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ABSTRACT. The aim of present paper is to derive a higher bound (HB)"6fdder Hankel
determinant for a collection of holomorphic mappings connected with exactly to the right side
of the lemniscate of Bernoulli, whose polar coordinates forn?is= 2 cos?(26). The method
carried in this paper is more refined than the method adopted by the authors!(see [1]), who
worked on this problem earlier.
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1. ORIGINATION

Let .4 represent a collection of entire holomorphic mappifigeamely

(1.2) f(z)=2z+ Z a;2

1>2

in the unit disd4; = {z € C : |z| < 1} whose subfamily is denoted I8} possessing functions
which are univalent. A correspondenge which is regular is subordinate to another regular
correspondence,, expressed a§ < to, if and only if there occurs a Schwarz’'s function
analytic ini, satisfying the properties(0) = 0 and|v(z)| < 1 with ¢,(2) = ta2(v(z)). In
specific, ift, is one-to-one (univalent) i, thent; (0) = ¢5(0) andt, (Uy) C t2(Uy).

The " order Hankel functional for the regular mappifigwas defined by Pommerenke [2],
which has been investigated by many authors, as follows.

Qg gyl o -- Opqg-1
Ai+1  Qgg2 ... Qttq
Ai+q—1 Qi+q --- (14292

Herea, = 1, ¢ andt are positive integers.
In recent years, the research has concentrated on the estimatidn, Of), known as the
second Hankel functional obtained fpr= 2 = ¢ in (1.7), given by

Gz as

2
= Q904 — Qq.
as a4 204 3

Hyo(f) =

Many authors obtained results associated with estimation of HB of the functifnalf)
for dissimilar sub-collections of univalent and multivalent holomorphic mappings. For instance
q = 3 seems to be more tough than fp& 2. A small number of papers have been devoted for
the study of 3* order Hankel determinant denoted Hy, ( f), obtained fory = 3 andt = 1 in

(1.7), gives
(1.3) Hy,1(f) = as(az — a3) — as(as — asaz) + az(asay — a3).

The concept of estimation of an upper bound fy, (/) was firstly introduced and studied
by Babalolal[3], who tried to estimate for this functional to the clagges™ andC, obtained
as follows:
() feS = |Hs(f)] <16
(i) feK=|Hs:(f)] <0.714
(i) feR=|Hs1(f) <0.742
By the motivation of the results derived by many authors who are working in this direction
(seel4]5,B,6,17,8/9, 10,111,112/ 13] 14, 15]), in this paper, we are making an attempt to adopt
more concise method than the procedure used by the authors Raza and Malik [1], who worked
on this problem earlier in obtaining HB to the functiorfal , () for the memberf belonging
to the following class.

Definition 1.1. A membelf of A is in the familyS L*, consisting of regular mappings connected
to leminscate of Bernoulli

Ui

} < {1+z}% =q(2), z€Uy.
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In proving our result, we require a few sharp estimates in the form of lemmas valid for
mappings possessing +ve real part.

Let & indicate the family of members consisting gfwhereg is the Caratheodory function
[14], of the form
(1.4) g(2) =1+ crz+cp2® +e32® + ...,
which are regular with Re(z) > 0 in U;.
Lemma 1.2. ([16]) If ¢ € @, then the inequalityc,, — ncre,—k| < 2, holds for the positive
integersn, k, withn > k andn € [0, 1].
Lemma 1.3. ([17]) If ¢ € @, then the inequalityc,, — crc,,—x| < 2, satisfies for the natural
numbersn, k, withn > k

Lemma 1.4. ([18]) If ¢ € & then|c,| < 2, for eacho > 1 and the external function is
9(2) = 1, 2 € Ua.

Lemma 1.5. ([19]) If f € SL*, thenlas| < & and this inequality becomes equality for the
functionz + > _°°

R
J22JZ

Lemma 1.6. ([20]) If g € @, then|cs — 2¢1¢0 + 3| < 2.

In order to obtain our result, we referred to the sophisticated procedure prepared by Libera
and Zlotkiewicz [21], widely performed by a large number of authors.

2. MAIN RESULT

Theorem 2.1.1f f € SL* giveniin ) thenHs ;(f)| < 54736

Proof. For the functionf € SL£*, from its Definition given in 1.1,

2f'(2) _ 1
(2.1) 8 <q(z)={1+=z}2.
By the principle of subordination, there occurs a Schwarz’s funetien with |v(z)| < 1
2f(2) = v(z z
2.2 ) e, et
Construct a mapping
-1 14+v
(2.3) l/(z):‘ggzﬁﬁg(z): - i —1+ch
From (2.1),[(2.R) and (2 3), we obtain
SOV o {q L 9@ =1 [ 20() \F
@9 i) v ={i- i} - )

Considering the expressions ffr f” andg in (2.4), which simplifies to
14+ asz + [2a3 — ag} 22+ [3a4 — 3aqas + ag] 23
+ [4a5 — 4dagay — 2a§ + 4a3a§ — a‘ﬂ A4

1 1 5 1 5) 13
=1+-cz+ {402 — —cf] 2+ {—03 —Ci1Cy + — 3] 23

1 32 1% 7 16 128
1 5, 5 39 141
2.5 LR e P
(2:5) * [404 3227 160 T 1A T 204801} s
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Equating the coefficients af 22, 23 andz* in (2.5), after simplifying, we obtain

1 3 1 7 13
a5 =" a3 = - (Cz - —C%) ;g = (403 — SCic + —C1> ;

4 8 8 48 2 16
1 11 17 49
(2.6) as = 9% (604 — 302 5 —cyc3 + IC%CQ 64 )

Putting the values nameby, as, a, andas from (2.8) in the functional given iri (1.3), it simpli-
fiesto

1 7 1
Hs1(f) = as [é (02 — gcfﬂ — ay [384 (32¢3 — 40cico + cl)}
1
(2.7) +as {12288 (256¢1c5 — 192¢5 — 80cics + 2501)] :

Grouping the terms in the above expression, we have

1 7 1
Hs1(f) = asg [(02 - —Cfﬂ — as=— [11 (e5 — 2c102 + &}) + 18 (c3 — c1¢2) + 3cs]

8 8 384
1 192 25
(2.8) +as 19983 [25601 (03 - %cg) —80c3 (02 — %cf)] .
Applying the triangle inequality in the expressi¢n (2.8), we obtain
a 7
HaaN < B0 [len= G| 4 Bt Tt ew = 2esea ]+ 1810 = a4 3l
|as] 192 , 25
(2.9) 19988 256 |c1] |c5 — 25602 +80|c| |e2 — 8003 :

Using the lemmas 1.2, 138, 1[4,11.5 1.6 in the above inequality, it simplifies to

o = () (- ()6) () ()3

Remark2.2 The above result coincides with that of Raza and Malik [1].

3. CONCLUSION

A higher bound of 3! order Hankel determinant for a collection of holomorphic mappings
connected with exactly to the right side of the lemniscate of Bernoulli, whose polar coordinates
form is r? = 2cos?(20) has been estimated. The reslilf;(f)| < #=, coincides with the
previous study by Raza and Malik [1].
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