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ABSTRACT. We offer an intuitive explanation of the end-point and transversality conditions that
complement the Euler equation in the calculus of variations. Our reasoning is based upon the
fact that any variation given to an optimal function must entail a zero net gain to the functional,
all consequences of implied changes in its derivative being fully taken into account.
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2 OLIVIER DE LA GRANDVILLE

1. I NTRODUCTION .

While necessary conditions for determining extremals of a differentiable function defined
over an open interval are obvious (its gradient should be equal to zero), optimizing functionals
requires rules that seem much less obvious. For instance, for most people who are not teaching
the calculus of variations, it definitely requires some effort to remember that first order condi-
tions of maximizing the functionals

∫ x1

x0
F [x, y(x), y′(x)] dx or

∫ ∫
D

G[x, y, z(x, y), zx, zy]dxdy

where the domain of integration is fixed are the Euler equationFy − d
dx

Fy′ = 0 and the Euler-
Ostrogradski equationGz − ∂

∂x
Gp − ∂

∂y
Gq = 0, wherep ≡ zx andq ≡ zy.

In [1] we showed that these equations were not as arcane as they looked, and that on the
contrary they could be intuitively derived at one stroke. Our reasoning was based upon the
geometrical approach used by Euler and the fact that if optimal functionsy(x) or z(x, y) existed,
they must be such that at any of their points any small variation imparted to them should entail
a zeronet advantage to the functional, taking into account the incidence of that variation on the
slopes ofy or z.

We show here that this reasoning can be extended to obtain directly the classical end-point
and transversality conditions, which apparently offer little intuitive sense, particularly if the end
value ofy is fixed or ify(x1) can move along a certain curveg(x) at the teminal point.

1. A reminder of terminal point conditions.
Suppose that we wish to maximize

∫ x1

x0
F [x, y(x), y′(x)] dx; assume the initial point(x0,y0) is

fixed – the case where the initial point is movable could be treated in an analogous way. Besides
the Euler equation, necessary conditions fory(x) to be an optimal solution are the summarized
in the following table:

Table 1.1: Conditions to be met atx = x1 according to the nature of the end point, additional
to the Euler equation.

Nature of end point Condition additional toFy − d
dx

Fy′ = 0
atx = x1

a) bothx1 andy1 are free F = 0 andFy′ = 0
b) x1 is fixed andy1 is free Fy′ = 0
c) y1 is fixed andx1 is free F − y′Fy′ = 0
d) y(x1) = g(x1), g(x) fixed F + (g′ − y′)Fy′ = 0

2. The logic behind those conditions.
In all treatises, those conditions are demonstrated either through the differential or the de-

rivative approach (see for instance [2], [3], [4]). We now offer an intuitive explanation of each
of those conditions. For that purpose, we suppose without loss of generality that the partial
derivativesFy andFy′ are positive.

2.1. Consider first case a) where bothx1 andy1 are free and suppose that the optimal point
(x1, y1) has been found. Any increase imparted tox1 or to y1 imply the following. First,
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all consequences, direct and indirect, of a change iny are taken care in the Euler equation
Fy − d

dx
Fy′ = 0 (analysed in[1]).We now have to take into account the fact thatx1 is not

fixed any more but that it can move bydx1. This entails two consequences: first, a ben-
efit in the direct increase of the functional measured by the additional infinitesimal element
F [x1, y(x1), y

′(x1)]dx1; second, a further benefit due to the possible change ofy′ at the end
point; the accrued value for the functional isFy′ . Therefore both impacts should be zero, and
we must have, atx = x1, F = 0 andFy′ = 0 in addition toFy − d

dx
Fy′ = 0.

2.2. In the case b) (x1 fixed, y1 free) there is no possible increase of the integrand due to a
change inx1, but the benefit of a free value ofy entailing a change in the slopey′ is maintained.
This only impliesFy′ = 0 atx = x1 in addition to the Euler equation.

Cases c) and d) require special attention; they correspond to the constraint defined by a fixed
terminal valuey1 (case c) and by the fact thaty1 can move along a given curveg(x) (case d).

2.3. Consider first case c) wherey1 is fixed andx1 is free; a changedx1 normally would
impart at the terminal point a slope equal toy′(x1)dx1, carrying a gain for the functional mea-
sured byFy′y′dx1 atx1; but sincey cannot change at the terminal point, this advantagecannot
be counted any more: it now must be considered as a cost, to be balanced against the gain
F [x1, y(x1), y

′(x1)]dx1 mentioned in 2.1. Hence the equalityFdx1 = Fy′y′dx1, equivalent to
F − y′Fy′ = 0 atx = x1, the condition additional toFy − d

dx
Fy′ = 0 over [x0, x1] .

2.4. The final case d) wherey(x) can move along a curveg(x) at the terminal point can be
treated as a direct extension of the preceding one. While the cost of not benefitting of the own
slope of the curvey(x) has still to be borne, we can now account for the gain generated by the
slope ofg(x), equal toFy′g′dx1 atx1. This implies the additional conditionF +(g′−y′)Fy′ = 0
atx = x1.
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