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1. I NTRODUCTION

The method of quasilinearization [1] offers an excellent tool for obtaining approximate solu-
tions of nonlinear differential equations. This technique works fruitfully only for the problems
involving convex/concave functions and gives the sequence of approximate solutions converg-
ing monotonically and quadratically to the solution. Later after that the convexity assumption
was relaxed and the method was generalized and extended in various directions to make it ap-
plicable to a large class of problems [5, 6, 7, 8, 9]. The generalized quasilinearization method
was discussed for second order boundary value problems [11, 12, 13, 14, 15]. A quasilineariza-
tion method was presented for the periodic problem for the forced Düffing equation [2].

The Düffing equation is a well known nonlinear equation of applied science which is used
as a powerful tool to discuss some important practical phenomena, for example, periodic orbit
extraction, nonuniformity caused by an infinite domain, nonlinear mechanical oscillators, etc.
This paper consider and study the periodic problem for the forced Düffing equation to find
periodic solutions without requiring the nonlinear force function involved to be convex/concave,
and obtain a sequence of approximate solutions converging quadratically to a solution of the
problem. Moreover, this paper discusses and shows that the case where the damping part in the
forced Düffing equation vanishes is just a special case.

2. PRELIMINARIES

The periodic problem for the Düffing equation

−ψ′′(t)− kψ′(t) = λψ(t), t ∈ J = [0, π],

ψ(0) = ψ(π); ψ′(0) = ψ′(π),

has a nontrivial solution if and only if the damping part is vanishing andλ = (2m)2 (m =

1, 2, 3 · · · ). Now, defineγ =
√

k2−4λ
2

andδ = −k
2
,wherek ∈ R. Forγ 6= 2m (m = 1, 2, 3 · · · ),

andω(t) ∈ C[0, π], the unique solution of the periodic boundary value problem

−ψ′′(t)− kψ′(t)− λψ = ω(t), t ∈ J = [0, π],

(2.1) ψ(0) = ψ(π); ψ′(0) = ψ′(π),

is given by

(2.2) ψ(t) =

∫ π

0

Gλ(t, υ)ω(υ)dυ.

Here,Gλ(t, υ) is the Green’s function, whereGλ(t, υ) for λ > k2

4
, is given by

sin γπ

(γA+ 2δ) sin γπ + γ(1− eδπ)
eδ(π+υ−t) [cos γ(π − t) + A sin γ(π − t)]

× [cos γυ +B sin γυ] ,

0 ≤ υ ≤ t ≤ π,
sin γπ

(γA+ 2δ) sin γπ + γ(1− eδπ)
eδ(π−υ+t) [cos γ(π − υ) + A sin γ(π − υ)]

× [cos γt+B sin γt] ,

0 ≤ t ≤ υ ≤ π,

where

A =
eδπ [γ sin γπ − δ cos γπ] + δ

eδπ [γ cos γπ + δ sin γπ]− γ
, B =

e−δπ − cos γπ

sin γπ
.
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AndGλ(t, υ) for λ < k2

4
, is given by

sinh γπ

(γA+ 2δ) sinh γπ + γ(1− eδπ)
eδ(π+υ−t) [cosh γ(π − t) + A sinh γ(π − t)]

×[cosh γυ +B sinh γυ],

0 ≤ υ ≤ t ≤ π,

sinh γπ

(γA+ 2δ) sinh γπ + γ(1− eδπ)
eδ(π−υ+t) [cosh γ(π − υ) + A sinh γ(π − υ)]

×[cosh γt+B sinh γt],

0 ≤ t ≤ υ ≤ π,

where

A =
δ − eδπ [γ sinh γπ + δ cosh γπ]

eδπ [γ cosh γπ + δ sinh γπ]− γ
, B =

e−δπ − cosh γπ

sinh γπ
.

Whenλ = k2

4
, thenG k2

4

(t, υ) is given by

(π − t) [cosh δ(π − t) + A sinh δ(π − t)] [cosh δυ +B sinh δυ] ,

0 ≤ υ ≤ t ≤ π,

(π − υ) [cosh δ(π − υ) + A sinh δ(π − υ)] [cosh δt+B sinh δt] ,

0 ≤ t ≤ υ ≤ π,

where

A =
1− [cosh δπ + π sinh δπ]

sinh δπ + π cosh δπ
, B =

1− cosh δπ

sinh δπ
.

Note that, puttingk = 0 in the given PBVP, then the solution given above is a solution for the
special case where the damping part is vanish.

