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1. I NTRODUCTION

Series with summands that involve consecutive entries in the famous sequence
(
Hn = 1 +

1
2

+ · · · + 1
n

: n ∈ N
)

of harmonic numbers are used in many disciplines within mathematics;
in particular, research endeavors based on the development of new identities concerning such
summations are of great significance within the fields of classical analysis and number theory,
and in the theory of special functions. Sums involving variants and analogues of the classical
harmonic numbers are also very much of importance within these disciplines, making note,
in particular, of the sequence ofalternating harmonic numbersgiven by expressions of the
form Hn = 1 − 1

2
+ · · · + (−1)n+1

n
, along withgeneralized harmonic numbersof the form

H
(2)
n = 1 + 1

22 + · · · + 1
n2 andodd harmonic numbersOn = 1 + 1

3
+ · · · + 1

2n−1
. In this

article, we apply integral identities for harmonic-type numbers to improve upon recent results
on infinite series derived from an Abel-type summation lemma.

The classical result known asAbel’s lemma on summation by parts, as formulated in 1826
by Niels Henrik Abel [1], is a widely used tool in classical analysis [10, 34]. Themodified Abel
lemma on summation by parts(cf. [8, 10, 34, 36]) is such that

(1.1)
∞∑

n=1

Bn∇An =
(

lim
m→∞

AmBm+1

)
− A0B1 +

∞∑
n=1

An ·∆Bn

if this limit exists and if one of the two infinite series given above converges, letting the operators
∇ and ·∆ be such that∇τn = τn − τn−1 and ·∆τn = τn − τn+1 for a mappingτ : N0 → C.
Many remarkable identities for infinite series involving harmonic-type numbers are proved in
[8, 10, 11, 34, 36] through direct applications of this lemma. The main goal for our article is to
devise systematic ways of generalizing results from [8, 10, 34, 36] using integral identities for
harmonic-type numbers, inspired by identities of this form recently considered in [6, 7].

The results from [8, 34] mainly concern series involving expressions as inH
(2)
n or O(2)

n =
1
12 + 1

32 + · · ·+ 1
(2n−1)2

, making note of the identity

(1.2) O(2)
n = H

(2)
2n − H

(2)
n

4
.

However, sums involving “quadratic” harmonic-type numbers as inH2
n orO2

n are not evaluated
in closed form in [8, 34]. So, keeping (1.2) in mind, we are prompted to consider the following
question: Given a series evaluation involvingH(2)

pn derived from the modified Abel lemma as
in [8, 34], how can we use such a result to find a symbolic form for the corresponding series
obtained by replacingH(2)

pn withH2
pn? The main purpose of this article is to apply an integration

method, as given in Section 2, to answer this question. The integration results that we use
often rely on non-trivial algorithms for determining antiderivative evaluations involving the
polylogarithm function Lin(z) =

∑∞
k=1

zk

kn .

1.1. Preliminaries. Thebeta integralrefers to the integral
∫ 1

0
tx−1(1 − t)y−1 dt for <(x) > 0

and for<(y) > 0. It was shown in [3] how beta-type integrals may be used to construct remark-
able Ramanujan-like rational series for1

π
involving harmonic numbers [35]. Through ingenious

applications of coefficient-extraction methods, Wang and Chu in [35] managed to successfully
“split” a number of Campbell’s series for1

π
involving factors of the form

(
2n
n

)2(
H2

n + H
(2)
n

)
,

providing evaluations for the series obtained by expanding the summands according to such
factors, so as to obtain two separate series involvingH2

n andH(2)
n as summand factors. In this

article, we intend to make use of a somewhat similar “splitting” strategy (cf. [4]). In this regard,
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the following well-known identity (cf. Section 5 below) is to play a prominent role:

(1.3)
∫ 1

0

kxk−1 ln2(1− x) dx = H2
k +H

(2)
k .

In particular, for a parameterp, if we have an evaluation for a series as in [8, 34] involving
H

(2)
pn as a summand factor, it turns out that the moment formula in (1.3) may often be used to

“convert” this evaluation into an evaluation for the series obtained by replacingH
(2)
pn with H2

pn,
as we illustrate and clarify in Section 3.

The integral identity in (1.3) is a “beta-like” identity, making note of the following general-
ization of the integral in (1.3) given in [38], in which a variety of results on series involving
expressions as inH2

n +H
(2)
n are offered:

(1.4)
∫ 1

0

xα−1 lnm x lnk(1− x) dx =
∂m+kB(α, β)

∂αm∂βk

∣∣∣∣∣
β=1

.

It turns out that evaluations for many series of the forms

(1.5)
∞∑

n=0

H
(2)
n

Q(n)
and

∞∑
n=0

H
(2)
2n

Q(n)

for a polynomialQ(n) may be “converted” into evaluations for the corresponding series

(1.6)
∞∑

n=0

H2
n

Q(n)
and

∞∑
n=0

H2
2n

Q(n)

through the “splitting” method outlined above, using (1.3). Some series as in (1.5) had been
proved using the modified Abel lemma in [8, 34], but, on the other hand, it turns out that by
making use of the identity whereby

(1.7)
∫ 1

0

xk ln(x)

1− x
dx = H

(2)
k − π2

6
,

we may construct alternate and simplified proofs of many such results. In this regard, alternate
integral formulas for thepolygamma functionmay often be used, noting that we have that
H

(s)
z must equalζ(s) + (−1)s−1

(s−1)!
ψ(s−1)(z + 1) for z ∈ C \ {−1,−2, . . .}, lettingψ denote the

polygamma function, i.e., so thatψm(z) := dm+1

dzm+1 ln Γ(z), and lettingζ(s) :=
∑∞

n=1
1
ns denote

the Riemann zeta function. However, our “splitting” method, as given by using (1.3) to obtain
a series evaluation involvingH2

pn from a corresponding sum containingH(2)
pn , often relies on

non-trivial integral evaluations; furthermore, it is not, in general, clear as to how to make use of
Abel-type summation lemmas in order to go about with this replacement process.

