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2 J. M. CAMPBELL AND K.-W. CHEN

1. INTRODUCTION

Series with summands that involve consecutive entries in the famous sequ&nee 1 +
5 +---+ £ :n e N) of harmonic numbers are used in many disciplines within mathematics;
in particular, research endeavors based on the development of new identities concerning such
summations are of great significance within the fields of classical analysis and number theory,
and in the theory of special functions. Sums involving variants and analogues of the classical
harmonic numbers are also very much of importance within these disciplines, making note,
in particular, of the sequence afternating harmonic numbergiven by expressions of the

form H, = 1 — % TR ) along with generalized harmonic numbed$ the form

HY =1+ 5 + --- + -z andodd harmonic number®,, = 1+ 3 + --- + —. In this
article, we apply integral identities for harmonic-type numbers to improve upon recent results
on infinite series derived from an Abel-type summation lemma.

The classical result known asbel’'s lemma on summation by parts formulated in 1826
by Niels Henrik Abell[1], is a widely used tool in classical analysig [10, 34]. Moelified Abel

lemma on summation by paist. [8,/10, 34| 36]) is such that

(1.1) i B, VA, = ( lim AmBmH) — AyBy + i A,AB,
n=1 n=1

m—0o0

if this limit exists and if one of the two infinite series given above converges, letting the operators
V andA be such thaVr,, = 7, — 7,1 andAr,, = 7,, — 7,51 for a mappingr: Ny — C.
Many remarkable identities for infinite series involving harmonic-type numbers are proved in
[8,110,[11 ]34, 36] through direct applications of this lemma. The main goal for our article is to
devise systematic ways of generalizing results from [8] 10, 34, 36] using integral identities for
harmonic-type numbers, inspired by identities of this form recently consideredin [6, 7].

The results from([8, 34] mainly concern series involving expressions akinor O =
i + 3+ + Gz, Making note of the identity

HY
T

However, sums involving “quadratic” harmonic-type numbers a&jror O? are not evaluated

in closed form in([8, 34]. So, keeping (1.2) in mind, we are prompted to consider the following
question: Given a series evaluation involviﬁ@i) derived from the modified Abel lemma as

in [8,34], how can we use such a result to find a symbolic form for the corresponding series
obtained by replacing{l(,i) with Hgn? The main purpose of this article is to apply an integration
method, as given in Sectign 2, to answer this question. The integration results that we use
often rely on non-trivial algorithms for determining antiderivative evaluations involving the
polylogarithm function Li(z) = >_,7, g—k

(1.2) 0P = HY) -

n

1.1. Preliminaries. Thebeta integralrefers to the integrafo1 t*=1(1 —t)v~1dt for R(x) > 0

and for(y) > 0. It was shown in[[B] how beta-type integrals may be used to construct remark-
able Ramanujan-like rational series fro'mvolving harmonic number$§ [35]. Through ingenious
applications of coefficient-extraction methods, Wang and Chu_ in [35] managed to successfully
“split” a number of Campbell's series far involving factors of the forn(2:)2(H3L + H,Sz)),
providing evaluations for the series obtained by expanding the summands according to such
factors, so as to obtain two separate series invohH[jgandHf) as summand factors. In this
article, we intend to make use of a somewhat similar “splitting” strategy (cf. [4]). In this regard,
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the following well-known identity (cf. Sectign 5 below) is to play a prominent role:
1
(1.3) / ka* ' In*(1 — 2)do = H? + H?.
0

In particular, for a parameter, if we have an evaluation for a series aslin([8, 34] involving
H;? as a summand factor, it turns out that the moment formulg i (1.3) may often be used to

“convert” this evaluation into an evaluation for the series obtained by repl&é,ifigNith Hgn,
as we illustrate and clarify in Sectigh 3.

The integral identity in[(1]3) is a “beta-like” identity, making note of the following general-
ization of the integral in[(1]3) given in_[38], in which a variety of results on series involving

expressions as if? + H? are offered:

1 m+kB
(1.4) / 22 M n™ xIn*(1 — 2) do = a—m’km
0 damop 61
It turns out that evaluations for many series of the forms
0o H7(12) () H(2)
(1.5) and 2n
% Qn) Z Q(n)
for a polynomialQ(n) may be “converted” into evaluations for the corresponding series
1.6 " and —2n
(-0 250 ™ 25w

through the “splitting” method outlined above, usifg [1.3). Some series &s |n (1.5) had been
proved using the modified Abel lemma in [8,/34], but, on the other hand, it turns out that by
making use of the identity whereby

1,k 2

T hl(l‘) (2) ™
1.7 ———dr=H;” — —
(L.7) | e -5
we may construct alternate and simplified proofs of many such results. In this regard, alternate
integral formulas for thepolygamma functiormay often be used, noting that we have that
H) must equal (s) + (’1);! P V(z 4 1) for z € C\ {—1,-2,...}, letting ¢ denote the

(s—
dm+1

polygamma function, i.e., so that"(z) := £ InT'(z), and letting((s) := > -, -~ denote

n=1 ns

the Riemann zeta function. However, our “splitting” method, as given by using (1.3) to obtain
a series evaluation involving’”, from a corresponding sum containin}géi), often relies on
non-trivial integral evaluations; furthermore, it is not, in general, clear as to how to make use of
Abel-type summation lemmas in order to go about with this replacement process.

