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ABSTRACT. In this paper, we study the stability of epsilon-isometry in the dual of real Banach
spaces. We prove that the almost surjective epsilon-isometry mapping is stable in dual of each
spaces. The proof uses Gateaux differentiability space (GDS), weak-star exposed points, norm-
attaining operator, and some studies about epsilon-isometry that have been done before.
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1. INTRODUCTION

Let X andY are real Banach spaces. A mappihgX — Y is saids-isometry if there exist
¢ > 0 such that

@) = FWlly = llz = yllx| <& foreveryz,y € X.

We call a0-isometry as isometry. If the vector space where the norm works is clear and does
not lead to an ambiguous meaning, then it is simply written| #iywithout writing the vector
space.

Let a mapping:-isometry f : X — Y is given withe > 0, andp > 0 is a constant that
depends orX andY’, is there exist a surjective isometry mappiig X — Y such that

(1.1) 1f(z) = U(@)| < pe,

forallz € X?

The question above firstly appeared in the paper of D. H. Hyers and S. M. Ulam, and known
asHyers-Ulam problemAn s-isometry mapping is stable if there is an isometry mappifig
and a constani < oo that satisfieq (1]1), see [5].

In this paper, we propose two questions:

(1) How is the development diyers-Ulam problen?
(2) How is the stability of an almost surjectivasometry in the dual of real Banach spaces?

The paper is organized as follows. In the second section, we will describe briefly the develop-
ment ofHyers-Ulam problenby stating theorems without writing the proofs, include Vestfrid's
theorem (2015) and Lixin Cheng’s lemma (2013). In the third section we will modify the Vest-
frid’s theorem by using Lixin Cheng’s lemma. In addition, the third section also contains the
results of several studies that have been done before, and they will be used to prove the main
theorem of this paper.

2. THE DEVELOPMENT OF HYERS-ULAM PROBLEM

The studies of-isometry mappingHyers-Ulam problemare divided into two cases, namely:

(1) fis a surjective mapping, and
(2) fis non-surjective mapping (almost surjective).

Based on the division above, this section is divided into two parts. The first part presents
the related studies in surjectiveisometry, and the second part provides the studies about
isometry mapping that is almost surjective.

The studies ot-isometry mapping come from Mazur-Ulam study which stating that the
surjective isometry mapping is affine, seé [1]. In other word, a surjective isometry mapping in
the normed space can be translated, such asvieth = > 0. The Mazur-Ulam’s study brings
up the question: if given amy-isometry mapping, then is there always an isometry mapping?

In 1945, Hyers-Ulam [9] answered the question above by conducting a study-a$ametry
mapping in Euclidean spaces. They found that for given any surjectisemetry, there is
always a surjective isometry mapping that satisfies| (1.1) with a constantl0. One year
later, D. G. Bourgin[[3] studied a surjectigeisometry in the Lebesgue spaces and found that
a surjectives-isometry is stable with a constapt= 12. Many years later, Gevirtz [8] studied
that a surjective-isometry is stable for any Banach spaces and found the consisbt This
constant was shaped to 2 by Omfadnd Semrl which is valid for any Banach spaces [14]. The
Omladi and Semrl’'s theorem is as follows.
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Theorem 2.1.Let X andY are Banach spaces anfl: X — Y is a surjectives-isometry
mapping withf(0) = 0, there exist a linear surjective isometry mappiig X — Y such that

| f(x) — U(z)| < 2¢, for everyz € X.

The studies that mentioned above give the condition that-ikemetry mapping should sur-
jective. The surjective condition is weakened by Jussi Vaisala (2002) thatisoenetry map-
ping is enough to be almost surjective if the target spaceisbmetry mapping’ is uniformly
convex, see [13] and [15].

Definition 2.1. Let f : X — Y is a mappingy; is a closed subset af, andd > 0. A mapping
f is said as almost surjective oritoif for everyy € Y7, there exist: € X with || f(z) — y|| <9
and for everyu € X, there exist € Y; with || f(u) — v|| <6 [13].

Theorem 2.2.Let £ and F' are Hilbert spaces ang' : £ — F' is e-isometry mapping with
f(0) = 0. If f is almost surjective, i.e satisfies

(2.1) sup lim inf @

<1,
llyl|l=1 [t]—00

ty —

then there exist a linear surjective isometry: X — Y such that
|f(z) = U(x)| <2 forall z € X.

In 2015, Vestfrid [[17] studied Vaisala’s result for any Banach spaces and decrease the value
1to3 in (2.3). Vestfrid's theorem is as follows.