We record the following integral identities for harmonic-type numbers:

H
(m+1)
n =

n∑
k=1

1

km+1
=

(−1)m

m!

∫ 1

0

1− xn

1− x
lnm x dx,

O
(m+1)
n =

n∑
k=1

1

(2k − 1)m+1
=

(−1)m

m!

∫ 1

0

1− x2n

1− x2
lnm x dx,

H
(m+1)

n =
n∑

k=1

(−1)k+1

km+1
=

(−1)m

m!

∫ 1

0

1− (−1)nxn

1 + x
lnm x dx,

O
(m+1)

n =
n∑

k=1

(−1)k+1

(2k − 1)m+1
=

(−1)m

m!

∫ 1

0

1− (−1)nx2n

1 + x2
lnm x dx.
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4 J. M. CAMPBELL AND K.-W. CHEN

Recalling (1.2), let us record the identity whereby

(1.8) H
(m)

n

(
1

2

)
= 2mO

(m)

n ,

lettingH(m)
n (x) =

∑n−1
i=0

1
(x+i)m denote the generalized harmonic number function. With regard

to (1.2) and to (1.8), these kinds of identities often allow us to “convert” our results involving
H

(2)
pn or H2

pn into corresponding results involving expressions as inO
(2)
pn , O2

pn, O
2

pn, etc. For
example, we record the elegant evaluation (cf. Corollary 7 in [36])

∞∑
n=1

O
(2)

n

(n+ 1)(n+ 2)
=

1

9
+

2G

3
− π

18
− ln 2

9

that we may prove through a direct application of the integration technique given in Section 2
below, lettingG :=

∑∞
n=1

(−1)n+1

(2n−1)2
denote the famousCatalan constant.

Motivated by the famous Basel problem, Euler investigated the problem of evaluating series
of the form

(1.9)
∞∑

n=1

H
(m)
n

nq
,

which are referred to asEuler sums, making note of Euler’s famous recurrence relation whereby
2
∑∞

n=1
Hn

nm equals(m+ 2)ζ(m+ 1)−
∑m−2

j=1 ζ(j + 1)ζ(m− j). The phraseEuler-type sumis
often used quite broadly, e.g., in reference to series given by replacing the denominator in (1.9)
with a rational function inn, or in reference to alternating variants of (1.9), etc. Non-alternating
Euler-type sums are to be mainly considered in this article, and we refer the reader to [9] for

identities on extended Euler sums as in
∑∞

n=1

(−1)n+1H
(p)
kn

nq and
∑∞

n=1
(−1)n+1H

(p)
kn

nq .

2. A “ SPLITTING ” METHOD FOR EVALUATING SERIES INVOLVING H2
pn

The integration technique as formulated in the following proposition gives us a systematic
and powerful way of constructing proofs for new closed-form evaluations for families of series
involving quadratic/squared harmonic numbers or generalized harmonic numbers with an upper
parameter of2. Using Abel-type summation lemmas to try to find identities for series involving
H2

pn seems to be more “ad hoc” compared to how we may systematically apply the following
result.

Proposition 2.1. Letα andp be fixed parameters and letr(n) be a complex-valued sequence
such that the following properties hold: It is possible to reverse the order of summation and
integration in both

∞∑
n=0

αn r(n)

∫ 1

0

(
xpn ln(x)

1− x

)
dx

and
∞∑

n=0

αn r(n)

∫ 1

0

(
p n xpn−1 ln2(1− x)

)
dx,

and both of these infinite series are convergent. It then follows that the identity whereby

(2.1)
∞∑

n=0

αn r(n)H(2)
pn =

∫ 1

0

(
∞∑

n=0

αn r(n)
xpn ln(x)

1− x

)
dx+

π2

6

∞∑
n=0

αn r(n)
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must hold, and we also must have that:
∞∑

n=0

αn r(n)H2
pn =(2.2)

∫ 1

0

(
∞∑

n=0

αn r(n)
(
p n xpn−1 ln2(1− x)

))
dx−

∫ 1

0

(
∞∑

n=0

αn r(n)
xpn ln(x)

1− x

)
dx− π2

6

∞∑
n=0

αn r(n).

We see that from the commutativity assumptions given above, the desired identities follow
from Abel’s continuity theorem together with the integral formulas in (1.3) and (1.7), noting that
the right-hand side of the last equality in the above Proposition is

∑∞
n=0 α

n r(n)
(
H

(2)
pn +H2

pn

)
minus the initial series in the penultimate equation. It is remarkable how the splitting method, as
formulated above as Proposition 2.1, is so versatile and useful, in conjunction with the Wolfram
MathematicaIntegrate function, in the evaluation of intractable series involvingH2

pn. To
rigorously prove evaluations for such series, we determine antiderivatives for the last two inte-
grands in the above Proposition, and determining the appropriate limits of the symbolic forms
for such antiderivatives is usually a straightforward computational exercise; typically, if such
antiderivative evaluations, as provided byMathematica, are correct, then this is easily verified,
but actuallydeterminingthese evaluations, in the first place, requires, for the most part, very
non-trivial algorithms concerning the polylogarithm function. On this last point, we note that
Maple 2020is not, in general, able to evaluate the required series or antiderivatives involved in
our computations. In particular,Maple 2020is not able to evaluate the antiderivatives for any
of the following expressions that we later apply in this article: (2.5), (3.6), (4.6), (4.8), (4.9),
(4.14), (4.15), (4.16), (4.18), and (4.19).