We record the following integral identities for harmonic-type numbers:

SN | (=)™ (11 —2a"
H, = ka+1 = /0 - In™ x dzx,
k=1
a 1 (=)™ (11—
oty = = / In™ 2 d
;(2k—1)m+1 ml Jy 1—z2 & P00
—(m n _1k+1 —1)m 11__1nn
U ) L Ly,
p kmtl m! J, 14+
—m n 1 k+1 —1)m 11_ —1)? 2n
Ofl +1) _ Z ( ) - = ( ) / ( )2$ In™ z dr.
Py (2k — 1)m+ m! J, 1+
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Recalling [1.2), let us record the identity whereby

—(m 1 —-—m
(1.8) Iz <§> =m0
letting aim () =1 01 (xﬂ = denote the generalized harmonic number function. With regard

to (1.2) and to[(1)8), these kinds of identities often allow us to “convert” our results involving

HY?) or HZ, into corresponding results involving expressions a®jfl, 02, 0., etc. For

pn? pn?
example, we record the elegant evaluation (cf. Corollary 7 ih [36])

S0 1,26 7 2
+1)(n+2) 9 3 18 9

n=1
that we may prove through a direct application of the integration technique given in S¢ction 2

below, lettingG := >~ (2 1)2 - denote the famouSatalan constant

Motivated by the famous Basel problem, Euler investigated the problem of evaluating series
of the form

n4

(1.9)

n=1
which are referred to &suler sumsmaking note of Euler’'s famous recurrence relation whereby
23> I equals(m + 2)¢(m +1) — Z;”;f ¢(j+ 1)¢(m — j). The phrasé&uler-type sunis
often used quite broadly, e.g., in reference to series given by replacing the denomirfatdr in (1.9)
with a rational function im, or in reference to alternating variants [of (1.9), etc. Non-alternating

Euler-type sums are to be mainly considered in this article, and we refer the reader to [9] for
_1\)n+1 (p) _1\n +7(P)
identities on extended Euler sums a$ije , 2 e gngy > CU i

n4 nd

2. A “SPLITTING " METHOD FOR EVALUATING SERIES INVOLVING [,

The integration technique as formulated in the following proposition gives us a systematic
and powerful way of constructing proofs for new closed-form evaluations for families of series
involving quadratic/squared harmonic numbers or generalized harmonic numbers with an upper
parameter of. Using Abel-type summation lemmas to try to find identities for series involving
Hﬁn seems to be more “ad hoc” compared to how we may systematically apply the following
result.

Proposition 2.1. Let « and p be fixed parameters and lefn) be a complex-valued sequence
such that the following properties hold: It is possible to reverse the order of summation and

integration in both
00 1 pn
Za”’r(n) / (LM) dx
—~ 0 1—=

Za”r(n) /0 (pna” 'In*(1 — z)) dz,

and both of these infinite series are convergent. It then follows that the identity whereby

(2.2) Za r(n / (Za r(n xplnl_nx >d —i——Za r(n

and
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must hold, and we also must have that:

(2.2) Za”r(n) H? =
/0 <Z a"r(n) (pnz” " In*(1 —I))) dx—
/ (Z ") T ()) de = 3o (o)

We see that from the commutativity assumptions given above, the desired identities follow
from Abel’s continuity theorem together with the integral formula$ in|(1.3) (1.7), noting that
the right-hand side of the last equality in the above Propositidn s, a™ r(n) (Hzﬂi) + H2)
minus the initial series in the penultimate equation. Itis remarkable how the splitting method, as
formulated above as Proposition]2.1, is so versatile and useful, in conjunction with the Wolfram
Mathematicalntegrate  function, in the evaluation of intractable series invoIviH@n. To
rigorously prove evaluations for such series, we determine antiderivatives for the last two inte-
grands in the above Proposition, and determining the appropriate limits of the symbolic forms
for such antiderivatives is usually a straightforward computational exercise; typically, if such
antiderivative evaluations, as provided lathematicaare correct, then this is easily verified,
but actuallydeterminingthese evaluations, in the first place, requires, for the most part, very
non-trivial algorithms concerning the polylogarithm function. On this last point, we note that
Maple 2020is not, in general, able to evaluate the required series or antiderivatives involved in
our computations. In particulaklaple 2020is not able to evaluate the antiderivatives for any

of the following expressions that we later apply in this article:](2[5), (3.6)] (4.6), (£.8), (4.9),
(4.14), [4.15),[(4.16)[ (4.18), and (4]19).