Theorem 2.3.Let X andY are real Banach spaces anfd: X — Y is an almost surjective
e-isometry mapping withf(0) = 0. If mappingf satisfies

X 1
(2.2) sup lim inf ||ty — JX) <=,
yeSy ltl—oo t 2

then there exist a linear surjective isometfy: X — Y such that
(2.3) |f(x) = U(x)| <2 forall z € X.

On the other hand, Figiel (1968) showed that there exist a linear operator for an isometry
mapping such that the inner product of both is an idertity [7]. Figiel's theorem is as follows.

Theorem 2.4.LetU : X — Y is an isometry mapping witi(0) = 0. There exist a linear
operator¢ : span U(x) — X with ||¢|| = 1 such thaty ° U = I, the identity onX .

The condition of an operat@rwhich is linear in Figiel's theorem above encourage the study
about stability of are-isometry mapping’ which is seen from the dual of the target space of a
mappingf. Qian [12] gives the following result.

Lemma 2.5.1f f : R — Y is surjectives-isometry withf(0) = 0, there existy € Y™* with
||| = 1 such that

(¢, f(t)) — t| < be, foranyt € R.
Lixin Cheng et. al. (2013) reduce Qian’s result fromto 3¢ [4].

Lemma 2.6. LetY be Banach space anfi: R — Y is surjectives-isometry withf(0) = 0,
there exist a linear functionat € Y*, ||¢|| = 1, such that

(o, f(t)) —t] < 3e, foranyt € R.
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3. STABILITY OF ALMOST SURJECTIVE &-ISOMETRY IN THE DUAL OF REAL BANACH
SPACES

This section contains a theorem which become the result of modifiying Th¢orém 2.3 using
Lemma[2.6. The inequality (4.2) in Theor¢m|2.3 will be modified by Lerpmp 2.6 which will
give the stability of an almost surjectigeisometry mappingf : X — Y, in the dualX* and
Y*. The theorem to be proved is as follows.

Theorem 3.1.Let X andY are real Banach spaceg,: X — Y is anc-isometry withf(0) = 0,
andz, € S,. If the mappingf satisfies almost surjective condition, i.e

X 1
(3.1) sup lim inf ||ty — M < =,
yeSy ltl—o0 t 2
then for every:* € X*, there exist a linear functionab € Y* with ||¢|| = ||=*|| = r such that
3.2) (¢, f(2)) — (%, 2)| < der,
forall x € X.

Since the proof of Theorem 3.1 requires some results of previous studies, the proof of Theo-
rem[3.]1 will be granted at the end of this chapter.

Definition 3.1. Let X be a normed space and* is the dual of X. Weak topology onX,
denoted byw, is the weakest topology oX which make every element of*, © — z*(z),
continuous for everye* € X*. Weak star topology onX*, denoted byw*, is the weakest
topology of X* which make every element of

L(x) X — X**
"= 2" (x)
continuous for every: € X.

Definition 3.2. Suppose|-|| is a real function which is defined ovéf, =, € Sx, z € X and
t € R. Left and right Gateaux (directional) derivative fpf| atx, in the directionz is defined
as

o t - o
(0 ) = ti I~ I
t—0~

and

7o £ tef] — |l
Gl ) = Ji S

Banach spacg is said Gateaux differentiability space (GDS) if every convex functional on
X is Gateaux differentiabley_(z,,z) = G (x,, x).

Corollary 3.2 (Fabian et. al.[[6], Corollary 7.23).et X be Banach space. If the dual norm of
X*is strictly convex, then the norm of is Gateaux differentiable.

Definition 3.3. A point z* in aw*-closed convex set’ C X* is said to bew*-exposed o’
provided there exists a poimte X such that

(%, 2) > (y", )

for all y* € C' with z* # y*. The pointz is called aw*-exposing functional of’ and exposing
C atz*. The set of al* whichw*-exposed of”' is denoted byv* — expC.
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Definition 3.4. Let X andY” are Banach spaces aifide B(.X,Y"). For a bounded sé&t in X,
we put
1Tl = sup{[|T'(x)

|12z e C}.
If there isc € C such that

1T (M) = 1Tl
thenT is attain its supremum OVér.

Proposition 3.3(Cheng et. al.[[4], Proposition 2.2puppose thak is Banach space and that
C C X*is a non-emptyw*-compact convex set. Thet € C'is aw*-expC andw*-exposed
byz € X if and only ifo = sup., is Gateaux differentiable at and with Gateaux derivative
doc(z) = z*.

Theorem 3.4(Robert R. Phelps [11], Theorem 6.23 Banach spac«’ is Gateaux differentia-
bility space (GDS) if and only if every*-compact convex non-empty subsekXdfis w*-closed
convex hull of itav*-exposed points.

