
The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 4, Issue 1, Article 12, pp. 1-10, 2007

A NEW STEP SIZE RULE IN NOOR’S METHOD FOR SOLVING GENERAL
VARIATIONAL INEQUALITIES

ABDELLAH BNOUHACHEM

Received 24 January, 2006; accepted 28 June, 2006; published 5 April, 2007.

SCHOOL OFMANAGEMENT SCIENCE AND ENGINEERING, NANJING UNIVERSITY, NANJING, 210093, P.R.
CHINA .

babedallah@yahoo.com
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2 ABDELLAH BNOUHACHEM

1. I NTRODUCTION

Let H be a real Hilbert space, whose inner product and norm are denoted by〈·, ·〉 and‖ · ‖,
let I be the identity mapping onH, andT, g : H → H be two operators. LetK be a nonempty
closed convex subset ofH. We consider the problem of findingu∗ ∈ H such thatg(u∗) ∈ K
and

(1.1) 〈T (u∗), g(v)− g(u∗)〉 ≥ 0, ∀g(v) ∈ K.

Problem (1.1) is called the general variational inequality, which first introduced and studied
by Noor [11] in 1988. For the applications, formulation and numerical methods of general
variational inequalities (1.1), see {[1], [5], [12]– [16], [19]}.

If g ≡ I, then the problem (1.1) is equivalent to findingu∗ ∈ K such that

(1.2) 〈T (u∗), v − u∗〉 ≥ 0, ∀v ∈ K,

which is the classical variational inequality problem.
There are many theoretical results on the existence of solutions to variational inequalities.

In essence, there are two general approaches to attack the existence problem. The first is a
constructive approach in which, one assumes appropriate condition and proposes an algorithm
that actually produces a solution. While, the second is an analytical approach in which one
relies on an equivalent reformulation of the variational mathematical problem (such as a fixed-
point problem, a constrained or unconstrained optimization problem).
We now have a variety of techniques to suggest and analyze various iterative algorithms for
solving variational inequalities. The fixed-point theory has played an important role in the
development of various algorithms for solving variational inequalities. The basic idea is very
simple. Using the projection operator technique, one usually establishes an equivalence between
the variational inequalities and the fixed-point problem. This alternative equivalent formulation
was used by Lions and Stampacchia [10] to study the existence of a solution of the variational
inequalities.

A well known projection method is the extragradient method of Korpelevich [9], which
makes two projections on a closed convex set at each iteration, the distance between the it-
erative point and the solution set monotonically converges to zero. It is well known that the
convergence of this method requires that the operator must be monotone and Lipschitz contin-
uous. When the operator is not Lipschitz continuous or when the Lipschitz continuous is not
known, the extragradient method and its variant forms require an Armijo-like line search proce-
dure to compute the step size with a new projection need for each trial, which leads to expansive
computation. To overcome these difficulties, several modified projection and extragradient-type
methods have been suggested and developed for solving variational inequality problems, see
{[3]–[8], [11]–[17]}. Recently, Noor [13, 14] proposed some new methods for solving gen-
eral variational, the convergence of these methods only requires the pseudomonotonicity of the
operator, which is weaker condition than monotonicity.

Inspired and motivated by the results of Noor [13], we propose a new method for solving
general variational inequalities, by using a new step size.
Throughout this paper, we make following assumptions.

Assumptions:
• H is finite dimension space.
• g is homeomorphism onH i.e.,g is bijective, continuous andg−1 is continuous.
• T is continuous and g-pseudomonotone operator onH i.e.,

〈T (u), g(u′)− g(u)〉 ≥ 0 ⇒ 〈T (u′), g(u′)− g(u)〉 ≥ 0 ∀u′, u ∈ H.
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• The solution set of problem (1.1) denoted byS∗, is nonempty.

2. PRELIMINARIES

We summarize some preliminary results which are useful in the following analysis.

Lemma 2.1. For a givenu ∈ K, z ∈ H satisfy the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K

holds if and only ifu = PK(z).

It follows from Lemma 2.1 that

(2.1) 〈z − PK(z), PK(z)− v〉 ≥ 0, ∀z ∈ H, v ∈ K.

It follows that

(2.2) ‖PK(z)− v‖ ≤ ‖z − v‖, ∀z ∈ H, v ∈ K,

It is well-known that the projection operatorPK is nonexpansive, that is,

(2.3) ‖PK(u)− PK(v)‖ ≤ ‖u− v‖, ∀u, v ∈ H.