We note that: In 2015/ [32], 8ean and Furdui evaluated a well-known series due to Au-
Yeung using the modified Abel summation lemma together WitH (1.3), so much of our present
work may be regarded as a non-trivial extension of [32], as we apply (1.3) to obtain many very
difficult antiderivatives based on developments in the application of the modified Abel lemma
subsequent to [32]; with regard 10 [32], we also refer the reader to Furdui ale@gws closely
related work in[[13]. Apart fron[32], the idea of using the momentsdfl — ) for z € [0, 1)
in order to evaluate a sum invoIvir@,f+H,§2) and to then “split” this evaluation using a separate
evaluation for a corresponding series wit} or H,(f) as a factor has also been considered in
[31]; we also refer the reader to the very recent article [28], in which the generating function

(g.f.) for the sequence of squared harmonic numbers is used to calculate some infinite series
involving H3,.

2.1. On the non-trivial nature of our applications of the splitting method. Inspired by the
applications of the modified Abel lemma on summation by parts frorn [8, 10, 34, 36], we are,
for the purposes of this article, mainly interested in the evaluation of sums as in

(2.3) 3 ggz;

whereA(n) is a harmonic-type number as 2 or H?, andQ(n) is a product of two distinct
linear polynomials, as opposed to series as in Au—Yeung’s famous formula

i“’: H,\? 177
n ) 360

n=1
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and its recent generalizatioris [5,/ 28]. On the other hand, if we\ée} to be a product of
harmonic numbers with distinct indices, then such series may often be easily evaluated in a
straightforward way using previously known g.f. identities. For example, it is not difficult to
determine a closed form for the sum of all expressions &&,iH,, quotiented by(2n+1)(2n+

3) for all natural numbers; in this regard, we may begin by simply applying an appropriate
operator to the g.f. for the sequence of even-indexed harmonic numbers so as to provide a simple

closed form for(QH%:1 n e No), which, in turn, easily gives us an elementary closed form for

(@it €);

differentiating this resultant identity, we may easily apply the usual moment formula for the
harmonic sequence to evaluate the series with which we had started. Such elementary g.f. ma-
nipulations cannot, in general, be applied to harmonic sums that we have successfully evaluated
using Propositiof 2]1. In particular, let us consider the difficult series

[e.o]

(2:4) z; 2n + 1) 2n +3)

that is highlighted, as below, in Sectipn[3.2. If we evaluate

. —na"tn(l - 2)H,
(2:5) 2% (2n+1)(2n + 3)

symbolically, staring from the g.f. for the classical sequence of harmonic numbers, we obtain a
very complicated expression involving terms such as

Li, (— - i) In(1 — x)

75/2 ’

and state-of-the-art computer algebra system (CAS) software cannot evaluate the required an-
tiderivative for the polylogarithmic evaluation fdr (2.5). So, this is very much indicative of the
remarkable nature about the elegant closed-form evaluation highlighted]as (3.8) below.

As had been suggested, as above, our article is organized in such a way so as to be focused
on applications of Propositign 2.1 based on the kinds of series derived(in/ [8,/10, 34, 36] from
the modified Abel lemma, with a particular regard[to [2.3). However, Propo$ition 2.1 may be
applied much more generally to obtain new and non-trivial identities, and we encourage the
further application of this result, motivatived by the elegant equation

= /1\" /2 H?
> (5) ()i =
—~ 4 n)n+1

that we may prove in a direct way using Proposifiorj 2.1.

3. APPLICATIONS OF RECENT RESULTS FROM CHEN AND CHEN AND FROM WANG

Let us consider some known results on harmonic sums derived from the modified Abel lemma
to illustrate how such results may often be improved upon so as to produce new results via the
identity in (1.3), and to determine simplified proofs of results from [8/ 10, 34, 36].
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3.1. Series inspired by the work of Chen and Chen.An explicit identity for

00 O?(ls)
3-1) Z (n+a)(n+a+1)

n=1

fora € Ny ands € Nis introduced in[[8], and proved via the modified Abel lemma that we have
frequently referred to. Let us use this identity to provide an illustration as to how Proposition
[2.7 may be applied to evaluate series containing squares of doubly indexed harmonic numbers
(cf. [28]).

From Chen and Chen’s identity for (8.1) from [8], we see that

x oY 372 — 8In(2) — 4
(3.2) > = ,
—~ (n+1)(n+2) 36
and from the identity displayed if (1.2), it is easily seen that
> bz 0% 72 2In(2) 13