Lemma 3.5(Bishop and R. Phelps’ Lemma! [2]BupposeX is normed space and > 0. If
fr9 € X% [[fll =1 =|lgl[ suchthatg(z)| < e/2for f(z) = Oand||z| < 1,then[|f —g[| < e
or || f+gll <e.

Lemma 3.6 (Hausdorf’s maximality principle)Every chain inM is contained in some maxi-
mal chain inM.

Theorem 3.7(James Munkres [10], Theorem 26.®etY be a normed spacé’ is compact if
and only if for every collectio® of closed sets iY” has finite intersection property.

Proof of Theorenj 3.]L Proof will be divided into two parts. The first part is a finite-dimensional
real Banach spac¥ (i.e X = X*) and will shows the existence af € X* and ¢ € Y* that
satisfies Theorefn 3.1. The second part shows that Thegorém 3.1 is valid for any real Banach
spaces. In the proof, we use the ball theorem, so the andlolgy= ||z*|| = » = 1 does not
eliminate the generalization.

Considering the definition of strictly convex space and functiohal X — Y is ane-
isometry, a simple proof will show that the dual spaXé that satisfies inequality] (3}1) is
strictly convex. This result, by Corollafy 3.2 and Definitjon|3.2, shows that the Banach space
X that satisfies inequality (3.1) is GDS. The GDS conditiorXoénsures the existence of -
compact convex of its dual becomeé-closed convex hull ofv*-exposed points (by Theorem
[3.4). Consequently, by Propositipn [3.3, there exjse S, that Gateaux differentiable at,
such that

(3.3) d||z,|| = z*,

whereo(z,) = ||z,]|-
Since f is an almost surjective mapping, forrac Sy, there exist anc € B, such that
y = f(x). Hence, inequality (3]1) can be written in the form

(3.5) '<¢ ! (tf°>> — (o, f(2) - t‘ < 3.

f(tx,)
t

(3.4) Hf (z) —
By applying Lemmé 216 td (3|4), we have
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Thus, fort > 0 we get

IN

t—3c — (¢, f(2)) <¢, f<m0)> — (o, f(z))

t
S0, (1)) — (6, F(2)

< <¢7f<txo)> - <¢,f<£lf)>
< ol o)l = ol [ f ()]
= [fCGzo)l = £ ()]
< f (o) = F(@)l] < [ltwo — 2| + ¢,
or
(3.6) t=ltzo — 2l = (9, f(2)) < 4e.
SinceX is GDS and recalling that, € S, or ||z,|| = 1, from Definition|3.2 we get
@7 e = Jim (t = |, = 2]) = () = (a", )

Substitute[(3]7) intd (3]6), far— oo we have

(3.8) (%, 2) — (¢, f(z)) < 4e.
Fort < 0, (3.5) becomes

N

t=3c = (¢, f(z))

(0. 157 = 0.1

L6, T () — (0, F(@)

(0, f(=txo)) — (&, f(2))

@IS (=to) | = NIl 1Lf ()]
1f (=tzo)| = [/ ()]
1f(=tzo) — f(2)]l

|=tzo — | + ¢,

INIAN TN A

or
—de < |—tw, — x| —t+ (o, f(2))
= [ tzo + xf| =t 4 (9, f(x))
(3.9) (@, f(x)) = (£ = |[two + x]) .
By applying [3.T) into[(3.9) as before, for— oo we have

(3.10) —de < (o, f(z)) — (27, x).
From (3.8) and[(3.70), we conclude

|<¢a f($)> - <SB*,ZE>| < 45T’
which is nothing but inequality (3.2).
We show that for every* € X*, there existyp € Y* that satisfies inequality (3.2). Let
z* € Sx~. Recalling thatX is GDS, by Theorermn 3|4, there is a setcompact convex being
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w*-closed convex hull ofv* — expBx- points, orco(w* — expBx-+) exist. Sincaw* — expBx-
is a set of all limit points o3 x- andco(w* — expBx+) is nothing but the cover af* —expBx-,
soco(w* — expBx~) = Bx~, I. eco(w* — expBx-) is dense inBx- by definition. The dense
property ofco(w* — expBx-) ensure the existence of limit points @f(w* — expBx~). As a
result, there is a sequente’) C co(w* — expBx~) which converges toward* in Bx-. Since
co(w* —expBx-~) is w*-compact convex, there ane points ofw* —expBx-(z;, ,z;,, ..., 2} )
andm non-negative numbers\,,,, A, - - ., A, ) With

j=1

for all m € N such that

Since
< der,

(0 F(@) = (@)
thenY™ is w*-compact convex also. Henaﬁnj € Sy« existforallzr € X, with1 < j < m.
Lety, € Sy-. ¢, can be expressed in the form of linear combinatior,pf

Pn =D An,by,.