We note that: In 2015, [32], V̆alean and Furdui evaluated a well-known series due to Au-
Yeung using the modified Abel summation lemma together with (1.3), so much of our present
work may be regarded as a non-trivial extension of [32], as we apply (1.3) to obtain many very
difficult antiderivatives based on developments in the application of the modified Abel lemma
subsequent to [32]; with regard to [32], we also refer the reader to Furdui and Vălean’s closely
related work in [13]. Apart from [32], the idea of using the moments ofln2(1−x) for x ∈ [0, 1)

in order to evaluate a sum involvingH2
k+H

(2)
k and to then “split” this evaluation using a separate

evaluation for a corresponding series withH2
k or H(2)

k as a factor has also been considered in
[31]; we also refer the reader to the very recent article [28], in which the generating function
(g.f.) for the sequence of squared harmonic numbers is used to calculate some infinite series
involvingH2

2n.

2.1. On the non-trivial nature of our applications of the splitting method. Inspired by the
applications of the modified Abel lemma on summation by parts from [8, 10, 34, 36], we are,
for the purposes of this article, mainly interested in the evaluation of sums as in

(2.3)
∞∑

n=1

∆(n)

Q(n)

where∆(n) is a harmonic-type number as inH(2)
pn orH2

pn andQ(n) is a product of two distinct
linear polynomials, as opposed to series as in Au–Yeung’s famous formula

∞∑
n=1

(
Hn

n

)2

=
17π4

360
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6 J. M. CAMPBELL AND K.-W. CHEN

and its recent generalizations [5, 28]. On the other hand, if we set∆(n) to be a product of
harmonic numbers with distinct indices, then such series may often be easily evaluated in a
straightforward way using previously known g.f. identities. For example, it is not difficult to
determine a closed form for the sum of all expressions as inHnH2n quotiented by(2n+1)(2n+
3) for all natural numbersn; in this regard, we may begin by simply applying an appropriate
operator to the g.f. for the sequence of even-indexed harmonic numbers so as to provide a simple
closed form for

(
H2n

2n+1
: n ∈ N0

)
, which, in turn, easily gives us an elementary closed form for(

H2n

(2n+ 1)(2n+ 3)
: n ∈ N0

)
;

differentiating this resultant identity, we may easily apply the usual moment formula for the
harmonic sequence to evaluate the series with which we had started. Such elementary g.f. ma-
nipulations cannot, in general, be applied to harmonic sums that we have successfully evaluated
using Proposition 2.1. In particular, let us consider the difficult series

(2.4)
∞∑

n=1

H2
n

(2n+ 1)(2n+ 3)

that is highlighted, as below, in Section 3.2. If we evaluate

(2.5)
∞∑

n=0

−nxn−1 ln(1− x)Hn

(2n+ 1)(2n+ 3)

symbolically, staring from the g.f. for the classical sequence of harmonic numbers, we obtain a
very complicated expression involving terms such as

Li 2
(

1
2
−
√

x
2

)
ln(1− x)

x5/2
,

and state-of-the-art computer algebra system (CAS) software cannot evaluate the required an-
tiderivative for the polylogarithmic evaluation for (2.5). So, this is very much indicative of the
remarkable nature about the elegant closed-form evaluation highlighted as (3.8) below.

As had been suggested, as above, our article is organized in such a way so as to be focused
on applications of Proposition 2.1 based on the kinds of series derived in [8, 10, 34, 36] from
the modified Abel lemma, with a particular regard to (2.3). However, Proposition 2.1 may be
applied much more generally to obtain new and non-trivial identities, and we encourage the
further application of this result, motivatived by the elegant equation

∞∑
n=0

(
1

4

)n(
2n

n

)
H2

n

n+ 1
= π2 + 4 ln2(2)

that we may prove in a direct way using Proposition 2.1.

3. APPLICATIONS OF RECENT RESULTS FROM CHEN AND CHEN AND FROM WANG

Let us consider some known results on harmonic sums derived from the modified Abel lemma
to illustrate how such results may often be improved upon so as to produce new results via the
identity in (1.3), and to determine simplified proofs of results from [8, 10, 34, 36].
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3.1. Series inspired by the work of Chen and Chen.An explicit identity for

(3.1)
∞∑

n=1

O
(s)
n

(n+ a)(n+ a+ 1)

for a ∈ N0 ands ∈ N is introduced in [8], and proved via the modified Abel lemma that we have
frequently referred to. Let us use this identity to provide an illustration as to how Proposition
2.1 may be applied to evaluate series containing squares of doubly indexed harmonic numbers
(cf. [28]).

From Chen and Chen’s identity for (3.1) from [8], we see that

(3.2)
∞∑

n=1

O
(2)
n

(n+ 1)(n+ 2)
=

3π2 − 8 ln(2)− 4

36
,

and from the identity displayed in (1.2), it is easily seen that

(3.3)
∞∑

n=1

H
(2)
2n

(n+ 1)(n+ 2)
=
π2

8
− 2 ln(2)

9
− 13

36
.

This may also be easily verified through a direct application of the identity in (1.7), and the
splitting technique from Section 2 can be shown to give us that:

(3.4)
∞∑

n=1

H2
2n

(n+ 1)(n+ 2)
=
π2

8
+

32 ln(2)

9
− 2 ln2(2)

3
+

25

36
.

This can also be shown by starting with the g.f. for the sequence of even-indexed harmonic
numbers, so as to evaluate, as an elementary function, the g.f. for the sequence of expressions
of the formH2n

n+1
, and from the identity whereby the(2n+3)th moment ofln(1−x) for x ∈ [0, 1)

equals−H2n+4

2n+4
, we may obtain the desired result, by rewriting this expression as

−
H2n + 1

2n+1
+ 1

2n+2
+ 1

2n+3
+ 1

2n+4

2(n+ 2)
.