33) 2 w8 s 56

n=1
This may also be easily verified through a direct application of the identity in (1.7), and the
splitting technique from Sectidr) 2 can be shown to give us that:

o0

(3.4) 3 ( H2 m | 32In(2)  2In*(2) L2

n+1)(n+2) 8 9 3 36"

n=1

This can also be shown by starting with the g.f. for the sequence of even-indexed harmonic
numbers, so as to evaluate, as an elementary function, the g.f. for the sequence of expressions

of the formf—jq, and from the identity whereby th{en + 3)™ moment ofin(1—z) for z € [0, 1)

equals—g%:f, we may obtain the desired result, by rewriting this expression as

_H2n + 2n1+1 + 2n1+2 + 2n1+3 + 2n1+4
2(n+2) '
This is a much less direct approach compared to our application of the splitting method to prove
(3.4). Furthermore, this alternate approach relies on a moment formula for expressions of the
form Ifn";fb”, and it is not clear as to how to apply similar methods to evaluate series[as|in (2.3)
in the case whereby the leading coefficient of the index of the numerator is not equal to the
leading coefficients for the denominator factors, a$ in| (2.4). Also, by evaluating the g.f. for the

sequence of squared harmonic numbers|(cf. [28]) as
2Lis (5%) — In*(1 — 2)
2(x — 1) ’

we are able to symbolically evaluate the g.f. for the sequence of expressions of thgs—'fqr,m

but this symbolic form is so extremely complicated that it is not possible for current CAS
software to evaluate the required antiderivative, in this case, to evdluate (2.4). This illustrates
the truly remarkable nature of our evaluation for [2.4).

3.2. An alternate proof for and an extension of an infinite series due to WangWe offer a
demonstration of an application of our splitting technique to the series

o0

HV(LQ) 71_2
35 _ T 9In(2) -2
(3:5) ; Gnt ity 12 2@

AJMAA Vol. 18(2021), No. 2, Art. 15, 19 pp. AIMAA


https://ajmaa.org

8 J. M. CAMPBELL AND K.-W. CHEN

discovered by Wang in 2018, in_[34], and highlighted as a Corollary in [34] to an identity
introduced and proved in [34] using the modified Abel summation lemma. Let us produce an
alternate proof of (3]5), again with the use of the polygamma identity from (1.7).

Alternate proof of Wang s series evaluation(@3). We replace the numerator of the summand
in (3.5) with £-222) 1“ ) and we make use of the Maclaurin series identity that is such that:

( "ln( ))
“—~ (2n+1) 2n+$
(vz(2z —3) — 3(z — 1) tanh™' (/7)) In(x)
6(z — 1)x3/2 '
Using Mathematica we may easily verify that the antiderivative of the right-hand side of the
above equality is

é(um e % (V2 Lia(x) + VE(n(1 — )(in(z) + 2) — 2In(a))+

2(In(z) + 2) tanh ™ (/) )),

which, in turn, gives us the desired result, taking- 0 andx — 1. &

Pﬂg

(3.6)

If we are able to evaluate

oo H}f) —|—H2

— (2n+1)(2n + 3)

then, of course, such an evaluation, together with Wang’s formula_ih (3.5) would allow us to

“split” an analytic evaluation for[(3]7), i.e., according to the terms of the above numerator.
Following this approach, we expre§s (3.7) as the integral of

(3.7)

= na" 'n*(1 — 1)
; (2n+1)(2n + 3)

forz € (0,1), i.e., the integral of

_1n2(1 — ) (3y/ + ztanh ' (y/z) — 3tanh ™' (/)

4335/2

over(0,1). We may easily evaluate
/ (3y/x —3tanh™' (y/z) + ztanh™' (/z)) In*(1 — )
o A75/2

as an elementary function; following the splitting method, this gives us the following elegant
formula:

dx

2

> v
=2 — — —21In(2) + 21n?(2).
§:2n+12n+$ 1o~ 2n(2) +207)

n=1

(3.8)

4. FURTHER APPLICATIONS INSPIRED BY THE MODIFIED ABEL LEMMA

The integral identities as given in Propositjon|2.1 turn out to be extremely powerful in terms
of the main goal of this paper, i.e., to improve upon the results from [8, 10, 34, 36] using integral
identities as in Sectidn1.1.
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4.1. Generalizations of Wang's series.Adopting notation from([34], we legeneralized har-
monic numberde defined so that

n

m . 1
hé )<CL, b) = 0 and h’gz )(CL7 b) = Z m
k=1

The modified Abel lemma was used directlylin|[34] to prove that

[e.9]

ah(Q)(a, b) = 1
(4.1) ; (ak + b)k(ak —a+b) - Z (ak + b)3’

k=0

but it would not, in general, be clear as to how to use Abel-type summation lemmas if we were

to sum over products df,(f)(a, b) with rational functions apart from that displayed in the initial
summand in[(4]1). As an immediate consequence of the above identity, we have that

- oY 7¢(3)
(4.2) ; 2n—1)(2n+1) 16 °

an evaluation that is also proved in_[34] in a direct way via the Abel-type lemmfa ih (1.1);
recalling the identity in[(1]2), we rewrite this as
oo (2) Jaisd)
H — dn
~(2n—1)2n+1) 16

Applying reindexing to[(3]5), we may “split” the above evaluation according to the numerator
of the above summand.

