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ABSTRACT. The aim of present paper is to derive a higher bound (HB) of 3rd order Hankel
determinant for a collection of holomorphic mappings connected with exactly to the right side
of the lemniscate of Bernoulli, whose polar coordinates form isr2 = 2 cos2(2θ). The method
carried in this paper is more refined than the method adopted by the authors (see [1]), who
worked on this problem earlier.
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1. ORIGINATION

LetA represent a collection of entire holomorphic mappingsf , namely

(1.1) f(z) = z +
∑
i≥2

aiz
i

in the unit discUd = {z ∈ C : |z| < 1} whose subfamily is denoted byS, possessing functions
which are univalent. A correspondencet1, which is regular is subordinate to another regular
correspondencet2, expressed ast1 ≺ t2, if and only if there occurs a Schwarz’s functionν,
analytic inUd satisfying the propertiesν(0) = 0 and |ν(z)| < 1 with t1(z) = t2(ν(z)). In
specific, ift2 is one-to-one (univalent) inUd thent1(0) = t2(0) andt1(Ud) ⊂ t2(Ud).

Theqth order Hankel functional for the regular mappingf , was defined by Pommerenke [2],
which has been investigated by many authors, as follows.

(1.2) Hq,t(f) =

∣∣∣∣∣∣∣∣
at at+1 . . . at+q−1

at+1 at+2 . . . at+q
...

...
...

...
at+q−1 at+q . . . at+2q−2

∣∣∣∣∣∣∣∣
Herea1 = 1, q andt are positive integers.

In recent years, the research has concentrated on the estimation ofH2,2(f), known as the
second Hankel functional obtained forq = 2 = t in (1.2), given by

H2,2(f) =

∣∣∣∣a2 a3

a3 a4

∣∣∣∣ = a2a4 − a2
3.

Many authors obtained results associated with estimation of HB of the functionalH2,2(f)
for dissimilar sub-collections of univalent and multivalent holomorphic mappings. For instance
q = 3 seems to be more tough than forq = 2. A small number of papers have been devoted for
the study of 3rd order Hankel determinant denoted byH3,1(f), obtained forq = 3 andt = 1 in
(1.2), gives

(1.3) H3,1(f) = a5(a3 − a2
2)− a4(a4 − a2a3) + a3(a2a4 − a2

3).

The concept of estimation of an upper bound forH3,1(f) was firstly introduced and studied
by Babalola [3], who tried to estimate for this functional to the classesR, S∗ andK, obtained
as follows:

(i) f ∈ S∗ ⇒ |H3,1(f)| ≤ 16
(ii) f ∈ K ⇒ |H3,1(f)| ≤ 0.714

(iii) f ∈ R ⇒ |H3,1(f)| ≤ 0.742

By the motivation of the results derived by many authors who are working in this direction
(see [4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), in this paper, we are making an attempt to adopt
more concise method than the procedure used by the authors Raza and Malik [1], who worked
on this problem earlier in obtaining HB to the functionalH3,1(f) for the memberf belonging
to the following class.

Definition 1.1. A memberf ofA is in the familySL∗, consisting of regular mappings connected
to leminscate of Bernoulli

⇔
{

zf ′(z)

f(z)

}
≺ {1 + z}

1
2 = q(z), z ∈ Ud.
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In proving our result, we require a few sharp estimates in the form of lemmas valid for
mappings possessing +ve real part.

Let ω indicate the family of members consisting ofg, whereg is the Caratheodòry function
[14], of the form

(1.4) g(z) = 1 + c1z + c2z
2 + c3z

3 + . . . ,

which are regular with Reg(z) > 0 in Ud.

Lemma 1.2. ([16]) If g ∈ ω, then the inequality|cn − ηckcn−k| ≤ 2, holds for the positive
integersn, k, with n > k andη ∈ [0, 1].

Lemma 1.3. ([17]) If g ∈ ω, then the inequality|cn − ckcn−k| ≤ 2, satisfies for the natural
numbersn, k, with n > k

Lemma 1.4. ([18]) If g ∈ ω then |cσ| ≤ 2, for eachσ ≥ 1 and the external function is
g(z) = 1+z

1−z
, z ∈ Ud.

Lemma 1.5. ([19]) If f ∈ SL∗, then |a5| ≤ 1
8

and this inequality becomes equality for the
functionz +

∑∞
j=2

1
2j

zj.

Lemma 1.6. ([20]) If g ∈ ω, then|c3 − 2c1c2 + c3
1| ≤ 2.

