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2 ABDELLAH BNOUHACHEM

1. INTRODUCTION

Let H be a real Hilbert space, whose inner product and norm are denoted bgnd|| - ||,
let I be the identity mapping oH, andT’, g : H — H be two operators. Lek” be a nonempty
closed convex subset @f. We consider the problem of finding € H such thaty(u*) € K
and

(1.1) (T'(w), g(v) —g(u)) 20,  Vg(v) € K.

Problem [(1.]1) is called the general variational inequality, which first introduced and studied
by Noor [11] in 1988. For the applications, formulation and numerical methods of general
variational inequalitieg (1]1), see {[1]./[5], [12]=[16]. [19]}.

If g = I, then the problend (1]1) is equivalent to findinge K such that

(1.2) (T(u"),v—u*) >0, Vv e K,

which is the classical variational inequality problem.

There are many theoretical results on the existence of solutions to variational inequalities.
In essence, there are two general approaches to attack the existence problem. The first is a
constructive approach in which, one assumes appropriate condition and proposes an algorithm
that actually produces a solution. While, the second is an analytical approach in which one
relies on an equivalent reformulation of the variational mathematical problem (such as a fixed-
point problem, a constrained or unconstrained optimization problem).

We now have a variety of techniques to suggest and analyze various iterative algorithms for
solving variational inequalities. The fixed-point theory has played an important role in the
development of various algorithms for solving variational inequalities. The basic idea is very
simple. Using the projection operator technique, one usually establishes an equivalence between
the variational inequalities and the fixed-point problem. This alternative equivalent formulation
was used by Lions and Stampacchial [10] to study the existence of a solution of the variational
inequalities.

A well known projection method is the extragradient method of Korpelevich [9], which
makes two projections on a closed convex set at each iteration, the distance between the it-
erative point and the solution set monotonically converges to zero. It is well known that the
convergence of this method requires that the operator must be monotone and Lipschitz contin-
uous. When the operator is not Lipschitz continuous or when the Lipschitz continuous is not
known, the extragradient method and its variant forms require an Armijo-like line search proce-
dure to compute the step size with a new projection need for each trial, which leads to expansive
computation. To overcome these difficulties, several modified projection and extragradient-type
methods have been suggested and developed for solving variational inequality problems, see
{[8]-[8], [11]-[L7]}. Recently, Noor [13,14] proposed some new methods for solving gen-
eral variational, the convergence of these methods only requires the pseudomonotonicity of the
operator, which is weaker condition than monotonicity.

Inspired and motivated by the results of Noor/[13], we propose a new method for solving
general variational inequalities, by using a new step size.

Throughout this paper, we make following assumptions.

Assumptions:

e H is finite dimension space.
e ¢ is homeomorphism o# i.e., g is bijective, continuous ang! is continuous.
e T'is continuous and g-pseudomonotone operatakare.,

(T'(u), g(u') = g(u)) 2 0= (T(v),g() —g(u)) 20 Vu',ueH.
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e The solution set of problem (1.1) denoted &Y, is nonempty.

2. PRELIMINARIES
We summarize some preliminary results which are useful in the following analysis.
Lemma 2.1. For a givenu € K, z € H satisfy the inequality
(u—z,v—u) >0, YvekK
holds if and only ifu = Pk(z).
It follows from Lemmd 2.1l that

(2.1) (z — Px(z), Px(z) —v) >0, Vze Hv e K.

It follows that

(2.2) |Px(z) —v|| < |lz—v|, VzeH, veK,

It is well-known that the projection operat®¥; is nonexpansive, that is,

(2.3) | Pk (u) — Px(v)]| < JJu—2], Yu,v € H.

Lemma 2.2. u* € H is solution of Problenfl.1)) if and only ifu* € H satisfies the relation:
(2.4) 9(u*) = Pklg(u®) — pT'(u")],

From Lemmd 2.2, it is clear thatis solution of [I1.1) if and only ifu is a zero point of the
function

r(u, p) = g(u) — Pglg(u) — pT'(u)].
It has been shown [1] thdlt:(u, p)|| is @ non-decreasing function with respecpto

Lemma 2.3. Forall w € H andp’ > p > 0, it holds that
(2.5) [l (w, ) = NI (s p)I

The fixed-point formulation| (2]4) has been used.in [13] and [1] to suggest and analyze the
following algorithms for solving problenj (1.1).