Example 4.1. We claim that both

S e Y
— (2n+2z1)(2n + 22) — (2n+21)(2n + 22)

admit closed-form evaluations that may be determined with our master integral identity, for
distinct odd integers; and z,. For z; = 1 andz, = 3, we recall Wang's series i(8.5), along

with our splitting technique applied to this series, giving({@s). As a natural generalization

of these results, let us consider the case whefepy- 25| > 2. We restrict our attention to

the case whereby,, z; € N, as reindexing arguments may be easily applied to our results for
21, z2 > 0. Through a direct application of our splitting method, we can show that

> 1 2 10ln(2) 31
~(2n+1)(2n+5) 18 9 27
and that
i H? _4l*(2)  16In(2) #? N 49
—~ (2n+1)(2n+5) 3 9 18 27

Example 4.2. The identity whereby

00 HT(lQ)
; Cn+1)(2n+2m+1)
2 21112

2 & Oy,
4.4 _ 2
(4.4) 12m Tom Om m; 2k —1)2
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for m € N may be proved using Theorem 5.1 fr{8h Thanks to our splitting technique, this
allows us to evaluate the series given by repladﬂﬁ) with H?2 in the above summand:

S b _
RZ:O 2n+1)2n+7)

461n%(2)  10581n(2) 237r2+16564
45 675 540 10125

o H2
nzzo 2n+D)2n+9)
881n%(2)  15488In(2) 11x2 1729753

105 11025 315 * 1157625

e e} H2

; (2n +1)(2n +11)

11261n%(2)  6339381In(2) 56372 N 215844634
1575 496125 18900 156279375

Through a direct application of our splitting integration method as applied to the series in
(4.4) for an arbitrary parametet € N, we have that

> Gy
—~ (2n+1)2n+2m+1)

(4.5)

must be equal to the following, letting denote the Hurwitz—Lerch transcendent:

/1 (2m+1)yz @ (z,1,m+ 1) —2tanh ™' (vz)) In*(1 — z) o

Sma3/?

™ Op 2 1n( 2 <~ O
12m + m ; 2k — 1)
This identity is powerful enough, on its own, to be applied directly to evaluate series agin (4.5)

for m € N.

Example 4.3. Through a direct application of the above identity {@r.5), by settingm = 6,
we find that

22: 20 T 1)(2n + 13)

n=1

evaluates as
65081n%(2)  423540641n(2) 162772 160848964597

10395 36018675 62370 +124804708875'

Again with regard to Wang’s series as given[in [4.2) (4.3), let us now consider generaliz-
ing this series by setting the index parametér Propositiorj 2.J1 to be equal o

Example 4.4.We highlight the evaluation whereby

_|_

i HyY) 572 In(2) 5
~(2n+1)(2n+3) 96 2 8’

AJMAA Vol. 18(2021), No. 2, Art. 15, 19 pp. AIMAA
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which, according to our splitting method, comes from indefinitely integrating the following,
settlnga = 1, and again lettingp = 2, and writingr(n) in place of the rational function

TDET
S 2P In(x
Z a"r(n) <TEB>) =
n=0

(46) . ln(flj) (5U2 tanh_l(x) 4+ — tanh_1($)> |

2(z — 1)a
As for our evaluation whereby

H2 _smt  In?(2)
“(2n+1)(2n+3) 96

[e.e]

this requires, following our splitting technique, the determination of an antiderivative for the
following, which is non-trivial:
In*(1 — 2) (2? tanh ™' (z) + 3z — 3tanh ™' (2))
224 '
Example 4.5. Recalling Examplg 41, we also find that both

00 (2)

H2
4.7 and n
(4.7) (2n + z1) 2n+z2 Z (2n + z1)(2n + 29)

n=1

admit closed-form evaluations according to our splitting method, for distinct odd elements
and z, of Z. For the sake of brevity, we record the following two evaluations:

i HY _ 437 5m(2) 10
£~ (2n+1) 2n +5) 1152 18 27
i": H2, 4372 N In*(2)  31In(2) N 481
£~ (2n+1)(2n+5) 1152 3 36 432

4.2. A series involving H4 Our integration methods have led us to discover a new family
of series for Catalan’s consta@t := 5~ (Qn +1)2 that naturally extend Wang'’s series from
(4.3). To begin with, we highlight the following evaluation as a Corollary to Propoditign 2.1,
as this evaluation is of interest in its own right: Harmonic-type numbers of the}qﬁfﬁ for

p > 2 are not considered in [8, 10, 134,]36], and the simple summand and series evaluation
given below are in stark contrast to the very non-trivial and complicated antiderivative required
in our proof. We also make note of the below evaluation relating the following fundamentally
important mathematical constants in an elegant way, again with regard to the simplicity of the
below summand: Catalan’s constant, the Basel cong(@nt= %2 Archimedes’ constant,

and the natural logarithm af

Corollary 4.1. The symbolic evaluation

i HyY) _ G sr or 157In(2) 1669
2 n+1)(2n+3) 15 1920 225 1800 7200

holds true.
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Proof. Using our notation from Propositi¢pn 2.1, we set= 1 andp = 4, and we let the rational

functionr(n) be equal tom With this set-up, we have that:

;a"r(n) (ﬁ%“f:)) _

In(z) (22 — tanh ™" (%) 4+ 2* tanh ™" (2?))
2(z — 1)ab '

We may verify the following antiderivative evaluation for the right-hand side of the above equal-
ity, i.e., by differentiating the followingMathematicaoutput and simplifying.

