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ABSTRACT. For all we know theorems pertaining to sine series with coefficients from the class
vGBVS give only sufficient conditions. Therefore we define a subclasgl@BVS in order to
produce necessary and sufficient conditions for the uniform convergence and boundedness if the
coefficients of the sine series belong to this subclass; and prove two theorems of this type.
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2 L. LEINDLER

1. INTRODUCTION

Several new kinds of sequences were defined for extending classical results having monotone
coefficients. E.g., in[3] we defined the classefjuences of rest bounded variationbrief, the
class ofRBV'S, and showed that it is not comparable to the classjaaki monotone sequences
in symbol: CQMS. Utilizing this new class of sequences we generalized the classical theorem
of CHAUNDY and DLLIFFE [1]; replacing the monotone coefficients by a sequence of rest
bounded variation. Soon after thi€land ZHou [2] defined the clas&BVS. They improved
our theorem essentially usingBVSequences instead ®BVSequences. In their paper one
can read a very nice survey of the recent results proved in this theme. Very recently we (in [5])
introduced a new class of sequences, the ejdd3VS. Its definition reads as follows:

Definition 1.1. Let~ := {~,,} be a positive sequence. A null-sequence- {¢,} (¢, — 0) of
real numbers satisfying the inequalities

(1.1) Z |Ac,| < K(c)v,, (Acy = ¢y — Cpt1), m=12,...

with a positive constank’(c) is said to be a sequence gfrest bounded variation, in symbol:
c € yYRBVS.

If ¥ = candc, > 0, thenyRBVS = RBVS, and ify,, := max,<p<min, [cn] (No € N),

furthermore
2m

(1.2) > 1Ac| < K(e),,
is satisfied, we get the clas&8VS. If v := {v,, > 0} is an arbitrary sequence andsatisfies
(1.2) we get the clasgGBVS (see [6]), which is wider than any one of the clas&&¥V'S and
vRBVS.

Itis easy to see that f € RBVS then it is alsaalmost monotoniadhat is, for alln > m

cn < K(C)em,

but notifc € yRBV S orc € vyGBV S. If a sequence belongs to these classes, it may have
infinitely many zero terms, too. We emphasize that the sequesedisfying [(1.2) may have a

lot of zero terms, too; but not if (1.1), except the trivial case. It is easy to see that the condition
(1.2) gives the greatest freedom for the terms of the sequenaed~. Because of this great
generality, for sequences of these clasgR8VS andyGBVS we could give only conditions

of sufficient type (se€ [4]/16]). This was one of the reasons that we [(see [7]) introduced the
class ofmean rest bounded variatissequences, wherg is defined by a certain arithmetical
mean of the coefficients, e.g.

2m—1

1
1.3 = — .
(1.3) T m;m

Now we define a further class of sequences as follows: If inequlity (1.2) holds yyitiven
in ((I.3) then we say thatbelongs to the class of sequencesnafan group bounded variation
in symbol:c € MGBVS.

The aim of the present paper is to show that if fortgll> 0 andb := {b,} belongs to
MGBYVS, then the series

(1.4) Z b, sin nx
n=1
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is uniformly convergent if and only if

(1.5) > by —0.

n=m

We dare say that this result is a radical generalization of the classical theorem proved by
Chaundy and Jolliffe, and many others proved recently.
We shall also show that the condition
2m—1

(1.6) > by =0(1)

n=m

is necessary and sufficient that the partial sum§ of (1.4) should be uniformly bounded.

2. THEOREM
We establish the following theorem:

Theorem 2.1.If a sequencéd := {b,} of nonnegative numbers belongs to the clEESBVS,
then the condition§1.5) and (1.6), respectively, are both necessary and sufficient for the uni-
form convergence, or for the uniform boundedness of the partial sums of the@edies

3. AUXILIARY RESULTS
We shall utilize the following theorems proved in [6].

Theorem 3.1.Letvy := {v,} be a sequence of nonnegative numbers satisfying the condition
v, = o(n™'). Ifasequencd := {b,} € yGBVS, then the serie€l.4)is uniformly convergent,
and consequently its sum function is continuous.

Theorem 3.2. If the sequence satisfies the condition,, = O(n~!) andb € vGBVS, then
the partial sums of the seri€$.4) are uniformly bounded.

4. PROOF
Proof of Theorer 2]1lt is easy to see that the conditiofs (1.5) and](1.6), furthermore the as-
sumptionb € MGBVS imply that with the following sequence := {~,,}, where

2m—1

Tm ::% Z bm

every presumption of the Theorems|3.1 3.2 are fulfilled, consequently the sufficiency parts
of Theorenj 2.1 are already proved.

Thus we have only to verify the necessity parts of our theorem, what is almost trivial.

Letz = w/4m. Then

2m 2m
. . T
4.1) n:E . b, sin nz > sin 1 n:E . b,

clearly holds. Taking into account that the series](1.4) converges uniformly, or its partial
sums are uniformly bounded, the inequallty {4.1) verifies the necessity of the conditigns (1.5)

and [1.6).

Herewith the proof is completa.
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Remark 4.1. We would like to call the attention to the fact that if we know only thdielongs
to YyGBVS, then e.g. the condition,, = o(m™') is not necessary to the uniform convergence
of (T.4); namely ify,, = m~! and

27m  jfn =2m
4.2 b, = ’ '
(4.2) {0 elsewhere,

thenb := {b,} € vGBVS and the serie$_ 2™ sin 2™z converges uniformly, buy,, #

o(m™1).

This shows that only the additional assumptiog MGBVS delivers that then the condition
vm = o(m™1) is already necessary, too.
Naturally the sequende defined in [(4.R) does not belong¥6GBVS.

Remark 4.2. The serie$_ n~! sin nx is an example showing that the assumptioa MGBVS
itself does not imply the uniform convergence; namely, then the condjtioh (1.5) does not hold.
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