Algorithm 2.1. [13]
For a givenu’ € H, compute the approximate solutiafit! by the iterative schemes.
Predictor step.

g(w") = Pi[g(u®) — p, T (u")],

wherep, satisfies
pulT (") = T(g7 (Prlg(u®) — pe T (@), r(u*, o)) < dllr(u®, p)[1?, 6 € (0,1).

Corrector step.

9(u!™") = Pclg(u®) — ajd(u¥)],
where

d(u®, py) = r(u", p) — pp T (") + p T (w"),
and
o = A= 0)r(t p)l?
’ [ld(u, oy )12

is the corrector step size.
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Algorithm 2.2. [1]

Step 0. Given > 0,7 € [1,2), 1 € (0,1),p > 0,6 € (0,1),8 € (0,1) andu’ € H, set
k=0.

Step 1. Sep, = p. If ||r(u”, p)|| < ¢, then stop; otherwise, find the smallest no-negative
integermy, such thatp,, = pu™* satisfying

(T (") = T(w"))|] < 8llr(u®, py )l
where
wh = g7 (Pxlg(u) = pT(u"))).
Step 2. Compute
d(u®, py) == r(u”, p) — pT(W*) + p T (w"),
o(u*, pi) = |lr(u®, p)|I? = pi(r(®, pr,), T(W*) — T(w"))
and the step size
" o(u*, py)

o =
Flld(ut, o)l

Step 3. Get the next iterate

g(uF ) = Plg(u¥) — yayd(u, py)].
Step 4. If
(T (w*) = T (w"))I| < dollr(u®, py)II
then sep = ’j—f, else sep = p,.. Setk := k + 1, and go to Step 1.

3. BASIC RESULTS

In this Section, we describe our method and we prove some basic properties, which will be
used to establish the sufficient and necessary conditions for the convergence of the proposed
method. We propose the following algorithm for solving problem|(1.1).

Algorithm 3.1. Step 0. Giver > 0, € [1,2),u € (0,1),p > 0,6 € (0,1),90 € (0,1) and

u’ € H, setk = 0.

Step 1. Set,, = p. If [|r(u”, p)|| < €, then then stop; otherwise, find the smallest no-negative
integermy, such thap, = pu™* satisfying

(3.1) o (T (") = T(w™)) || < 8l|r(u®, p)l,
where
(3.2) w* = g7 (Pr[u® — pT(u")]).
Step 2. Set
(3.3) " = pp(T(w") — T(u")),
(3.4) d(u”, p) == g(u*) — g(w®) + £*,
(3.5) dy(u, py) == g(u¥) — g(w*) + p, T (w"),
(3.6) o(uf, py) = (g(u”) — g(w"), d(u*, py))
and the step size
o(u¥, pp.)
3. o)
(3:7) R PROTPNTE
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Step 3. Get the next iterate

g(ukH) = Prlg(u ) Yoy, di(u ,Pk))]-
Step 4. If
(T (w*) = T(w*)]| < dollr(u, pi)ll,
then sep = %, else sep = p,.. Setk := k + 1, and go to Step 1.
Remark 3.1. (3.1) implies that
(3.8) (g(u*) — g(w®), )| < 8llr(u®, p)I2,  0<d<1.
The next lemma shows thaf, and¢(u*, p,,) are lower bounded away from zero.
Lemma 3.1. For givenu® € H : g(u*) € K andp, > 0, letw* and&* satisfy to(3.2)) and

(3.3), then

(3.9) o(ut, py) = (1= 0)[r(u*, py)|I*
and
(3.10) a;;l > ¢,
wherec > 0.
Proof. It follows from (3.8) and[(3.8) that
o, pr) = [lgu®) — g(w")|* + (g(u*) — g(w*), ")

> (1= 8)|r(u*, p)lI*.

Sinced € (0,1), then we can find a constant> 0 such that

k
o m PP

[l (u®, pp)lI*
We can get the assertion of this lemnga.

Lemma 3.2. Vu* € H : g(u*) € K,u* € S*andp > 0, we have

(3.11) (g(u*) = g(u?), di(u", py)) > o(u", py)
whered, (u*, p,) and¢(u*, p,) are defined in(3.5)) and (3.6]) respectively.
Proof. For anyu* € S* solution of problem[(1]1), we have

(3.12) (0 T(w), g(w*) = g(u*)) >0, Vp, > 0.
Using theg-pseudomonotonicity df’, we obtain

(3.13) (o T (w"), g(w") — g( ")) = 0.
Substituting: = g(u*) — p, T(u*) andv = g(u*) into (2.), we get
(3.14) (g(u®) = pT (") — g(wk), g(w"”) —g(u)) > 0.