This is a much less direct approach compared to our application of the splitting method to prove
(3.4). Furthermore, this alternate approach relies on a moment formula for expressions of the
form Hmx+b

mx+b
, and it is not clear as to how to apply similar methods to evaluate series as in (2.3)

in the case whereby the leading coefficient of the index of the numerator is not equal to the
leading coefficients for the denominator factors, as in (2.4). Also, by evaluating the g.f. for the
sequence of squared harmonic numbers (cf. [28]) as

2Li 2
(

x
x−1

)
− ln2(1− x)

2(x− 1)
,

we are able to symbolically evaluate the g.f. for the sequence of expressions of the formH2
n

2n+1
,

but this symbolic form is so extremely complicated that it is not possible for current CAS
software to evaluate the required antiderivative, in this case, to evaluate (2.4). This illustrates
the truly remarkable nature of our evaluation for (2.4).

3.2. An alternate proof for and an extension of an infinite series due to Wang.We offer a
demonstration of an application of our splitting technique to the series

(3.5)
∞∑

n=1

H
(2)
n

(2n+ 1)(2n+ 3)
=
π2

12
+ 2 ln(2)− 2
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8 J. M. CAMPBELL AND K.-W. CHEN

discovered by Wang in 2018, in [34], and highlighted as a Corollary in [34] to an identity
introduced and proved in [34] using the modified Abel summation lemma. Let us produce an
alternate proof of (3.5), again with the use of the polygamma identity from (1.7).

Alternate proof of Wang’s series evaluation in(3.5): We replace the numerator of the summand
in (3.5) with xn ln(x)

1−x
, and we make use of the Maclaurin series identity that is such that:

∞∑
n=1

(xn ln(x)
1−x

)
(2n+ 1)(2n+ 3)

=(√
x(2x− 3)− 3(x− 1) tanh−1

(√
x
))

ln(x)

6(x− 1)x3/2
.(3.6)

Using Mathematica, we may easily verify that the antiderivative of the right-hand side of the
above equality is

1

6

(
Li 2(1− x) +

3√
x

(√
x Li 2(x) +

√
x(ln(1− x)(ln(x) + 2)− 2 ln(x))+

2(ln(x) + 2) tanh−1
(√

x
) ))

,

which, in turn, gives us the desired result, takingx→ 0 andx→ 1.

If we are able to evaluate

(3.7)
∞∑

n=1

H
(2)
n +H2

n

(2n+ 1)(2n+ 3)
,

then, of course, such an evaluation, together with Wang’s formula in (3.5) would allow us to
“split” an analytic evaluation for (3.7), i.e., according to the terms of the above numerator.
Following this approach, we express (3.7) as the integral of

∞∑
n=1

nxn−1 ln2(1− x)

(2n+ 1)(2n+ 3)

for x ∈ (0, 1), i.e., the integral of

−
ln2(1− x)

(
3
√
x+ x tanh−1 (

√
x)− 3 tanh−1 (

√
x)
)

4x5/2

over(0, 1). We may easily evaluate∫
−
(
3
√
x− 3 tanh−1 (

√
x) + x tanh−1 (

√
x)
)
ln2(1− x)

4x5/2
dx

as an elementary function; following the splitting method, this gives us the following elegant
formula:

(3.8)
∞∑

n=1

H2
n

(2n+ 1)(2n+ 3)
= 2− π2

12
− 2 ln(2) + 2 ln2(2).

4. FURTHER APPLICATIONS INSPIRED BY THE MODIFIED ABEL LEMMA

The integral identities as given in Proposition 2.1 turn out to be extremely powerful in terms
of the main goal of this paper, i.e., to improve upon the results from [8, 10, 34, 36] using integral
identities as in Section 1.1.
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4.1. Generalizations of Wang’s series.Adopting notation from [34], we letgeneralized har-
monic numbersbe defined so that

h
(m)
0 (a, b) = 0 and h(m)

n (a, b) =
n∑

k=1

1

(ak − a+ b)m
.

The modified Abel lemma was used directly in [34] to prove that

(4.1)
∞∑

k=1

ah
(2)
k (a, b)

(ak + b)(ak − a+ b)
=

∞∑
k=0

1

(ak + b)3
,

but it would not, in general, be clear as to how to use Abel-type summation lemmas if we were
to sum over products ofh(2)

k (a, b) with rational functions apart from that displayed in the initial
summand in (4.1). As an immediate consequence of the above identity, we have that

(4.2)
∞∑

n=1

O
(2)
n

(2n− 1)(2n+ 1)
=

7ζ(3)

16
,

an evaluation that is also proved in [34] in a direct way via the Abel-type lemma in (1.1);
recalling the identity in (1.2), we rewrite this as

(4.3)
∞∑

n=1

H
(2)
2n − H

(2)
n

4

(2n− 1)(2n+ 1)
=

7ζ(3)

16
.

Applying reindexing to (3.5), we may “split” the above evaluation according to the numerator
of the above summand.

Example 4.1.We claim that both
∞∑

n=1

H
(2)
n

(2n+ z1)(2n+ z2)
and

∞∑
n=1

H2
n

(2n+ z1)(2n+ z2)

admit closed-form evaluations that may be determined with our master integral identity, for
distinct odd integersz1 andz2. For z1 = 1 andz2 = 3, we recall Wang’s series in(3.5), along
with our splitting technique applied to this series, giving us(3.8). As a natural generalization
of these results, let us consider the case whereby|z1 − z2| > 2. We restrict our attention to
the case wherebyz1, z2 ∈ N, as reindexing arguments may be easily applied to our results for
z1, z2 > 0. Through a direct application of our splitting method, we can show that

∞∑
n=0

H
(2)
n

(2n+ 1)(2n+ 5)
=
π2

18
+

10 ln(2)

9
− 31

27

and that
∞∑

n=0

H2
n

(2n+ 1)(2n+ 5)
=

4 ln2(2)

3
− 16 ln(2)

9
− π2

18
+

49

27
.