Consequently,

Z )\”j ¢”j

j=1

) ’
J=1

Since) "L, A\, = 1ande, € Sy~, we getl|yp, || < 1. Thus,

el

IN

)\TL]' ¢nj

(s [(2)) = (a7, 2)| < der
is hold for everyz € X. We know thatp,, € Sy« andy,, is w*-compact, there is a subnet
from a sequencép,,) which w*-converges to som¢ € By-. Sincez! — z* andy, — ¢, the
inequality

(0, f(2)) = (=7, @) < der

is true for allz € X. Besides,

o]l = sup [lo(y)]| =1

yESy
and

27| = sup [l2"(z)[] = 1.
TESx

Therefore, Theorern 3.1 is true for ditn< co. Now, we will prove that Theorefn 3.1 is
true for arbitrary real Banach spaée We know that real Banach space is a vector spdce
together with the norm which is defined on it, then the expansion of Thegorem 3.1 can be done
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by broadening the bases af which is finite-dimensional to infinite-dimensional space. This
expansion can be performed by usiHgusdorf’s maximality principléLemmd 3.6).

Assuming that there is a collection of linearly independent set of vectdr that satisfies
Theorenj 3.JL. FromHausdorf’s maximality principlethere is a maximum chain of nested
set of linearly independent,,. We will show that

E :=U,A,

is linearly independent and spah
If Y°2°, \ia; = 0 for a; € X, then every vectos;, wherei = 1,2, ..., is element of some
A,,. SinceA, is nested, then every vecteris in someA,. Hence,

i)\iai = UAa =F.
i=1 a

From the definition of’ above, whered,, is nested linearly independent set, then= 0 for
i =1,2,...,which show that” is linearly independent.

Now, suppose thak does not sparkX, then there is a vectar ¢ span{U,A,}, SOE Uv
is linearly independent. SincE U v containsE and everyA,,, lead to contradiction with the
assumption thak’ is a maximal chain\. Thus,E must spanX. SinceF := U, A, is maximal
chain M which is linearly independent and spakisthen Theorern 3|1 is true for arbitrary real
Banach spacg.

By using Lemma 3]5, we will show the existencexdfe X* and ¢ € Y.*. The explanation
is as follows. Lemma 3|5 (Bishop and Phelps’ lemma) states that norm-attaining functionals
are always dense in the du&l* of X. Assumez* € X* is a functional ofX which satisfies
Definition[3.3 (norm-attaining functional) withz*|| = 1, so there is d¢|| = 1 which satisfies
Theoren] 3.[1. For every* € X* with ||z*| = 1, Lemm4 3.5 leads to the existence of norm-
attaining functional sequende’) C X* with ||z*| = 1 such that:? — z* for everyn € N.
Let ¢, € Y*with ||¢,|| = 1is a functional that is related tcf, such that

[(@n, f()) = (27, )| < der

for everyx € X. w*-compact property of¢,,) lead to the existence of@c Y* which being
w*-limit point of (¢,,). Therefore, Theorefn 3.1 is true for functionatsand¢.

Given norm-attaining functionat* € X*. Let x, € Sx such that(z*,z,) = 1 andF is
a collection of all subspaces & which containz,. Since eacht” € F is GDS, by using
Theorenj 3.JL which has been proved for any real Banach space, thefg is &y~ such that

forall z € X. Let
Op = {¢p € Y* satisfies|(3.11) with|¢ || < 1},
and
o = {(DF F e f}
From (3.11), obviously for each € F, & is w*-compact convex set af*. Let F,G € F
andH = span{F,G}. Itis clear thatby C ®p N Pg, SO Pr has finite intersection
property. Furthermore, by Theor¢m|3.7, finite intersection property of subcollectibslodw

that the collection? is compact. Since ever§r is w*-compact convex set anbly N ¢ Is
non-empty, everyb» N ¢ is functional ofY* which satisfies|[(3]2)l
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4. CONCLUSIONS

The study about-isometry mappingHyers-Ulam problemcan be divided into two kinds,
that is surjective-isometry mapping and almost surjectisesometry mapping. Both-isometries
are stable, that there always exists isometry mapping where the norm of the differenice of
isometry and isometry is bounded.

In addition, this paper also indicates that arisometry mapping remained stable viewed
from each dual space of domain and codomain.
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