(4.8) -

(-288/x"3 - 450/x~2 - 800/x + 512 *ArcTan[x] + (288 *ArcTanh[x"2])/x"5 +

(450 = ArcTanh[x"2])/x*4 + (800 * ArcTanh[x"2])/x"3 + (1800 * ArcTanh[x"\2])/x"2 +
544+Log[l - x] - 3600 Log[x] - (1440 =*Log[x])/x"3 - (1800 * Log[x])/x"2 -

(2400 *Log[x])/x + 960  +ArcTan[x] =*Log[x] + (1440 =ArcTanh[x"2] =*Log[X])/x"5 +
(1800 * ArcTanh[x"2] =*Log[x])/x*4 + (2400 * ArcTanh[x"2] =*Log[x])/x*3 + (3600 *
ArcTanh[x*2] *Log[x])/x"2 + 2820 *Log[l - x] =Log[x] - 544 =Log[l + x] - 1020 =«
Log[x] *Log[l + Xx] + 225 =*Log[l - x"2] - 225 =Log[l + x"2] - 900 =Log[x] *
Log[l + x*2] + 900 =*Log[l - x*] + 1800 =+Log[x] =*Log[l - xM] + 7200 =
PolyLog[2, 1 - x] - 1020 * PolyLog[2, -x] - (480 *1) +PolyLog[2, (-I) *X] +

(480 *1) *PolyLog[2, | *x] + 2820 *PolyLog[2, x] - 450 * PolyLog[2, -x"2] + 450 *
PolyLog[2, x"4])/14400

Computing the required limits far — 0 and forz — 1, we obtain the desired result, according
to Proposition 2 /11

We note that our splitting method cannot be applied directly witly, andr(n) as in the
above proof, at least with current versiondMdithematicasince this would require the evalua-
tion of the intractable integral

B / In*(1 — z) (32% — 3tanh ™" (2?) + 2% tanh ™" (2?))

7

(4.9) dx,

which state-of-the-art CAS software cannot manage to compute. Furthermore, although we
may mimic the above proof to show that

- HY 13G 547372 491r  36881In(2) 42058

< (2n+1)(2n+5) 315 " 161280 T 09225 T 793300 297675’

n—=

if we replace the denominator fact@n + 5) with (2n + 7), we again encounter an indefinite
integral thatMathematicacannot evaluate, which makes Corollary|4.1 all the more remarkable.

43. A bisection argument. We return to the problem of evaluating the series obtained by
replacingH” with H2, in Corollar . Since it is far from clear as to how it may be possible

to compute the integral ir (4.9), we mtend to devise an alternative approach to applying our
splitting method in order to evaluate the companion

(4.10) > an
“—~ (2n+1)(2n + 3)
to the series in the aforementioned Corollary. In particular, if we are able to evaluate
= H? H?
4.11 2n and 2n
(4.11) “—~ (n+1)(n+3) Z n—l—l )(n+3)
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separately then this immediately gives us an evaluation for (#.10), i.e., simply by adding the
two series in[(4.111) and writing this sum as a single series, and then bisecting this resultant
series. Considering the “elusive” nature of the serief in [4.10), as given by how recalcitrant the
corresponding integral ifi (4.9) is, we highlight the evaluation below as a Corollary.

Corollary 4.2. The symbolic evaluation whereby
S H3,
— (2n+1)(2n + 3)

n

equals
G w2477  wln(2) 3In*(12) 107In(2) = 5929
==t + - + +
15 640 900 60 40 450 7200
must hold.
Proof. Settinga = 1 andp = 2 andr(n) = =737 I Propositio, we find that
0 pnl
> s (F72)
n=0
is equal to

In(z) (—2* — 222 — 2In (1 — 2%) + 22*In (1 — 2?))
4(x —1)ab ’

and, applying/ - dz to the right-hand side, we may verify the following verbafitathematica
output.

-(144 *x"2 + 225 *x"3 + 472 *x" - 1669 *x"5xLog[l - x] + 720 *x"2=*Log[x] + 900 =*
x"3 xLog[x] + 1560 =*x™M =*Log[x] + 2250 =*x"5=*Log[x] - 581 =*x"5=*Log[l + X] - 780 =
x"5*«Log[x] *Log[l + x] + 144 =+Log[l - x"2] + 225 *x*Log[l - x*2] + 400 *x"2=*
Log[l - x*2] + 900 *x"3*Log[l - x*2] + 720 =Log[x] =*Log[l - x*2] + 900 *xx*
Log[x] *Log[l - x"2] + 1200 *x"2=Log[x] =*Log[l - x*2] + 1800 =*x"3=*Log[x] =*

Log[l - x*2] - 780 *x"5=*PolyLog[2, 1 - x] - 780 * X5 * PolyLog[2, -x])/(7200 *
X"5)

