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1. I NTRODUCTION

Let X andY are real Banach spaces. A mappingf : X → Y is saidε-isometry if there exist
ε > 0 such that

|‖f(x)− f(y)‖Y − ‖x− y‖X | ≤ ε, for everyx, y ∈ X.

We call a0-isometry as isometry. If the vector space where the norm works is clear and does
not lead to an ambiguous meaning, then it is simply written by‖·‖ without writing the vector
space.

Let a mappingε-isometryf : X → Y is given withε > 0, andρ > 0 is a constant that
depends onX andY , is there exist a surjective isometry mappingU : X → Y such that

(1.1) ‖f(x)− U(x)‖ ≤ ρε,

for all x ∈ X?
The question above firstly appeared in the paper of D. H. Hyers and S. M. Ulam, and known

asHyers-Ulam problem. An ε-isometry mappingf is stable if there is an isometry mappingU
and a constantρ < ∞ that satisfies (1.1), see [5].

In this paper, we propose two questions:

(1) How is the development ofHyers-Ulam problem?
(2) How is the stability of an almost surjectiveε-isometry in the dual of real Banach spaces?

The paper is organized as follows. In the second section, we will describe briefly the develop-
ment ofHyers-Ulam problemby stating theorems without writing the proofs, include Vestfrid’s
theorem (2015) and Lixin Cheng’s lemma (2013). In the third section we will modify the Vest-
frid’s theorem by using Lixin Cheng’s lemma. In addition, the third section also contains the
results of several studies that have been done before, and they will be used to prove the main
theorem of this paper.

2. THE DEVELOPMENT OF HYERS-ULAM PROBLEM

The studies ofε-isometry mapping (Hyers-Ulam problem) are divided into two cases, namely:

(1) f is a surjective mapping, and
(2) f is non-surjective mapping (almost surjective).

Based on the division above, this section is divided into two parts. The first part presents
the related studies in surjectiveε-isometry, and the second part provides the studies aboutε-
isometry mapping that is almost surjective.

The studies ofε-isometry mapping come from Mazur-Ulam study which stating that the
surjective isometry mapping is affine, see [1]. In other word, a surjective isometry mapping in
the normed space can be translated, such as forε with ε > 0. The Mazur-Ulam’s study brings
up the question: if given anyε-isometry mapping, then is there always an isometry mapping?

In 1945, Hyers-Ulam [9] answered the question above by conducting a study of anε-isometry
mapping in Euclidean spaces. They found that for given any surjectiveε-isometry, there is
always a surjective isometry mapping that satisfies (1.1) with a constantρ = 10. One year
later, D. G. Bourgin [3] studied a surjectiveε-isometry in the Lebesgue spaces and found that
a surjectiveε-isometry is stable with a constantρ = 12. Many years later, Gevirtz [8] studied
that a surjectiveε-isometry is stable for any Banach spaces and found the constantρ is 5. This
constant was shaped to 2 by Omladič and Šemrl which is valid for any Banach spaces [14]. The
Omladǐc and Šemrl’s theorem is as follows.
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Theorem 2.1. Let X and Y are Banach spaces andf : X → Y is a surjectiveε-isometry
mapping withf(0) = 0, there exist a linear surjective isometry mappingU : X → Y such that

‖f(x)− U(x)‖ ≤ 2ε, for everyx ∈ X.

The studies that mentioned above give the condition that theε-isometry mapping should sur-
jective. The surjective condition is weakened by Jussi Väisälä (2002) that theε-isometry map-
ping is enough to be almost surjective if the target space ofε-isometry mappingf is uniformly
convex, see [13] and [15].

Definition 2.1. Let f : X → Y is a mapping,Y1 is a closed subset ofY , andδ ≥ 0. A mapping
f is said as almost surjective ontoY if for everyy ∈ Y1, there existx ∈ X with ‖f(x)− y‖ ≤ δ
and for everyu ∈ X, there existv ∈ Y1 with ‖f(u)− v‖ ≤ δ [13].

Theorem 2.2. Let E and F are Hilbert spaces andf : E → F is ε-isometry mapping with
f(0) = 0. If f is almost surjective, i.e satisfies

(2.1) sup
‖y‖=1

lim
|t|→∞

inf

∥∥∥∥ty − f(E)

t

∥∥∥∥ < 1,

then there exist a linear surjective isometryU : X → Y such that

‖f(x)− U(x)‖ ≤ 2ε, for all x ∈ X.