Now, consider the following nonlinear PBVP

−u′′(t)− ku′(t) = f(t, u(t)), t ∈ J = [0, π],

(2.3) u(0) = u(π); u′(0) = u′(π),

wheref : J ×R→ R is a continuous real valued function. A functionα ∈ C2[J,R] is a lower
solution of (2.3) if

−α′′(t)− kα′(t) 6 f(t, α(t)), t ∈ J,
α(0) = α(π); α′(0) = α′(π),

andβ ∈ C2[J,R] is an upper solution of (2.3) if

−β′′(t)− kβ′(t) > f(t, β(t)), t ∈ J,
β(0) = β(π); β′(0) = β′(π).

The following lemma plays a crucial role in the sequel and we sketch its proof for the sake of
completeness.

Lemma 2.1. Assume thatα, β ∈ C2[J,R] are lower and upper solutions of(2.3), respectively,
such thatα(t) 6 β(t) for everyt ∈ J . Then there exists a solutionu(t) of (2.3) such that
α(t) 6 u(t) 6 β(t) for t ∈ J .

The proof of Lemma 2.1. is very standard proof in the use of this quasilinearization method,
so the proof is omitted, for more details about the proof see [4, 12].

AJMAA, Vol. 4, No. 1, Art. x, pp. 1-7, 2007 AJMAA

http://ajmaa.org


4 RAMZI S. N. ALSAEDI

3. M AIN RESULT

Theorem 3.1.Assume that
(A1) α0, β0 ∈ C2[J,R] are lower and upper solutions of (2.3), respectively, such that

α0(t) 6 β0(t) onJ,
(A2) f ∈ C[Ω, R] is such thatfu(t, u), fuu(t, u) exist and are continuous for every(t, u) ∈ Ω,

where
Ω = {(t, u) ∈ J ×R : α0(t) 6 u(t) 6 β0(t)},

(A3) fu(t, u) < 0 for every(t, u) ∈ Ω.

Then there exists monotone non decreasing sequence{αn} which converges uniformly to a
solution of(2.3) and the convergence is quadratic.

Proof. LetF : J ×R→ R is such thatF (t, u), Fu(t, u) andFuu(t, u) are continuous onJ ×R
and

(3.1) Fuu(t, u) > 0, (t, u) ∈ J ×R.

Motivated by Eloe and Zhang [3], takeΦ(t, u) = F (t, u) − f(t, u) onJ ×R. In view of (3.1),
we see that

F (t, u) > F (t, v) + Fu(t, v)(u− v)

for u > v and therefore

(3.2) f(t, u) > f(t, v) + Fu(t, v)(u− v)− [Φ(t, u)− Φ(t, v)].

Now, consider the PBVP

−u′′(t)− ku′(t) = g(t, u;α0) = f(t, α0) + Fu(t, α0)(u− α0)

−[Φ(t, u)− Φ(t, α0)],

(3.4) u(0) = u(π); u′(0) = u′(π).

The inequality (3.2) and (A1) imply

−α′′0(t)− kα′0(t) 6 f(t, α0(t)) = g(t, α0;α0),

−β′′0(t)− kβ′0(t) > f(t, β0(t)) > f(t, α0) + Fu(t, α0)(β0 − α0)

−[Φ(t, β0)− Φ(t, α0)]

= g(t, β0;α0).

By Lemma 2.1, there exists a solutionα1 of (3.4) such thatα0(t) 6 α1(t) 6 β0(t) on J . Next,
consider the PBVP

−u′′(t)− ku′(t) = g(t, u;α1),

(3.5) u(0) = u(π); u′(0) = u′(π).

Observe that

−α′′1(t)− kα′1(t) = g(t, α1;α0)

= f(t, α0) + Fu(t, α0)(α1 − α0)− [Φ(t, α1)− Φ(t, α0)]

6 f(t, α1) = g(t, α1;α1),

−β′′0(t)− kβ′0(t) > f(t, β0(t)) > f(t, α1) + Fu(t, α1)(β0 − α1)

−[Φ(t, β0)− Φ(t, α1)]

= g(t, β0;α1),
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in view of (3.2). It follows from Lemma 2.1 that there exists a solutionα2 such thatα1(t) 6
α2(t) 6 β0(t) on J . Thus,α0(t) 6 α1(t) 6 α2(t) 6 β0(t) on J . Employing the same
arguments successively, we conclude

α0(t) 6 α1(t) 6 α2(t) · · · 6 αn(t) 6 β0(t) onJ,

where the elements of the monotone sequence{αn(t)} are the solutions of the PBVP

−u′′(t)− ku′(t) = g(t, u;αn−1) = f(t, αn−1) + Fu(t, αn−1)(u− αn−1)

−[Φ(t, u)− Φ(t, αn−1)],

u(0) = u(π); u′(0) = u′(π).