According to our splitting method, this can be shown to give us that:

> H? 4772 34In(2) 3707

“ (n+1)(n+3) 480 225 14400

We leave it to the reader to verify the remaining computations required to compute our series in
(4.11) according to our splitting technique, which gives us that

i H2, _47rr 8In®(2) N 6791n(2) N 12587
~(n+1)(n+3) 480 15 225 14400
The first part of Proposition 2.1 can be shown to give us that
i (-)"HY 26 7 L 4r o 293In(2) 2969
—n+1)(n+3) 15 192 225 900 14400’
and, again by our splitting method, the above evaluation can be used to give us that:

o

—~ (n+1)(n+3)

n
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equals
2G 977? 2477 wiIn(2) 231112(2)_572111(2) 11129

15 960 450 30 60 225 14400°
This gives us the desired result, according to the bisection approach indicated pbove.

We claim that all series of the forms

S -
— (2n+ 21)(2n + 22) — (2n+ z1)(2n + 22)

must admit closed-forms involving Catalan’s constant, for odd integeesd z;. From the
bisection scheme employed in our proof of Corolm ary 4.2, this motivates the study of sums as in

0 H}(}i) n H}gi)
and

“— (n+2z1)(n+ 2) )(n+ 22)
and as in

oo H2 nH2
4.12 b and
(4.12) ;%(n%—zl)(n%—@ Z n—I—zl n+zQ)

for z1, 2z € N. However, even for the seemingly manageable case whegebyl, z, = 2, and
p = 2, the above alternating sum in (4]12) proves to be difficult, withematicaunable to
evaluate the required antiderivative, in this case.

4.4. Polynomial denominators of arbitrary degree. Let us consider summations of the fol-
lowing form:

o0 H(Z)
A(k) = U
(%) nz:%(2n+1)(2n+3)---(2n+2k—1)’
wherek > 2 is an integer. We consider two different ways of investigating series of this form:
We may either use an integral formula for the numerator, or we may apply partial fraction

decomposition to the rational function factor in the above summand. This former approach
gives us that
x] dx,

k— = 2 1 U'Inz 1,3
Alk) = Fil 2
(k) (k — 1)(2k—1)"6 (2/{;—1)!!/O 1—z° 1[k+§
where, F; is the ordinary hypergeometric function af@k — 1)!! = 1-3-5---(2k — 1).
Alternatively, the latter approach considered above necessarily gives us that:

2 n 2In20;_¢
12(k—=1)(2k =3)!!  (k—1)(2k —3)!!

B mij (k . 2) (=1)Orsa.

We find that our master integral identity is strong enough to be able to directly evaluate series

Ak) =

asin

00 H(Q)

; Din+2)---(n+k)
and

[e’s) HQ

; n+ 1)( n+2) - (n+ k)
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and many similar expressions.

Example 4.6. Through a direct application of our splitting method, we find that the equalities
whereby

> a 137 16In(2) 1493
; (n+1)(n+2)(n+3) 480 225 14400
and
i H2 ~ 13x? N 121In(2)  2In*(2) 2587
~(n+1)(n+2)(n+3) 480 225 15 14400
both hold.

)n+1

4.5. Denominator factors with distinct leading coefficients. LetO,, = 1 — 1 + .. + X0
denote thalternating odd harmonic numbef a given ordern € N. Quite recently, Sofo and
Nimbran, in [26], made use of the moments of expressions &g inin”(1 + dx) for z € (0, 1]
to obtain some new Euler-like sum identities, including:

e}

Oan1 G 9(2) 7wn2
;(271—1)(471—3)_§Jr 6 8
> Egn_l . G 36(2) mIn2
Z(2n—1)(4n—1)_§_ 16 8

This inspires us to consider the case whereby we set the funetignin Propositior] 2.]L to
be equal to the reciprocal of a product of linear polynomials with distinct leading coefficients.
Applying our splitting technique, this leads us to non-trivial results, as suggested below.

Example 4.7. Let us highlight the interesting evaluations whereby

> HY ~ wm(2)  3¢(3)
~(n+D)2n+1) 3 2
and
= H? ~5¢(3) w*n(2) 8In’(2)
(4-13) ; (n+1)2n+1) 2 3 Ty

The evaluation of this former series requires, according to our splitting method, the symbolic
evaluation of the antiderivative for

In(z) (In(1 — z) + 2/z tanh ™" (/7))
- (x — 1Dz ’
giving us a very complicated expression involving polylogarithmic expressions such as
Lis (62 tanh—l(ﬁ))

(4.14)

Y

and similarly for(4.13)