In 2015, Vestfrid [17] studied Väisälä’s result for any Banach spaces and decrease the value
1 to 1

2
in (2.1). Vestfrid’s theorem is as follows.

Theorem 2.3. Let X andY are real Banach spaces andf : X → Y is an almost surjective
ε-isometry mapping withf(0) = 0. If mappingf satisfies

(2.2) sup
y∈SY

lim
|t|→∞

inf

∥∥∥∥ty − f(X)

t

∥∥∥∥ <
1

2
,

then there exist a linear surjective isometryU : X → Y such that

‖f(x)− U(x)‖ ≤ 2ε, for all x ∈ X.(2.3)

On the other hand, Figiel (1968) showed that there exist a linear operator for an isometry
mapping such that the inner product of both is an identity [7]. Figiel’s theorem is as follows.

Theorem 2.4. Let U : X → Y is an isometry mapping withf(0) = 0. There exist a linear
operatorφ : span U(x) → X with ‖φ‖ = 1 such thatφ ◦ U = I, the identity onX.

The condition of an operatorφ which is linear in Figiel’s theorem above encourage the study
about stability of anε-isometry mappingf which is seen from the dual of the target space of a
mappingf . Qian [12] gives the following result.

Lemma 2.5. If f : R → Y is surjectiveε-isometry withf(0) = 0, there existφ ∈ Y * with
‖φ‖ = 1 such that

|〈φ, f(t)〉 − t| ≤ 5ε, for anyt ∈ R.

Lixin Cheng et. al. (2013) reduce Qian’s result from5ε to 3ε [4].

Lemma 2.6. Let Y be Banach space andf : R → Y is surjectiveε-isometry withf(0) = 0,
there exist a linear functionalφ ∈ Y ∗, ‖φ‖ = 1, such that

|〈φ, f(t)〉 − t| ≤ 3ε, for anyt ∈ R.
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3. STABILITY OF ALMOST SURJECTIVE ε-ISOMETRY IN THE DUAL OF REAL BANACH

SPACES

This section contains a theorem which become the result of modifiying Theorem 2.3 using
Lemma 2.6. The inequality (2.2) in Theorem 2.3 will be modified by Lemma 2.6 which will
give the stability of an almost surjectiveε-isometry mapping,f : X → Y , in the dualX* and
Y *. The theorem to be proved is as follows.

Theorem 3.1.LetX andY are real Banach spaces,f : X → Y is anε-isometry withf(0) = 0,
andxo ∈ Sx. If the mappingf satisfies almost surjective condition, i.e

(3.1) sup
y∈SY

lim
|t|→∞

inf

∥∥∥∥ty − f(X)

t

∥∥∥∥ <
1

2
,

then for everyx∗ ∈ X*, there exist a linear functionalφ ∈ Y * with ‖φ‖ = ‖x∗‖ = r such that

(3.2) |〈φ, f(x)〉 − 〈x∗, x〉| ≤ 4εr,

for all x ∈ X.

Since the proof of Theorem 3.1 requires some results of previous studies, the proof of Theo-
rem 3.1 will be granted at the end of this chapter.

Definition 3.1. Let X be a normed space andX* is the dual ofX. Weak topology onX,
denoted byw, is the weakest topology ofX which make every element ofX*, x 7→ x∗(x),
continuous for everyx∗ ∈ X*. Weak star topology onX*, denoted byw∗, is the weakest
topology ofX* which make every element of

ι(x) :X → X**

x∗ 7→ x∗(x)

continuous for everyx ∈ X.

Definition 3.2. Suppose‖·‖ is a real function which is defined overX, xo ∈ SX , x ∈ X and
t ∈ R. Left and right Gâteaux (directional) derivative for‖·‖ at xo in the directionx is defined
as

G−(xo, x) = lim
t→0−

‖xo + tx‖ − ‖xo‖
t

and

G+(xo, x) = lim
t→0+

‖xo + tx‖ − ‖xo‖
t

.

Banach spaceX is said Gâteaux differentiability space (GDS) if every convex functional on
X is Gâteaux differentiable,G−(xo, x) = G+(xo, x).

Corollary 3.2 (Fabian et. al. [6], Corollary 7.23). LetX be Banach space. If the dual norm of
X* is strictly convex, then the norm ofX is Gâteaux differentiable.