Lemma 2.2. u∗ ∈ H is solution of Problem(1.1) if and only ifu∗ ∈ H satisfies the relation:

(2.4) g(u∗) = PK [g(u∗)− ρT (u∗)],

From Lemma 2.2, it is clear thatu is solution of (1.1) if and only ifu is a zero point of the
function

r(u, ρ) := g(u)− PK [g(u)− ρT (u)].

It has been shown [1] that‖r(u, ρ)‖ is a non-decreasing function with respect toρ .

Lemma 2.3. For all u ∈ H andρ′ > ρ > 0, it holds that

(2.5) ‖r(u, ρ′)‖ ≥ ‖r(u, ρ)‖.

The fixed-point formulation (2.4) has been used in [13] and [1] to suggest and analyze the
following algorithms for solving problem (1.1).

Algorithm 2.1. [13]
For a givenu0 ∈ H, compute the approximate solutionuk+1 by the iterative schemes.
Predictor step.

g(wk) = PK [g(uk)− ρkT (uk)],

whereρk satisfies

ρn〈T (uk)− T (g−1(PK [g(uk)− ρkT (uk)])), r(uk, ρk)〉 ≤ δ‖r(uk, ρk)‖2, δ ∈ (0, 1).

Corrector step.
g(uk+1) = PK [g(uk)− α

′

kd(uk)],

where
d(uk, ρk) = r(uk, ρk)− ρkT (uk) + ρkT (wk),

and

α
′

k =
(1− δ)‖r(uk, ρk)‖2

‖d(uk, ρk)‖2

is the corrector step size.

AJMAA, Vol. 4, No. 1, Art. 12, pp. 1-10, 2007 AJMAA

http://ajmaa.org
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Algorithm 2.2. [1]
Step 0. Givenε > 0, γ ∈ [1, 2), µ ∈ (0, 1), ρ > 0, δ ∈ (0, 1), δ0 ∈ (0, 1) andu0 ∈ H, set

k = 0.
Step 1. Setρk = ρ. If ‖r(uk, ρ)‖ < ε, then stop; otherwise, find the smallest no-negative

integermk, such thatρk = ρµmk satisfying

‖ρk(T (uk)− T (wk))‖ ≤ δ‖r(uk, ρk)‖,
where

wk = g−1(PK [g(uk)− ρkT (uk)]).

Step 2. Compute
d(uk, ρk) := r(uk, ρk)− ρkT (uk) + ρkT (wk),

φ(uk, ρk) := ‖r(uk, ρk)‖2 − ρk〈r(uk, ρk), T (uk)− T (wk)〉
and the step size

α
′′

k =
φ(uk, ρk)

‖d(uk, ρk)‖2
.

Step 3. Get the next iterate

g(uk+1) = PK [g(uk)− γα
′′

kd(uk, ρk)].

Step 4. If
‖ρk(T (uk)− T (wk))‖ ≤ δ0‖r(uk, ρk)‖,

then setρ = ρk

µ
, else setρ = ρk. Setk := k + 1, and go to Step 1.

3. BASIC RESULTS

In this Section, we describe our method and we prove some basic properties, which will be
used to establish the sufficient and necessary conditions for the convergence of the proposed
method. We propose the following algorithm for solving problem (1.1).

Algorithm 3.1. Step 0. Givenε > 0, γ ∈ [1, 2), µ ∈ (0, 1), ρ > 0, δ ∈ (0, 1), δ0 ∈ (0, 1) and
u0 ∈ H, setk = 0.
Step 1. Setρk = ρ. If ‖r(uk, ρ)‖ < ε, then then stop; otherwise, find the smallest no-negative

integermk, such thatρk = ρµmk satisfying

(3.1) ‖ρk(T (uk)− T (wk))‖ ≤ δ‖r(uk, ρk)‖,
where

(3.2) wk = g−1(PK [uk − ρkT (uk)]).

Step 2. Set

(3.3) εk = ρk(T (wk)− T (uk)),

(3.4) d(uk, ρk) := g(uk)− g(wk) + εk,

(3.5) d1(u
k, ρk) := g(uk)− g(wk) + ρkT (wk),

(3.6) φ(uk, ρk) := 〈g(uk)− g(wk), d(uk, ρk)〉
and the step size

(3.7) α
′′′

k :=
φ(uk, ρk)

‖d1(uk, ρk)‖2
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Step 3. Get the next iterate

g(uk+1) = PK [g(uk)− γα
′′′

k d1(u
k, ρk))].