We note that an infinite series of the form [n (2.2), up to an index shift, with a rational
function factor given by a linear polynomial quotiented by a quartic denominator, was evaluated
by Michael Vowe in[33] via a proof mainly oriented around telescoping arguments, whereas
Chu proved the same result in [10], highlighted as a Corollary to an application of the modified
Abel lemma that also involves telescoping; as it turns out, the splitting method upon which our
article is based may be applied directly to obtain the same result, which further emphasizes the
versatility of Proposition 2]1, and how the integration technique given by this Proposition may
be used in a very systematic way, with regard to sums (2.2).
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4.6. Cubic harmonic sums. In general, evaluating series involving cubic harmonic numbers
is much more difficult compared to the evaluation of series involifjgas a factor in the
summand for € N. We note that a family of cubic harmonic sums is evaluated in [16] using

a somewhat similar approach compared to our splitting method, i.e., by using series involving
H,H? together with integral identities in order to evaluate Euler-type sums involkijg
However, our splitting method may be applied to generalize results from [16]. For example, by
indefinitely integrating

(22 + (z — 1)In*(1 — ) — 2(x — 1) In(1 — z)) In(z)

(4.15) _ e
and
(4.16) _ (I -2) - YW1 - o) ~2) In(1 ~ 2) — 22)

213
a direct application of our splitting method gives us that
> H? 2

-0 <n+1)(7ln+2) :4C(3)—|—1+§’

n

and an identity for a family of sums with quadratic denominators generalizing this result is
proved in [16, p. 430], but our integration method may be applied to much more general cubic
harmonic sums, as below:

[e.9]

23 H?
B =535 = 2 (n+1)(n+2)(n+3)

n=0

We note that applications of the modified Abel lemma as givenlin [8] (see Theorem 3.1) may
also be applied to prove the above evaluations involving Apéry’s constant.

We also refer the interested reader to the following references concerning cubic harmonic
sums: [10; 117, 18, 30, 36]. A particular source of motivation in the application of our methods
comes from the field of number theory, making a particular note of the reference [2], in which
the closed-form evaluation

| HE + 3H,HY + 2H
(4.17) ¢(3) = > o
is highlighted as a main result and proved using integral identities for Stirling numbers. As it
turns out, our splitting method may be applied in a direct way to greatly improve upon such
results, e.g., by separately evaluating the series obtained by expanding the above summand.
There actually is already a known evaluation for the g.f. for cubed harmonic numbers, and
Mathematicas actually able to evaluate

> H,HY
on

n=1

but we can rigorously prove such results and systematically generalize such results using Propo-
sition[2.1. To begin with, we claim that the power series

n=0
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admits a polylogarithmic form. In this direction, we start with the g.f. for the harmonic se-
guence, so that

y"H, (z"In(z))  In(z)In(1 — zy)
(4.18) Z Tr @Dy

with Mathematicebeing able to provide an explicit evaluation for the antiderivative of the right-
hand side, with respect ta In order to evaluate the power series

iifﬂi
n=0

we begin by differentiating the g.f. for harmonic numbers. According to the usual moment
formula for H2 + H.?, following our splitting method, we need to evaluate the antiderivative

for the following, with respect ta:
yIn*(1 — z)(In(1 — 2y) — 1)
(zy —1)? '

Mathematicas able to indefinitely integrate the right-hand side with respeat, and the re-
quired limit formulas are easily seen to hold. So, for example, we may determine that

(4.19) > yrH, (na" ' In*(1—x)) = —
n=0

— H} m2n(2) In*(2)

n=1
and we may similarly evaluate the other two series obtained by expanding the summand of
Batir’s series in[(4.1]7).

5. CONCLUSION

We very much encourage further applications of our splitting method. For the time being,
we offer a brief survey of extant results on the application of identities involving expressions as
in H2 + ngn), since our methods, as we have demonstrated, are extremely powerful when it
comes to such identities, motivating the exploration as to how such methods may be applied in
conjunction with the results put forth in the references provided below.

Equivalent forms of the moment identity in (IL.3) and variants of this moment formula are of-
ten included in Sofo’s work in the study of harmonic sums; in this regard, we begin by recording
the identity

LN — ~1\ 2
5.1 m=11p? -
e [t -a= 3o (") o
indicated in [25], in which identities fop > | — n+k) and> > | Hk) are given; the same

identity in (5.1) is also noted in [12], in which the aforementloned Au-Yeung series is general-
ized. Also, we make a particular note of the identity whereby

H?+H 2)F1In2(1 — y)
_1 n+tl>"n ' 71
Sy B[,

n=1

given by Sofo in 2015, in [24], in WhICh the evaluation of

- _1\n+1 Hﬁ n+1 n
(-1 iy and Z
n=1 ( k k )

AJMAA Vol. 18(2021), No. 2, Art. 15, 19 pp. AIMAA


https://ajmaa.org

18 J. M. CAMPBELL AND K.-W. CHEN

is investigated. We note that Sofo [23] also used the moment formula ih (1.3) along with
a similar kind of splitting approach as suggested in Se¢jon 3 to prove an explicit identity for

> n%il; we also suggest that the interested reader review the resultsiin [19] 21, 22] involving

n=1
quantities of the formH? + H?. For additional publications on integral identities as[in|(1.3)

and/or on series involving factors asiff + H,”, we refer the reader t6 [14, 15,120, 27] 37],
along with [29, 86].
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