Definition 3.3. A point x∗ in a w∗-closed convex setC ⊂ X* is said to bew∗-exposed ofC
provided there exists a pointx ∈ X such that

〈x∗, x〉 > 〈y∗, x〉

for all y∗ ∈ C with x∗ 6= y∗. The pointx is called aw∗-exposing functional ofC and exposing
C atx∗. The set of allx∗ whichw∗-exposed ofC is denoted byw∗ − expC.
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Definition 3.4. Let X andY are Banach spaces andT ∈ B(X, Y ). For a bounded setC in X,
we put

‖T‖C = sup{‖T (x)‖ : x ∈ C}.
If there isc ∈ C such that

‖T (c)‖<(T ) = ‖T‖C ,

thenT is attain its supremum overC.

Proposition 3.3(Cheng et. al. [4], Proposition 2.2). Suppose thatX is Banach space and that
C ⊂ X* is a non-emptyw∗-compact convex set. Thenx∗ ∈ C is a w∗-expC andw∗-exposed
by x ∈ X if and only ifσC = supC is Gâteaux differentiable atx and with Gâteaux derivative
dσC(x) = x∗.

Theorem 3.4(Robert R. Phelps [11], Theorem 6.2). A Banach spaceX is Gâteaux differentia-
bility space (GDS) if and only if everyw∗-compact convex non-empty subset ofX∗ is w∗-closed
convex hull of itsw∗-exposed points.

Lemma 3.5 (Bishop and R. Phelps’ Lemma [2]). SupposeX is normed space andε > 0. If
f, g ∈ X*, ‖f‖ = 1 = ‖g‖ such that|g(x)| ≤ ε/2 for f(x) = 0 and‖x‖ ≤ 1, then‖f − g‖ ≤ ε
or ‖f + g‖ ≤ ε.

Lemma 3.6(Hausdorf’s maximality principle). Every chain inM is contained in some maxi-
mal chain inM.

Theorem 3.7(James Munkres [10], Theorem 26.9). LetY be a normed space.Y is compact if
and only if for every collectionΦ of closed sets inY has finite intersection property.

Proof of Theorem 3.1.Proof will be divided into two parts. The first part is a finite-dimensional
real Banach spaceX (i.e X ∼= X*) and will shows the existence ofx∗ ∈ X* and φ ∈ Y * that
satisfies Theorem 3.1. The second part shows that Theorem 3.1 is valid for any real Banach
spaces. In the proof, we use the ball theorem, so the analogy‖φ‖ = ‖x∗‖ = r = 1 does not
eliminate the generalization.

Considering the definition of strictly convex space and functionalf : X → Y is an ε-
isometry, a simple proof will show that the dual spaceX* that satisfies inequality (3.1) is
strictly convex. This result, by Corollary 3.2 and Definition 3.2, shows that the Banach space
X that satisfies inequality (3.1) is GDS. The GDS condition ofX ensures the existence ofw∗-
compact convex of its dual becomew∗-closed convex hull ofw∗-exposed points (by Theorem
3.4). Consequently, by Proposition 3.3, there existxo ∈ Sx that Gâteaux differentiable atxo

such that

(3.3) d ‖xo‖ = x∗,

whereσC(xo) = ‖xo‖.
Sincef is an almost surjective mapping, for ay ∈ SY , there exist anx ∈ Bx such that

y = f(x). Hence, inequality (3.1) can be written in the form

(3.4)

∥∥∥∥f(x)− f(txo)

t

∥∥∥∥ .

By applying Lemma 2.6 to (3.4), we have

(3.5)

∣∣∣∣〈φ,
f(txo)

t

〉
− 〈φ, f(x)〉 − t

∣∣∣∣ ≤ 3ε.
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Thus, fort > 0 we get

t− 3ε− 〈φ, f(x)〉 ≤
〈

φ,
f(txo)

t

〉
− 〈φ, f(x)〉

=
1

t
〈φ, f(txo)〉 − 〈φ, f(x)〉

≤ 〈φ, f(txo)〉 − 〈φ, f(x)〉
≤ ‖φ‖ ‖f(txo)‖ − ‖φ‖ ‖f(x)‖
= ‖f(txo)‖ − ‖f(x)‖
≤ ‖f(txo)− f(x)‖ ≤ ‖txo − x‖+ ε,

or

(3.6) t− ‖txo − x‖ − 〈φ, f(x)〉 ≤ 4ε.