In order to obtain our result, we referred to the sophisticated procedure prepared by Libera
and Zlotkiewicz [21], widely performed by a large number of authors.

2. M AIN RESULT

Theorem 2.1. If f ∈ SL∗ given in (1.1) then|H3,1(f)| ≤ 43

576
.

Proof. For the functionf ∈ SL∗, from its Definition given in 1.1,

(2.1)
zf ′(z)

f(z)
≺ q(z) = {1 + z}

1
2 .

By the principle of subordination, there occurs a Schwarz’s functionν(z) with |ν(z)| < 1

(2.2)

[
zf ′(z)

f(z)

]
= [q {ν(z)}], z ∈ Ud.

Construct a mapping

(2.3) ν(z) =
g(z)− 1

g(z) + 1
⇔ g(z) =

1 + ν(z)

1− ν(z)
= 1 +

∞∑
n=1

cnz
n.

From (2.1), (2.2) and (2.3), we obtain

(2.4)

{
zf ′(z)

f(z)

}
= [q {ν(z)}] =

{
1 +

g(z)− 1

g(z) + 1

} 1
2

=

{
2g(z)

g(z) + 1

} 1
2

.

Considering the expressions forf , f ′ andg in (2.4), which simplifies to

1 + a2z +
[
2a3 − a2

2

]
z2 +

[
3a4 − 3a2a3 + a3

2

]
z3

+
[
4a5 − 4a2a4 − 2a2

3 + 4a3a
2
2 − a4

2

]
z4 + . . .

= 1 +
1

4
c1z +

[
1

4
c2 −

5

32
c2
1

]
z2 +

[
1

4
c3 −

5

16
c1c2 +

13

128
c3
1

]
z3

+

[
1

4
c4 −

5

32
c2
2 −

5

16
c1c3 +

39

128
c2
1c2 −

141

2048
c4
1

]
z4 + . . .(2.5)
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Equating the coefficients ofz, z2, z3 andz4 in (2.5), after simplifying, we obtain

a2 =
c1

4
; a3 =

1

8

(
c2 −

3

8
c2
1

)
; a4 =

1

48

(
4c3 −

7

2
c1c2 +

13

16
c3
1

)
;

a5 =
1

96

(
6c4 − 3c2

2 −
11

2
c1c3 +

17

4
c2
1c2 −

49

64
c4
1

)
.(2.6)

Putting the values namelya2, a3, a4 anda5 from (2.6) in the functional given in (1.3), it simpli-
fies to

H3,1(f) = a5

[
1

8

(
c2 −

7

8
c2
1

)]
− a4

[
1

384

(
32c3 − 40c1c2 + c3

1

)]
+ a3

[
1

12288

(
256c1c3 − 192c2

2 − 80c2
1c2 + 25c4

1

)]
.(2.7)

Grouping the terms in the above expression, we have

H3,1(f) = a5
1

8

[(
c2 −

7

8
c2
1

)]
− a4

1

384

[
11

(
c3 − 2c1c2 + c3

1

)
+ 18 (c3 − c1c2) + 3c3

]
+ a3

1

12288

[
256c1

(
c3 −

192

256
c2
2

)
− 80c2

1

(
c2 −

25

80
c2
1

)]
.(2.8)

Applying the triangle inequality in the expression (2.8), we obtain

|H3,1(f)| ≤ |a5|
8

[∣∣∣∣c2 −
7

8
c2
1

∣∣∣∣] +
|a4|
384

[
11

∣∣c3 − 2c1c2 + c3
1

∣∣ + 18 |c3 − c1c2|+ 3 |c3|
]

+
|a3|

12288

[
256 |c1|

∣∣∣∣c3 −
192

256
c2
2

∣∣∣∣ + 80
∣∣c2

1

∣∣ ∣∣∣∣c2 −
25

80
c2
1

∣∣∣∣] .(2.9)

Using the lemmas 1.2, 1.3, 1.4, 1.5 and 1.6 in the above inequality, it simplifies to

(2.10) |H3,1(f)| ≤
[(

1

8

) (
1

4

)
+

(
1

6

) (
1

6

)
+

(
1

4

) (
1

16

)]
=

43

576
.

Remark2.2. The above result coincides with that of Raza and Malik [1].

3. CONCLUSION

A higher bound of 3rd order Hankel determinant for a collection of holomorphic mappings
connected with exactly to the right side of the lemniscate of Bernoulli, whose polar coordinates
form is r2 = 2 cos2(2θ) has been estimated. The result,|H3,1(f)| ≤ 43

576
, coincides with the

previous study by Raza and Malik [1].
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