Example 4.2.The identity whereby
∞∑

n=1

H
(2)
n

(2n+ 1)(2n+ 2m+ 1)
=

π2

12m
Om +

2 ln 2

m
O(2)

m − 2

m

m∑
k=1

Ok

(2k − 1)2
(4.4)
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for m ∈ N may be proved using Theorem 5.1 from[8]. Thanks to our splitting technique, this
allows us to evaluate the series given by replacingH

(2)
n withH2

n in the above summand:

∞∑
n=0

H2
n

(2n+ 1)(2n+ 7)
=

46 ln2(2)

45
− 1058 ln(2)

675
− 23π2

540
+

16564

10125
,

∞∑
n=0

H2
n

(2n+ 1)(2n+ 9)
=

88 ln2(2)

105
− 15488 ln(2)

11025
− 11π2

315
+

1729753

1157625
,

∞∑
n=0

H2
n

(2n+ 1)(2n+ 11)
=

1126 ln2(2)

1575
− 633938 ln(2)

496125
− 563π2

18900
+

215844634

156279375
.

Through a direct application of our splitting integration method as applied to the series in
(4.4) for an arbitrary parameterm ∈ N, we have that

(4.5)
∞∑

n=1

H2
n

(2n+ 1)(2n+ 2m+ 1)

must be equal to the following, lettingΦ denote the Hurwitz–Lerch transcendent:∫ 1

0

(
(2m+ 1)

√
xΦ

(
x, 1,m+ 1

2

)
− 2 tanh−1 (

√
x)
)
ln2(1− x)

8mx3/2
dx−

π2Om

12m
− 2 ln(2)O

(2)
m

m
+

2

m

m∑
k=1

Ok

(2k − 1)2
.

This identity is powerful enough, on its own, to be applied directly to evaluate series as in (4.5)
for m ∈ N.

Example 4.3. Through a direct application of the above identity for(4.5), by settingm = 6,
we find that

∞∑
n=1

H2
n

(2n+ 1)(2n+ 13)

evaluates as

6508 ln2(2)

10395
− 42354064 ln(2)

36018675
− 1627π2

62370
+

160848964597

124804708875
.

Again with regard to Wang’s series as given in (4.2) and (4.3), let us now consider generaliz-
ing this series by setting the index parameterp in Proposition 2.1 to be equal to2.

Example 4.4.We highlight the evaluation whereby

∞∑
n=0

H
(2)
2n

(2n+ 1)(2n+ 3)
=

5π2

96
+

ln(2)

2
− 5

8
,
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which, according to our splitting method, comes from indefinitely integrating the following,
settingα = 1, and again lettingp = 2, and writing r(n) in place of the rational function

1
(2n+1)(2n+3)

:

∞∑
n=0

αn r(n)

(
xpn ln(x)

1− x

)
=

−
ln(x)

(
x2 tanh−1(x) + x− tanh−1(x)

)
2(x− 1)x3

.(4.6)

As for our evaluation whereby

∞∑
n=0

H2
2n

(2n+ 1)(2n+ 3)
=

5π2

96
+

ln2(2)

2
− ln(2) +

9

8
,

this requires, following our splitting technique, the determination of an antiderivative for the
following, which is non-trivial:

−
ln2(1− x)

(
x2 tanh−1(x) + 3x− 3 tanh−1(x)

)
2x4

.

Example 4.5.Recalling Example 4.1, we also find that both

(4.7)
∞∑

n=1

H
(2)
2n

(2n+ z1)(2n+ z2)
and

∞∑
n=1

H2
2n

(2n+ z1)(2n+ z2)

admit closed-form evaluations according to our splitting method, for distinct odd elementsz1

andz2 of Z. For the sake of brevity, we record the following two evaluations:

∞∑
n=0

H
(2)
2n

(2n+ 1)(2n+ 5)
=

43π2

1152
+

5 ln(2)

18
− 10

27
,

∞∑
n=0

H2
2n

(2n+ 1)(2n+ 5)
=

43π2

1152
+

ln2(2)

3
− 31 ln(2)

36
+

481

432
.

4.2. A series involvingH(2)
4n . Our integration methods have led us to discover a new family

of series for Catalan’s constantG :=
∑∞

n=0
(−1)n

(2n+1)2
that naturally extend Wang’s series from

(4.3). To begin with, we highlight the following evaluation as a Corollary to Proposition 2.1,
as this evaluation is of interest in its own right: Harmonic-type numbers of the formH

(m)
pn for

p > 2 are not considered in [8, 10, 34, 36], and the simple summand and series evaluation
given below are in stark contrast to the very non-trivial and complicated antiderivative required
in our proof. We also make note of the below evaluation relating the following fundamentally
important mathematical constants in an elegant way, again with regard to the simplicity of the
below summand: Catalan’s constant, the Basel constantζ(2) = π2

6
, Archimedes’ constantπ,

and the natural logarithm of2.

Corollary 4.1. The symbolic evaluation

∞∑
n=0

H
(2)
4n

(2n+ 1)(2n+ 3)
= −G

15
+

89π2

1920
+

2π

225
+

157 ln(2)

1800
− 1669

7200

holds true.
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Proof. Using our notation from Proposition 2.1, we setα = 1 andp = 4, and we let the rational
functionr(n) be equal to 1

(2n+1)(2n+3)
. With this set-up, we have that:

∞∑
n=0

αn r(n)

(
xpn ln(x)

1− x

)
=

−
ln(x)

(
x2 − tanh−1 (x2) + x4 tanh−1 (x2)

)
2(x− 1)x6

.(4.8)

We may verify the following antiderivative evaluation for the right-hand side of the above equal-
ity, i.e., by differentiating the followingMathematicaoutput and simplifying.