SinceX is GDS and recalling thatxo ∈ Sx or ‖xo‖ = 1, from Definition 3.2 we get

(3.7) d ‖xo‖ = lim
t→∞

(t− ‖txo − x‖) = x∗(x) = 〈x∗, x〉.

Substitute (3.7) into (3.6), fort →∞ we have

(3.8) 〈x∗, x〉 − 〈φ, f(x)〉 ≤ 4ε.

For t < 0, (3.5) becomes

t− 3ε− 〈φ, f(x)〉 ≤
〈

φ,
f(−txo)

−t

〉
− 〈φ, f(x)〉

=
1

−t
〈φ, f(−txo)〉 − 〈φ, f(x)〉

< 〈φ, f(−txo)〉 − 〈φ, f(x)〉
≤ ‖φ‖ ‖f(−txo)‖ − ‖φ‖ ‖f(x)‖
= ‖f(−txo)‖ − ‖f(x)‖
≤ ‖f(−txo)− f(x)‖
≤ ‖−txo − x‖+ ε,

or

− 4ε ≤ ‖−txo − x‖ − t + 〈φ, f(x)〉
= |−1| ‖txo + x‖ − t + 〈φ, f(x)〉
= 〈φ, f(x)〉 − (t− ‖txo + x‖) .(3.9)

By applying (3.7) into (3.9) as before, fort →∞ we have

(3.10) − 4ε ≤ 〈φ, f(x)〉 − 〈x∗, x〉.
From (3.8) and (3.10), we conclude

|〈φ, f(x)〉 − 〈x∗, x〉| ≤ 4εr,

which is nothing but inequality (3.2).
We show that for everyx∗ ∈ X*, there existφ ∈ Y * that satisfies inequality (3.2). Let

x∗ ∈ SX∗. Recalling thatX is GDS, by Theorem 3.4, there is a setw∗-compact convex being
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w∗-closed convex hull ofw∗ − expBX∗ points, orco(w∗ − expBX∗) exist. Sincew∗ − expBX∗

is a set of all limit points ofBX∗ andco(w∗−expBX∗) is nothing but the cover ofw∗−expBX∗,
soco(w∗ − expBX∗) = BX∗, i. e co(w∗ − expBX∗) is dense inBX∗ by definition. The dense
property ofco(w∗ − expBX∗) ensure the existence of limit points ofco(w∗ − expBX∗). As a
result, there is a sequence(x∗n) ⊂ co(w∗ − expBX∗) which converges towardx∗ in BX∗. Since
co(w∗−expBX∗) is w∗-compact convex, there arem points ofw∗−expBX∗(x∗n1

, x∗n2
, . . . , x∗nm

)
andm non-negative numbers(λn1 , λn2 , . . . , λnm) with

m∑
j=1

λnj
= 1

for all m ∈ N such that

x∗n =
m∑

j=1

λnj
x∗nj

.

Since ∣∣∣〈φnj
, f(x)〉 − 〈x∗nj

, x〉
∣∣∣ ≤ 4εr,

thenY * is w∗-compact convex also. Hence,φnj
∈ SY ∗ exist for allx ∈ X, with 1 ≤ j ≤ m.

Let ϕn ∈ SY ∗. φn can be expressed in the form of linear combination ofφnj
,

ϕn =
m∑

j=1

λnj
φnj

.

Consequently,

‖ϕn‖ =

∥∥∥∥∥
m∑

j=1

λnj
φnj

∥∥∥∥∥
≤

m∑
j=1

∥∥∥λnj
φnj

∥∥∥ .

Since
∑m

j=1 λnj
= 1 andφnj

∈ SY ∗, we get‖ϕn‖ ≤ 1. Thus,

|〈ϕn, f(x)〉 − 〈x∗n, x〉| ≤ 4εr

is hold for everyx ∈ X. We know thatϕn ∈ SY ∗ andϕn is w∗-compact, there is a subnet
from a sequence(ϕn) whichw∗-converges to someφ ∈ BY ∗. Sincex∗n → x∗ andϕn → φ, the
inequality

|〈φ, f(x)〉 − 〈x∗, x〉| ≤ 4εr

is true for allx ∈ X. Besides,

‖φ‖ = sup
y∈SY

‖φ(y)‖ = 1

and
‖x∗‖ = sup

x∈SX

‖x∗(x)‖ = 1.