Step 4. If
‖ρk(T (uk)− T (wk))‖ ≤ δ0‖r(uk, ρk)‖,

then setρ = ρk

µ
, else setρ = ρk. Setk := k + 1, and go to Step 1.

Remark 3.1. (3.1) implies that

(3.8) |〈g(uk)− g(wk), εk〉| ≤ δ‖r(uk, ρk)‖2, 0 < δ < 1.

The next lemma shows thatαk andφ(uk, ρk) are lower bounded away from zero.

Lemma 3.1. For givenuk ∈ H : g(uk) ∈ K andρk > 0, let wk andεk satisfy to(3.2) and
(3.3), then

(3.9) φ(uk, ρk) ≥ (1− δ)‖r(uk, ρk)‖2

and

(3.10) α
′′′

k ≥ c,

wherec > 0.

Proof. It follows from (3.6) and (3.8) that

φ(uk, ρk) = ‖g(uk)− g(wk)‖2 + 〈g(uk)− g(wk), εk〉
≥ (1− δ)‖r(uk, ρk)‖2.

Sinceδ ∈ (0, 1), then we can find a constantc > 0 such that

α
′′′

k :=
ϕ(uk, ρk)

‖d1(uk, ρk)‖2
≥ c.

We can get the assertion of this lemma.

Lemma 3.2. ∀uk ∈ H : g(uk) ∈ K, u∗ ∈ S∗ andρ > 0, we have

(3.11) 〈g(uk)− g(u∗), d1(u
k, ρk)〉 ≥ φ(uk, ρk)

whered1(u
k, ρk) andφ(uk, ρk) are defined in(3.5) and(3.6) respectively.

Proof. For anyu∗ ∈ S∗ solution of problem (1.1), we have

(3.12) 〈ρkT (u∗), g(wk)− g(u∗)〉 ≥ 0, ∀ρk > 0.

Using theg-pseudomonotonicity ofT, we obtain

〈ρkT (wk), g(wk)− g(u∗)〉 ≥ 0.(3.13)

Substitutingz = g(uk)− ρkT (uk) andv = g(u∗) into (2.1), we get

〈g(uk)− ρkT (uk)− g(wk), g(wk)− g(u∗)〉 ≥ 0.(3.14)

Adding (3.13) and (3.14), we have

〈g(uk)− g(wk)− ρk[T (uk)− T (wk)], g(wk)− g(u∗)〉 ≥ 0,

which can be rewritten as

〈g(uk)− g(wk)− ρk[T (uk)− T (wk)], g(wk)− g(uk) + g(uk)− g(u∗)〉 ≥ 0,

then

〈g(uk)− g(u∗), g(uk)− g(wk) + ρkT (wk)〉 ≥ ‖g(uk)− g(wk)‖2 − ρk〈g(uk)− g(wk), T (uk)− T (wk)〉
+〈g(uk)− g(u∗), ρkT (uk)〉.
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Using theg-pseudomonotonicity ofT, the last term in the right side of the above inequality is
positive, we obtain

〈g(uk)− g(u∗), d1(u
k, ρk)〉 ≥ ‖g(uk)− g(wk)‖2 − ρk〈g(uk)− g(wk), T (uk)− T (wk)〉,

and the conclusion of Lemma 3.2 is proved.

4. GLOBAL CONVERGENCE

In this section, we prove the global convergence of the proposed method. The following
theorem plays a crucial role in the convergence of the proposed method.

Theorem 4.1. Letu∗ ∈ H be a solution of problem(1.1) and let{uk} be the sequence obtained
from Algorithm 3.1. Then{uk} is bounded and

(4.1) ‖g(uk+1)− g(u∗)‖2 ≤ ‖g(uk)− g(u∗)‖2 − γ(2− γ)c(1− δ)‖r(uk, ρk)‖2.