(-288/x^3 - 450/x^2 - 800/x + 512 * ArcTan[x] + (288 * ArcTanh[x^2])/x^5 +
(450 * ArcTanh[x^2])/x^4 + (800 * ArcTanh[x^2])/x^3 + (1800 * ArcTanh[x^2])/x^2 +
544* Log[1 - x] - 3600 * Log[x] - (1440 * Log[x])/x^3 - (1800 * Log[x])/x^2 -
(2400 * Log[x])/x + 960 * ArcTan[x] * Log[x] + (1440 * ArcTanh[x^2] * Log[x])/x^5 +
(1800 * ArcTanh[x^2] * Log[x])/x^4 + (2400 * ArcTanh[x^2] * Log[x])/x^3 + (3600 *
ArcTanh[x^2] * Log[x])/x^2 + 2820 * Log[1 - x] * Log[x] - 544 * Log[1 + x] - 1020 *
Log[x] * Log[1 + x] + 225 * Log[1 - x^2] - 225 * Log[1 + x^2] - 900 * Log[x] *
Log[1 + x^2] + 900 * Log[1 - x^4] + 1800 * Log[x] * Log[1 - x^4] + 7200 *
PolyLog[2, 1 - x] - 1020 * PolyLog[2, -x] - (480 * I) * PolyLog[2, (-I) * x] +
(480 * I) * PolyLog[2, I * x] + 2820 * PolyLog[2, x] - 450 * PolyLog[2, -x^2] + 450 *
PolyLog[2, x^4])/14400

Computing the required limits forx→ 0 and forx→ 1, we obtain the desired result, according
to Proposition 2.1.

We note that our splitting method cannot be applied directly withα, p, andr(n) as in the
above proof, at least with current versions ofMathematica, since this would require the evalua-
tion of the intractable integral

(4.9) −
∫

ln2(1− x)
(
3x2 − 3 tanh−1 (x2) + x4 tanh−1 (x2)

)
x7

dx,

which state-of-the-art CAS software cannot manage to compute. Furthermore, although we
may mimic the above proof to show that

∞∑
n=0

H
(2)
4n

(2n+ 1)(2n+ 5)
= −13G

315
+

5473π2

161280
+

491π

99225
+

36881 ln(2)

793800
− 42058

297675
,

if we replace the denominator factor(2n + 5) with (2n + 7), we again encounter an indefinite
integral thatMathematicacannot evaluate, which makes Corollary 4.1 all the more remarkable.

4.3. A bisection argument. We return to the problem of evaluating the series obtained by
replacingH(2)

4n with H2
4n in Corollary 4.1. Since it is far from clear as to how it may be possible

to compute the integral in (4.9), we intend to devise an alternative approach to applying our
splitting method in order to evaluate the companion

(4.10)
∞∑

n=0

H2
4n

(2n+ 1)(2n+ 3)

to the series in the aforementioned Corollary. In particular, if we are able to evaluate

(4.11)
∞∑

n=0

H2
2n

(n+ 1)(n+ 3)
and

∞∑
n=0

(−1)n H2
2n

(n+ 1)(n+ 3)
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separately, then this immediately gives us an evaluation for (4.10), i.e., simply by adding the
two series in (4.11) and writing this sum as a single series, and then bisecting this resultant
series. Considering the “elusive” nature of the series in (4.10), as given by how recalcitrant the
corresponding integral in (4.9) is, we highlight the evaluation below as a Corollary.

Corollary 4.2. The symbolic evaluation whereby
∞∑

n=0

H2
4n

(2n+ 1)(2n+ 3)

equals

−G

15
− π2

640
+

247π

900
+
π ln(2)

60
− 3 ln2(2)

40
+

107 ln(2)

450
+

5929

7200
must hold.

Proof. Settingα = 1 andp = 2 andr(n) = 1
(n+1)(n+3)

in Proposition 2.1, we find that

∞∑
n=0

αn r(n)

(
xpn ln(x)

1− x

)
is equal to

ln(x) (−x4 − 2x2 − 2 ln (1− x2) + 2x4 ln (1− x2))

4(x− 1)x6
,

and, applying
∫
· dx to the right-hand side, we may verify the following verbatimMathematica

output.

-(144 * x^2 + 225 * x^3 + 472 * x^4 - 1669 * x^5 * Log[1 - x] + 720 * x^2 * Log[x] + 900 *
x^3 * Log[x] + 1560 * x^4 * Log[x] + 2250 * x^5 * Log[x] - 581 * x^5 * Log[1 + x] - 780 *
x^5 * Log[x] * Log[1 + x] + 144 * Log[1 - x^2] + 225 * x* Log[1 - x^2] + 400 * x^2 *
Log[1 - x^2] + 900 * x^3 * Log[1 - x^2] + 720 * Log[x] * Log[1 - x^2] + 900 * x*
Log[x] * Log[1 - x^2] + 1200 * x^2 * Log[x] * Log[1 - x^2] + 1800 * x^3 * Log[x] *
Log[1 - x^2] - 780 * x^5 * PolyLog[2, 1 - x] - 780 * x^5 * PolyLog[2, -x])/(7200 *
x^5)

According to our splitting method, this can be shown to give us that:
∞∑

n=0

H
(2)
2n

(n+ 1)(n+ 3)
=

47π2

480
− 34 ln(2)

225
− 3707

14400
.

We leave it to the reader to verify the remaining computations required to compute our series in
(4.11) according to our splitting technique, which gives us that

∞∑
n=0

H2
2n

(n+ 1)(n+ 3)
=

47π2

480
− 8 ln2(2)

15
+

679 ln(2)

225
+

12587

14400
.