The monotonicity of the sequence{αn(t)} ensures the existence of its (pointwise) limitu.
Next we are interested to find the solutionu of (2.3), so in order to do that we will consider

the following linear PBVP

−u′′(t)− ku′(t)− k2

4
u(t) = fn(t),

(3.6) u(0) = u(π); u′(0) = u′(π),

where

fn(t) = g(t, αn(t);αn−1(t)), on t ∈ J.

The continuity of g onΩ implies that the sequence{fn} is bounded inC[J,R] and so

lim
n→∞

fn(t) = f(t, u(t)), t ∈ J.

We have mentioned in Section 2 that the PBVP (2.1) has a solution which given by (2.2). Here
(3.6) is a linear PBVP and has the termk

2

4
u(t) instead ofλu(t), because the Duffing equation

has a damping part which given byku′(t), so λ should has the valuek
2

4
in order to get the

solutionu for (2.3) in terms of the Green’s function. Here

αn(t) =

∫ π

0

G k2

4

(t, s)fn(s)ds,

is a solution of (3.6). Thus{αn(t)} is bounded inC2[J,R] and{αn(t)} ↑ u uniformly onJ .
Consequently,

u(t) =

∫ π

0

G k2

4

(t, s)f(s, u(s))ds, t ∈ J.

Henceu is a solution of (2.3).
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For quadratic convergence, we set the error aspn(t) = u(t) − αn(t). Using the mean value
theorem repeatedly, we obtain

−p′′n(t)− kp′n(t) = f(t, u(t))− g(t, αn(t);αn−1(t))

= f(t, u(t))− f(t, αn−1(t))− Fu(t, αn−1(t))[αn(t)− αn−1(t)]

+[Φ(t, αn(t))− Φ(t, αn−1(t))]

= F (t, u(t))− F (t, αn−1(t))− Fu(t, αn−1(t))[αn(t)− αn−1(t)]

+[Φ(t, αn(t))− Φ(t, u(t))]

= Fu(t, ξ)[u(t)− αn−1(t)]− Fu(t, αn−1(t))[αn(t)− αn−1(t)]

+[Φ(t, αn(t))− Φ(t, u(t))]

= [Fu(t, ξ)− Fu(t, αn−1(t))][u(t)− αn−1(t)] + Fu(t, αn−1(t))

×[u(t)− αn(t)] + [Φ(t, αn(t))− Φ(t, u(t))]

= Fuu(t, σ)[ξ − αn−1(t)][u(t)− αn−1(t)] + Fu(t, αn−1(t))

×[u(t)− αn(t)]− Φu(t, η)[u(t)− αn(t)]

where

αn−1(t) 6 ξ 6 σ 0 u(t) and αn(t) 6 η 0 u(t).

Set

hn(t) = Fu(t, αn−1(t))− Φu(t, η),

and

ln(t) = Fuu(t, σ)[ξ − αn−1(t)][u(t)− αn−1(t)]−Mp2
n−1(t),

where0 6 Fuu(t, v) 6 M, (t, v) ∈ Ω. Clearly ln(t) 6 0. SinceFu is nondecreasing and
αn−1(t) 6 η, it follows by (A3) that there existsλ < k2

4
and an integerN such thathn(t) 6 λ,

t ∈ J for n > N. thus the errorpn satisfies the PBVP

−p′′n(t)− kp′n(t)− λpn(t) = [hn(t)− λ]pn(t) +Mp2
n−1(t) + ln(t)

pn(0) = pn(π); p′n(0) = p′n(π).

This implies that

pn(t) =

∫ π

0

Gλ(t, s)
(
[hn(s)− λ]pn(s) +Mp2

n−1(s) + ln(s)
)
ds ,

which gives

pn(t) 6 M

∫ π

0

Gλ(t, s)p
2
n−1(s)ds, n > N.

Hence, there exists a constantδ > 0 such that

‖ pn ‖6 δ ‖ pn−1 ‖2, n > N,

where‖ u ‖= max{| u(t) |: t ∈ J} is the usual uniform norm onC[J,R].

Remark 3.1. One can also construct the sequence of upper solutions in such a way that it
converges to the solution of the mentioned periodic boundary value problem.
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