Proof. Let u∗ ∈ H be a solution of problem (1.1), then

‖g(uk+1)− g(u∗)‖2 ≤ ‖g(uk)− g(u∗)− γα
′′′

k d1(u
k, ρk)‖2

= ‖g(uk)− g(u∗)‖2 − 2γα
′′′

k 〈g(uk)− g(u∗), d1(u
k, ρk)〉

+γ2α
′′′

k

2‖d1(u
k, ρk)‖2

≤ ‖g(uk)− g(u∗)‖2 − 2γα
′′′

k φ(uk, ρk) + γ2α
′′′

k φ(uk, ρk)

≤ ‖g(uk)− g(u∗)‖2 − γ(2− γ)c(1− δ)‖r(uk, ρk)‖2,

where the first inequality follows from (2.2), the second inequality follows from (3.7) and (3.11),
and the third inequality follows from Lemma 3.1. Sinceγ ∈ [1, 2) andδ ∈ (0, 1) we have

‖g(uk+1)− g(u∗)‖ ≤ ‖g(uk)− g(u∗)‖ ≤ . . . ≤ ‖g(u0)− g(u∗)‖.

Sinceg is homeomorphism and from the above inequality, it is easy to verify that the sequence
uk is bounded, we can get the assertion of this theorem.

Theorem 4.2. The sequence{uk} generated by the proposed method converges to a solution
point of problem(1.1).

Proof. It follows from (4.1) that

∞∑
k=0

γ(2− γ)c(1− δ)‖r(uk, ρk)‖2 ≤ ‖g(u0)− g(u∗)‖2,

which means that

lim
k→∞

‖r(uk, ρk)‖ = 0.

By using the definition ofr(uk, ρk), we obtain

(4.2) lim
k→∞

‖g(uk)− g(wk)‖ = 0.

Sinceg is homeomorphisme, we have

lim
k→∞

‖uk − wk‖ = 0,

AJMAA, Vol. 4, No. 1, Art. 12, pp. 1-10, 2007 AJMAA

http://ajmaa.org


A NEW STEP SIZE RULE IN NOOR’ S METHOD 7

consequently{wk} is also bounded. Since‖r(uk, ρ)‖ is a non-decreasing function ofρ, it
follows fromρk ≥ ρmin that

‖r(wk, ρmin)‖ ≤ ‖r(wk, ρk)‖
= ‖g(wk)− PK [g(wk)− ρkT (wk)]‖

(using (3.2) and (3.3 )) = ‖PK [g(uk)− ρkT (wk) + εk]− PK [g(wk)− ρkT (wk)]‖
(using (2.3)) ≤ ‖g(uk)− g(wk) + εk‖
(using (3.1)) ≤ (1 + δ)‖g(uk)− g(wk)‖

and from (4.2), we get

(4.3) lim
k→∞

r(wk, ρmin) = 0.

Let ū be a cluster point of{wk} and the subsequence{wkj} converges tōu. Sincer(u, ρ) is a
continuous function ofu, it follows from (4.3) that

r(ū, ρmin) = lim
j→∞

r(wkj , ρmin) = 0.

According to Lemma 2.2,̄u is a solution point of problem (1.1). Note that inequality (4.1) is
true for all solution point of problem (1.1), hence we have

(4.4) ‖g(uk+1)− g(ū)‖ ≤ ‖g(uk)− g(ū)‖, ∀k ≥ 0.

Since{g(wkj)} → g(ū) andg(uk) − g(wk) → 0, for any givenε > 0, there is anl > 0, such
that

(4.5) ‖g(wkl)− g(ū)‖ < ε/2 and ‖g(ukl)− g(wkl)‖ < ε/2.

Therefore, for anyk ≥ kl, it follows from (4.4) and (4.5) that

‖g(uk)− g(ū)‖ ≤ ‖g(ukl)− g(ū)‖ ≤ ‖g(ukl)− g(wkl)‖+ ‖g(wkl)− g(ū)‖ < ε

and thus the sequence{g(uk)} converges tog(ū). Usingg is homeomorphism, we obtain{uk}
converges tōu.

In the following, we prove that the sequence{uk} has exactly one cluster point. Assume that
ũ is another cluster point and satisfies

δ := ‖g(ũ)− g(ū)‖ > 0.

Sinceū is a cluster point of the sequence{uk} andg is homeomorphism, there is ak0 > 0 such
that

‖g(uk0)− g(ū)‖ ≤ δ

2
.

On the other hand, sincēu ∈ S∗ and from (4.1), we have

‖g(uk)− g(ū)‖ ≤ ‖g(uk0)− g(ū)‖ for all k ≥ k0,

it follows that

‖g(uk)− g(ũ)‖ ≥ ‖g(ũ)− g(ū)‖ − ‖g(uk)− g(ū)‖ ≥ δ

2
∀k ≥ k0.