The first part of Proposition 2.1 can be shown to give us that
∞∑

n=0

(−1)nH
(2)
2n

(n+ 1)(n+ 3)
= −2G

15
− π2

192
+

4π

225
+

293 ln(2)

900
− 2969

14400
,

and, again by our splitting method, the above evaluation can be used to give us that:
∞∑

n=0

(−1)nH2
2n

(n+ 1)(n+ 3)
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equals

−2G

15
− 97π2

960
+

247π

450
+
π ln(2)

30
+

23 ln2(2)

60
− 572 ln(2)

225
+

11129

14400
.

This gives us the desired result, according to the bisection approach indicated above.

We claim that all series of the forms
∞∑

n=0

H
(2)
4n

(2n+ z1)(2n+ z2)
and

∞∑
n=0

H2
4n

(2n+ z1)(2n+ z2)

must admit closed-forms involving Catalan’s constant, for odd integersz1 andz2. From the
bisection scheme employed in our proof of Corollary 4.2, this motivates the study of sums as in

∞∑
n=0

H
(2)
pn

(n+ z1)(n+ z2)
and

∞∑
n=0

(−1)nH
(2)
pn

(n+ z1)(n+ z2)

and as in

(4.12)
∞∑

n=0

H2
pn

(n+ z1)(n+ z2)
and

∞∑
n=0

(−1)nH2
pn

(n+ z1)(n+ z2)

for z1, z2 ∈ N. However, even for the seemingly manageable case wherebyz1 = 1, z2 = 2, and
p = 2, the above alternating sum in (4.12) proves to be difficult, withMathematicaunable to
evaluate the required antiderivative, in this case.

4.4. Polynomial denominators of arbitrary degree. Let us consider summations of the fol-
lowing form:

A(k) :=
∞∑

n=0

H
(2)
n

(2n+ 1)(2n+ 3) · · · (2n+ 2k − 1)
,

wherek ≥ 2 is an integer. We consider two different ways of investigating series of this form:
We may either use an integral formula for the numerator, or we may apply partial fraction
decomposition to the rational function factor in the above summand. This former approach
gives us that

A(k) =
k − 1

2

(k − 1)(2k − 1)!!

π2

6
+

1

(2k − 1)!!

∫ 1

0

lnx

1− x
2F1

[
1, 1

2

k + 1
2

∣∣∣∣∣ x
]
dx,

where2F1 is the ordinary hypergeometric function and(2k − 1)!! = 1 · 3 · 5 · · · (2k − 1).
Alternatively, the latter approach considered above necessarily gives us that:

A(k) =
π2

12(k − 1)(2k − 3)!!
+

2 ln 2Ok−1

(k − 1)(2k − 3)!!

− 1

2k(k − 1)!

k−2∑
r=0

(
k − 2

r

)
(−1)rOr+1.

We find that our master integral identity is strong enough to be able to directly evaluate series
as in

∞∑
n=0

H
(2)
pn

(n+ 1)(n+ 2) · · · (n+ k)

and
∞∑

n=0

H2
pn

(n+ 1)(n+ 2) · · · (n+ k)
,
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and many similar expressions.

Example 4.6. Through a direct application of our splitting method, we find that the equalities
whereby

∞∑
n=0

H
(2)
2n

(n+ 1)(n+ 2)(n+ 3)
=

13π2

480
− 16 ln(2)

225
− 1493

14400

and
∞∑

n=0

H2
2n

(n+ 1)(n+ 2)(n+ 3)
=

13π2

480
+

121 ln(2)

225
− 2 ln2(2)

15
− 2587

14400

both hold.

4.5. Denominator factors with distinct leading coefficients.LetOn = 1− 1
3
+ · · ·+ (−1)n+1

2n−1

denote thealternating odd harmonic numberof a given ordern ∈ N. Quite recently, Sofo and
Nimbran, in [26], made use of the moments of expressions as inlnq x lnp(1 + δx) for x ∈ (0, 1]
to obtain some new Euler-like sum identities, including:

∞∑
n=1

O2n−1

(2n− 1)(4n− 3)
=
G

2
+

9ζ(2)

16
− π ln 2

8
,

∞∑
n=1

O2n−1

(2n− 1)(4n− 1)
=
G

2
− 3ζ(2)

16
+
π ln 2

8
.

This inspires us to consider the case whereby we set the functionr(n) in Proposition 2.1 to
be equal to the reciprocal of a product of linear polynomials with distinct leading coefficients.
Applying our splitting technique, this leads us to non-trivial results, as suggested below.

Example 4.7.Let us highlight the interesting evaluations whereby
∞∑

n=0

H
(2)
n

(n+ 1)(2n+ 1)
=
π2 ln(2)

3
− 3ζ(3)

2

and

(4.13)
∞∑

n=0

H2
n

(n+ 1)(2n+ 1)
=

5ζ(3)

2
− π2 ln(2)

3
+

8 ln3(2)

3
.

The evaluation of this former series requires, according to our splitting method, the symbolic
evaluation of the antiderivative for

(4.14) −
ln(x)

(
ln(1− x) + 2

√
x tanh−1 (

√
x)
)

(x− 1)x
,

giving us a very complicated expression involving polylogarithmic expressions such as

Li 3
(
e2 tanh−1(

√
x)
)
,

and similarly for(4.13).