Therefore, Theorem 3.1 is true for dimX < ∞. Now, we will prove that Theorem 3.1 is
true for arbitrary real Banach spaceX. We know that real Banach space is a vector spaceX
together with the norm which is defined on it, then the expansion of Theorem 3.1 can be done
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by broadening the bases ofX which is finite-dimensional to infinite-dimensional space. This
expansion can be performed by usingHausdorf ’s maximality principle(Lemma 3.6).

Assuming that there is a collection of linearly independent set of vector inX that satisfies
Theorem 3.1. FromHausdorf ’s maximality principle, there is a maximum chainM of nested
set of linearly independentAα. We will show that

E := ∪αAα

is linearly independent and spanX.
If

∑∞
i=1 λiai = 0 for ai ∈ X, then every vectorai, wherei = 1, 2, . . . , is element of some

Aαi
. SinceAα is nested, then every vectorai is in someAα. Hence,

∞∑
i=1

λiai =
⋃
α

Aα = E.

From the definition ofE above, whereAα is nested linearly independent set, thenλi = 0 for
i = 1, 2, . . . , which show thatE is linearly independent.

Now, suppose thatE does not spanX, then there is a vectorv /∈ span{∪αAα}, soE ∪ v
is linearly independent. SinceE ∪ v containsE and everyAα, lead to contradiction with the
assumption thatE is a maximal chainM. Thus,E must spanX. SinceE := ∪αAα is maximal
chainM which is linearly independent and spansX, then Theorem 3.1 is true for arbitrary real
Banach spaceX.

By using Lemma 3.5, we will show the existence ofx∗ ∈ X* andφ ∈ Y.*. The explanation
is as follows. Lemma 3.5 (Bishop and Phelps’ lemma) states that norm-attaining functionals
are always dense in the dualX∗ of X. Assumex∗ ∈ X∗ is a functional ofX which satisfies
Definition 3.3 (norm-attaining functional) with‖x∗‖ = 1, so there is a‖φ‖ = 1 which satisfies
Theorem 3.1. For everyx∗ ∈ X* with ‖x∗‖ = 1, Lemma 3.5 leads to the existence of norm-
attaining functional sequence(x∗n) ⊂ X* with ‖x∗n‖ = 1 such thatx∗n → x∗ for everyn ∈ N .
Let φn ∈ Y * with ‖φn‖ = 1 is a functional that is related tox∗n such that

|〈φn, f(x)〉 − 〈x∗n, x〉| ≤ 4εr

for everyx ∈ X. w∗-compact property of(φn) lead to the existence of aφ ∈ Y * which being
w∗-limit point of (φn). Therefore, Theorem 3.1 is true for functionalsx∗ andφ.

Given norm-attaining functionalx∗ ∈ X*. Let xo ∈ SX such that〈x∗, xo〉 = 1 andF is
a collection of all subspaces ofX which containxo. Since eachF ∈ F is GDS, by using
Theorem 3.1 which has been proved for any real Banach space, there is aφF ∈ SY ∗ such that

(3.11) |〈φF , f(x)〉 − 〈x∗n, x〉| ≤ 4εr

for all x ∈ X. Let

ΦF = {φF ∈ Y ∗ satisfies (3.11) with‖φF‖ ≤ 1},
and

Φ = {ΦF : F ∈ F}.
From (3.11), obviously for eachF ∈ F , ΦF is w∗-compact convex set ofY *. Let F, G ∈ F

andH = span{F, G}. It is clear thatΦH ⊂ ΦF ∩ ΦG, so
⋂

F∈F ΦF has finite intersection
property. Furthermore, by Theorem 3.7, finite intersection property of subcollection ofΦ show
that the collectionΦ is compact. Since everyΦF is w∗-compact convex set andΦF ∩ ΦG is
non-empty, everyΦF ∩ ΦG is functional ofY * which satisfies (3.2).�
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4. CONCLUSIONS

The study aboutε-isometry mapping (Hyers-Ulam problem) can be divided into two kinds,
that is surjectiveε-isometry mapping and almost surjectiveε-isometry mapping. Bothε-isometries
are stable, that there always exists isometry mapping where the norm of the difference ofε-
isometry and isometry is bounded.

In addition, this paper also indicates that anyε-isometry mapping remained stable viewed
from each dual space of domain and codomain.
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