Adding (3.13) and[(3.14), we have
(g(u*) = g(w*) = p [T (") = T(w®)], g(w®) = g(u*)) >0,
which can be rewritten as
(g(u*) = g(w®) = py [T (u*) = T(w")], g(w*) = g(u®) + g(u*) = g(u*)) >0,

then
(g(uf) — g(u*), g(u*) — g(w*) + pT (W) > [lg(u®) — g(w")|I* = prlg(u”) — g(w"), T(u*) = T(w"))
+(g(u®) = g(u), pT(u*)).
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Using theg-pseudomonotonicity of’, the last term in the right side of the above inequality is
positive, we obtain

(g(u®) = g(u*), di(u*, py)) = llg(u®) — g(w*)|* = prlg(u®) — g(w®), T(u") — T(w")),

and the conclusion of Lemnpa 8.2 is provad.

4. GLoBAL CONVERGENCE

In this section, we prove the global convergence of the proposed method. The following
theorem plays a crucial role in the convergence of the proposed method.

Theorem 4.1. Letu* € H be a solution of problerfl.1]) and let{«"*} be the sequence obtained
from Algorithn| 3.1. Thedu*} is bounded and

4.1 g@h) = g@)))* < llg(u®) — g(w)||* = (2 = 7)e(l = 8)||r(u*, pp)]>.

Proof. Letu* € H be a solution of problenj (1].1), then

lg(@*h) = g < llg(u®) = g(u*) = yay di(u", py )|
= lg(u*) = g()|* = 2vay (g(u") = g(u"), di (u*, py)
20y (¥, )|
< lg(u) = g(u)|? = 2vay o(u", p) + 7Py, d(u, py)
< lg(u®) = g(u)IP =72 = 2)e(1 = 8)|Ir(u, o) 1%,
where the first inequality follows from (3.2), the second inequality follows fior (3.7)and (3.11),
and the third inequality follows from Lemnia 3.1. Singes [1,2) andd € (0,1) we have

lg(@*) = gl < lg(u®) — gl < ... < [lg(u®) — g(u")].

Sinceg is homeomorphism and from the above inequality, it is easy to verify that the sequence
u* is bounded, we can get the assertion of this theogem.

Theorem 4.2. The sequencéu*} generated by the proposed method converges to a solution

point of problem(1.1)).
Proof. It follows from (4.1) that
Y 2=l = o), p)IP < llg(u’) — g(u)|,

k=0

which means that

Tim [Ir(u, p,) | = 0.
By using the definition of (u*, p, ), we obtain
(4.2) Jim [lg(u*) — g(w")|| = 0.
Sinceg is homeomorphisme, we have

lim ||u* —w*|| =0,
k—oo
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consequently{w*} is also bounded. Sincgr(u*,p)| is a non-decreasing function of it
follows from p;, > ppyip that
(@, i)l < llr(w", o)
= llg(w") = Pxlg(w*) — p,T(w")]|
(using [32) and@3)) = || Pclg(u*) — p,T(w") + ] = Pclg(w®) — p T ()]

(using [23)) < [lg(u”) — g(w") + €|

(using [33)) < (1+0)[lg(u*) — g(w")|
and from [4.2), we get
(4.3) lim 7(w*, pmin) = 0

k—o0

Let u be a cluster point of w*} and the subsequenée’i} converges tai. Sincer(u, p) is a
continuous function of;, it follows from (4.3) that

r(@, pmin) = jlilgor(wkj,pmin) = 0.
According to Lemma 2]2y is a solution point of problen (I.1). Note that inequallty [4.1) is
true for all solution point of problenj (1.1), hence we have
(4.4) lg(u™) = g(@)| < llg(u*) = g(@)l, k> 0.

Since{g(w*)} — g(u) andg(u*) — g(w*) — 0, for any givens > 0, there is arl > 0, such
that

(4.5) lg(w™) —g(@)ll <e/2 and  [lg(u™) — g(w™)| <e/2.
Therefore, for any: > k;, it follows from (4.4) and[(4]5) that
lg(™) = 9@ < llg(u™) — g(@| < lg(u™) — g(w™)]| + llg(w®) — g(@)|| < e

and thus the sequenée(u*)} converges tg(u). Usingg is homeomorphism, we obtain/*}
converges ta.