This contradicts the assumption thatũ is cluster point of{uk}, thus the sequence{uk} converges
to ū ∈ S∗.
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5. PRELIMINARY COMPUTATIONAL RESULTS

In this section, we present some numerical results for the proposed Algorithm 3.1. In order
to verify the theoretical assertions, we consider the following problems:

min h(u) =
n∑

j=1

uj log(uj/pj)(5.1a)

s.t. Au ∈ Π(5.1b)

u ≥ 0(5.1c)

whereA is ann× n matrix,Π is a simple closed convex set inRn, 0 < p ∈ Rn is a parameter
vector. It has been shown [1] that solving problem (5.1) is equivalent to find a pair(u∗, y∗),
such that

(5.2) βf(u∗) = AT y∗

and

(5.3) g(u∗) ∈ Π, (g(v)− g(u∗))T y∗ ≥ 0, ∀g(v) ∈ Π,

where
g(u) = Au.

In the test we letv′ ∈ Rn be a randomly generated vector,v′j ∈ (−0.5, 0.5), and letA =

I − 2v′v′T

v′T v′ be ann× n Householder matrix. Let

u∗j ∈ (0.1, 1.1) and y∗i ∈ (−0.5, 0.5).

Note that
fj(u

∗) = (∇h(u∗))j = log(u∗j)− log(pj) + 1.

Since
f(u∗) = AT y∗,

we set
pj = u∗j exp(1− eT

j AT y∗),

and we take
Π = {z | lB ≤ z ≤ uB}

where

(lB)i =

{
(Au∗)i if y∗i ≥ 0,
(Au∗)i + y∗i otherwise,

(uB)i =

{
(Au∗)i if y∗i < 0,
(Au∗)i + y∗i otherwise.

In this way, we have

Au∗ ∈ Π and Au∗ = PΠ[Au∗ − y∗].

In all tests we takeµ = 2/3, δ = 0.95, δ0 = 0.5 and γ = 1.95. The calculations are
started with a vectoru0, whose elements are randomly chosen in (0,1), and stopped whenever
‖r(uk, ρk)‖∞ ≤ 10−7. All codes are written in Matlab and run on a P4-2.00G note book com-
puter. We test the problem with dimensionsn = 200 andn = 300. The iteration numbers
and the computational time for Algorithm 2.1, Algorithm 2.2 and Algorithm 3.1 with different
dimensions and initial parameterρ0 are given in the Tables 5.1-5.2.
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Table 5.1: The Numerical results for problem (5.3) withn = 200

Algorithm 2.1 Algorithm 2.2 Algorithm 3.1
ρ0 No. It. CPU(Sec.) No. It. CPU(Sec.) No. It. CPU(Sec.)

105 307 4.31 42 2.59 37 2.17
104 377 4.33 32 2.25 32 1.80
102 293 2.81 25 1.32 20 1.05
1 321 2.66 17 0.51 9 0.36

10−1 280 2.25 8 0.92 3 0.75
10−3 11484 51.23 18 2.06 6 1.62

Table 5.2: The Numerical results for problem (5.3) withn = 300

Algorithm 2.1 Algorithm 2.2 Algorithm 3.1
ρ0 No. It. CPU(Sec.) No. It. CPU(Sec.) No. It. CPU(Sec.)

105 539 8.39 48 3.25 39 2.47
104 645 9.53 42 2.43 34 1.95
102 527 6.81 31 1.53 22 1.37
1 572 6.43 16 0.65 11 0.66

10−1 516 6.21 14 1.11 5 0.84
10−3 11532 120.01 16 1.66 5 1.05

The numerical results show that the new method is attractive in practice. Moreover, it demon-
strates computationally that the new method is more effective than the methods presented in [1]
and [13] in the sense that the new method needs fewer iteration and less computational time.

6. CONCLUSIONS

The presented study deals with a new method for solving general variational inequalities.
The main contribution of this paper, firstly we used a new step sizeαk, secondly we proposed
a self-adaptive strategy of adjusting the parameterρk and thirdly the numerical results showed
that our algorithm works well for problems tested. How to design other efficient methods for
solving general variational inequalities and linear general variational inequalities is worthy of
further investigations in the future.
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