and,,-
ordered copmression mappings,are comparison and ordered copmression mappings with re-
spect to first and second arguments with constantsand X7, respectively. LeF; : B; — 2B
be the comparison andl- -ordered Lipschitz type continuous multi-valued mappings. Suppose
M; : By x By — 2Bi are (a4, \;)-XOR-weak-ANODD multi-valued mapping with respect to
A; and f;, , and D-Lipschitz type continuous with constangs. In addition, if A;, f;, g, F;, M;
and jj@_‘jMi(_") are compared to each other, and for alf > 0, the following conditions are

p10p, &1 (M, & M1)V1XT25F1} : {

min

satisfied:
1},
Vo by Py

1
5
5p,E5(A A 6 1
P20 P §a(Nacva, © o)V Fg]min{é—,l},

(4'1-(b’1)‘141)‘f1 D )‘1)‘T1(1 + )‘91)) < |:

(4181 0p, @ Modr, (18 0,) < |

Vips
and
(4.19) jAl Mi(s ( )69«7,\1 Mi(y (p) < &i(sdy),
(4.20) Tt rnn(P) @ JA2,M2(.,w>(p> < Ltdw).

Then, the NSMOM[3.1) admlts a solutior(s, t) € B; x B,. Moreover,s,, — s andt,, — t, as
n — oo, where{s, } and {t,} are the sequences defined in iterative Algorifhm 3.3.

Proof. The proof is same as Theoréml4.1 except Algorithm 3.3 is applied ingead.

The following numerical example gives the guarantee that all the proposed conditions of
Theorenmi 4.1l are satisfied.
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Example 4.1.For eachi € {1,2},letB; = R,U{0} andA4;, f;, g; : B; — B;andF; : B; — 25
be the mappings defined by

0

—ZSZ' andFi(Si) = ——S; W S; € BZ

Suppose that the mappin@s: B, x B, — B; and are defined by

Si

1+ 3

Ti(s1,52) = 243 V (s1,52) € By x By,
and the mappings/; : B, x By — 25 are defined by
Mi(sl,Sg) = {%}, Y (Sl,SQ) € Bl X BQ.
Now,
fi(s) @ fi(t) = (ﬂ o ﬁ) < 3(3. o)
(2 (2 (2 (2 52 57/ — 52 (2 1)
and
Si ti 1 1
— = —(s. N> (g, )
Jilsi) @ filli) = (52 52') 5 (51 @ k) 2 (s @),

i.e., f; are 2-ordered compression and-ordered non-extended appings. In the similar way, it
is easy to check that are m-ordered compression mappings;, are g-ordered compression
mappings and-; are g-ordered compression mappings,ordered copmression mappings with

respect to first and second arguments with const@ﬁgsand 1221’ , respectively.

In addition, it is easy to verify that/; are %-Weak-non-ordlnary-difference mappings with
respect tof; and \;-XOR-ordered different weak compression mapping with respett tehere
Ai > %2 For )\ > 22 [A; + N\ M;)(B;) = B;, which shows thaf/; are (3%, A;)-XOR-weak-
ANODD multi-valued mappings with respect4pand f;, where), > 22. Hence, the resolvent
operatorsj;:jMi : B, — B; associated wittl; and M; are of the form:

Sl = = (s s € B,
T (5:) = (2ok) BASTIEES Y WALRA
15 51
It is clear that the resolvent operators defined above are single-valued and comparisons.
Now,

751 751
A; A; - -
o Sq (ts) = ( - > i ( - >ti
jAl,Ml(S ) S5, j)\z,Ml( ) 1042 D 15/\i i D 1042 P 15)‘1‘

N1 @ 150/ T
5i 55
< (s @), where), > >,
i 7
Hence, the resolvent operato:f;\“M are —-Llpschltz type continuous mappings. Hence, all
the proposed conditions of Theor-4 1 are fulfilled.

_ 2 _ 1 2 1 1 _ 2
Remark 4.1. We choose)\f =S, Vi = 55 A = s M = 5 OF = 5, AT = oo
Ay o=t an, =g, N =2, = 18,0, = 2,6 =Ti,w; =0, p; = 104i andN = 1, the

condltlons and [4.2) of Theore@ 1 are satisfied.

Remark 4.2. We remark that the generalizations of the iterative method presented in this paper
need further research affords and the technique is helpful to solve the systeranétional
inclusions.
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5. CONCLUSION

In this article, we introduced and analyzed an NSMOVI involving XOR operation and proved
the existence of the solution to our main problem. We constructed the iterative algorithms
based on the fixed point formulation with XOR operation and discussed the convergence of
the iterative sequences generated by the proposed algorithms which suggested that algorithms
converge to a solution of the proposed problem. Finally, we constructed a numerical example
to show that all conditions are fulfilled for our main result in this paper. The obtained results in
this article are an important and significant generalization to recent known results in nonlinear
analysis and establish results that can be extended Banach spaces and other higher dimensional
spaces. Note that it needs further research on the forward as well as a backward splitting method
based on the inertial technique for solving ordered inclusion problems with XOR operation
technique and also it needs to develop the algorithms to solve the image deblurring and image
recovery problems by using the Tseng method and viscosity method in real ordered Hilbert
spaces.
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