In the following, we prove that the sequenia€’} has exactly one cluster point. Assume that
@ is another cluster point and satisfies

0 := |lg(a) = g(@)] > 0.

Sinceu is a cluster point of the sequenfe®} andg is homeomorphism, there iskg > 0 such
that

| S

lg(u®) = g(@)]| <
On the other hand, sineec S* and from [4.1), we have
lg(u*) — g(@)|| < [lg(ut*) — g(@)|| forall k> ko,

it follows that

lg(u*) = g(@)]] > llg(@) — g(@)]| — [lg(u*) —g(@)]| > 5 Vk > k.

N

This contradicts the assumption thids cluster point of u*}, thus the sequende/* } converges
tou € S*. 1
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5. PRELIMINARY COMPUTATIONAL RESULTS

In this section, we present some numerical results for the proposed Alg¢rithm 3.1. In order
to verify the theoretical assertions, we consider the following problems:

(5.1a) min h(u) = Zuj log(u;/pj)
(5.1b) st.  Auc H]_
(5.1¢) u>0

whereA is ann x n matrix, IT is a simple closed convex setki*, 0 < p € R" is a parameter
vector. It has been showil[1] that solving problém](5.1) is equivalent to find &paiy*),
such that

(5.2) Bf(u*) = ATy*
and
(5.3) glw) eI, (g(v) —g(u))Ty* >0, Vg(v) el
where
g(u) = Au.

In the test we let’ € R" be a randomly generated vectof, € (—0.5,0.5), and letA =
I— 2% be ann x n Householder matrix. Let

uj € (0.1,1.1) and  y € (-0.5,0.5).

Note that
fi(w”) = (Vh(u")); = log(uj) — log(p;) + 1.
Since
fu) = ATy,
we set
pj = ujexp(l e;‘»FATy*),
and we take
M={z|lgp <z<up}
where

(Iy); = (Au*); if y* >0,
B (Au*); + 5 otherwise,

(up); = (Au*); if yF <0,
BJi (Au*); +y; otherwise.
In this way, we have

Au* e 1l and  Au® = Py[Au” — y7.

In all tests we take: = 2/3, § = 0.95, 6o = 0.5 andy = 1.95. The calculations are
started with a vecton®, whose elements are randomly chosen in (0,1), and stopped whenever
|7 (u*, pi) |l < 1077, All codes are written in Matlab and run on a P4-2.00G note book com-
puter. We test the problem with dimensioms= 200 andn = 300. The iteration numbers
and the computational time for Algorithm 2.1, Algorithm]2.2 and Algorifhnj 3.1 with different
dimensions and initial parametgy are given in the Tablgs 3[1-5.2.
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Table 5.1: The Numerical results for problefm (5.3) with= 200

Algorithm|2.1 || Algorithm|2.2 || Algorithm|3.1
Po No. It. | CPU(Sec.)| No. It. | CPU(Sec.)| No. It. | CPU(Sec.)
10° 307 4.31 42 2.59 37 2.17
10* 377 4.33 32 2.25 32 1.80
10° 293 2.81 25 1.32 20 1.05

1 321 2.66 17 0.51 9 0.36

10-1 | 280 2.25 8 0.92 3 0.75

1073 | 11484| 51.23 18 2.06 6 1.62

Table 5.2: The Numerical results for problefm (5.3) with= 300

Algorithm|2.1 || Algorithm|2.2 || Algorithm|3.1
Po No. It. | CPU(Sec.) No. It. || CPU(Sec.) No. It. | CPU(Sec.)
10° 539 8.39 48 3.25 39 2.47
10* 645 9.53 42 2.43 34 1.95
102 527 6.81 31 1.53 22 1.37

1 572 6.43 16 0.65 11 0.66
1071 | 516 6.21 14 1.11 5 0.84
1073 || 11532] 120.01 | 16 1.66 5 1.05

The numerical results show that the new method is attractive in practice. Moreover, it demon-
strates computationally that the new method is more effective than the methods presented in [1]
and [13] in the sense that the new method needs fewer iteration and less computational time.

6. CONCLUSIONS

The presented study deals with a new method for solving general variational inequalities.
The main contribution of this paper, firstly we used a new stepizeecondly we proposed
a self-adaptive strategy of adjusting the paramgteand thirdly the numerical results showed
that our algorithm works well for problems tested. How to design other efficient methods for
solving general variational inequalities and linear general variational inequalities is worthy of
further investigations in the future.
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