We note that an infinite series of the form in (2.2), up to an index shift, with a rational
function factor given by a linear polynomial quotiented by a quartic denominator, was evaluated
by Michael Vowe in [33] via a proof mainly oriented around telescoping arguments, whereas
Chu proved the same result in [10], highlighted as a Corollary to an application of the modified
Abel lemma that also involves telescoping; as it turns out, the splitting method upon which our
article is based may be applied directly to obtain the same result, which further emphasizes the
versatility of Proposition 2.1, and how the integration technique given by this Proposition may
be used in a very systematic way, with regard to sums as in (2.2).
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4.6. Cubic harmonic sums. In general, evaluating series involving cubic harmonic numbers
is much more difficult compared to the evaluation of series involvingH2

n as a factor in the
summand forn ∈ N. We note that a family of cubic harmonic sums is evaluated in [16] using
a somewhat similar approach compared to our splitting method, i.e., by using series involving
HnH

(2)
n together with integral identities in order to evaluate Euler-type sums involvingH3

n.
However, our splitting method may be applied to generalize results from [16]. For example, by
indefinitely integrating

(4.15) −
(
2x+ (x− 1) ln2(1− x)− 2(x− 1) ln(1− x)

)
ln(x)

2(x− 1)x2

and

(4.16) − (ln(1− x)− 2) ln2(1− x)((x− 2) ln(1− x)− 2x)

2x3
,

a direct application of our splitting method gives us that

∞∑
n=0

H3
n

(n+ 1)(n+ 2)
= 4ζ(3) + 1 +

π2

3
,

and an identity for a family of sums with quadratic denominators generalizing this result is
proved in [16, p. 430], but our integration method may be applied to much more general cubic
harmonic sums, as below:

ζ(3)− 23

32
=

∞∑
n=0

H3
n

(n+ 1)(n+ 2)(n+ 3)
.

We note that applications of the modified Abel lemma as given in [8] (see Theorem 3.1) may
also be applied to prove the above evaluations involving Apéry’s constant.

We also refer the interested reader to the following references concerning cubic harmonic
sums: [10, 17, 18, 30, 36]. A particular source of motivation in the application of our methods
comes from the field of number theory, making a particular note of the reference [2], in which
the closed-form evaluation

(4.17) ζ(3) =
1

9

∞∑
n=1

H3
n + 3HnH

(2)
n + 2H

(3)
n

2n

is highlighted as a main result and proved using integral identities for Stirling numbers. As it
turns out, our splitting method may be applied in a direct way to greatly improve upon such
results, e.g., by separately evaluating the series obtained by expanding the above summand.
There actually is already a known evaluation for the g.f. for cubed harmonic numbers, and
Mathematicais actually able to evaluate

∞∑
n=1

HnH
(2)
n

2n
,

but we can rigorously prove such results and systematically generalize such results using Propo-
sition 2.1. To begin with, we claim that the power series

∞∑
n=0

ynHnH
(2)
n
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admits a polylogarithmic form. In this direction, we start with the g.f. for the harmonic se-
quence, so that

(4.18)
∞∑

n=0

ynHn (xn ln(x))

1− x
= − ln(x) ln(1− xy)

(x− 1)(xy − 1)
,

with Mathematicabeing able to provide an explicit evaluation for the antiderivative of the right-
hand side, with respect tox. In order to evaluate the power series

∞∑
n=0

ynH3
n,

we begin by differentiating the g.f. for harmonic numbers. According to the usual moment
formula forH2

n + H
(2)
n , following our splitting method, we need to evaluate the antiderivative

for the following, with respect tox:

(4.19)
∞∑

n=0

ynHn

(
nxn−1 ln2(1− x)

)
= −y ln2(1− x)(ln(1− xy)− 1)

(xy − 1)2
.

Mathematicais able to indefinitely integrate the right-hand side with respect tox, and the re-
quired limit formulas are easily seen to hold. So, for example, we may determine that

∞∑
n=1

H3
n

2n
= ζ(3) +

π2 ln(2)

3
+

ln3(2)

3
,

and we may similarly evaluate the other two series obtained by expanding the summand of
Batir’s series in (4.17).

5. CONCLUSION

We very much encourage further applications of our splitting method. For the time being,
we offer a brief survey of extant results on the application of identities involving expressions as
in H2

pn ± H
(2)
pn , since our methods, as we have demonstrated, are extremely powerful when it

comes to such identities, motivating the exploration as to how such methods may be applied in
conjunction with the results put forth in the references provided below.

Equivalent forms of the moment identity in (1.3) and variants of this moment formula are of-
ten included in Sofo’s work in the study of harmonic sums; in this regard, we begin by recording
the identity

(5.1)
∫ 1

0

xm−1 ln2(1− x) dx =
m−1∑
n=0

(−1)n

(
m− 1

n

)
2

(n+ 1)3

indicated in [25], in which identities for
∑∞

n=1
H2

n

n(n+k)
and

∑∞
n=1

H2
n

n(n+k
k )

are given; the same

identity in (5.1) is also noted in [12], in which the aforementioned Au-Yeung series is general-
ized. Also, we make a particular note of the identity whereby

∞∑
n=1

(−1)n+1H
2
n +H

(2)
n(

n+k
k

) = k

∫ 1

0

∫ 1

0

x(1− x)k−1 ln2(1− y)

(1 + xy)2
dx dy,

given by Sofo in 2015, in [24], in which the evaluation of
∞∑

n=1

(−1)n+1 H2
n(

n+k
k

) and
∞∑

n=1

(−1)n+1 H2
n

n
(

n+k
k

)
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is investigated. We note that Sofo [23] also used the moment formula in (1.3) along with
a similar kind of splitting approach as suggested in Section 3 to prove an explicit identity for∑∞

n=1
H2

n

n2q+1 ; we also suggest that the interested reader review the results in [19, 21, 22] involving

quantities of the formH2
n + H

(2)
n . For additional publications on integral identities as in (1.3)

and/or on series involving factors as inH2
n ± H

(2)
n , we refer the reader to [14, 15, 20, 27, 37],

along with [29, §6].
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[30] C. I. VĂLEAN, A master theorem of series and an evaluation of a cubic harmonic series,J. Class.
Anal., 10 (2017), pp. 97–107.
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