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ABSTRACT. In this paper, we derive expressions for the bounds of the extremal eigenvalues of
positive definite matrices. Our approach is to use a symmetric projection operator onto an n-2
dimensional subspace of the real space of n tuples. These bounds are based on traces of the
matrix and its powers. They are relatively easy and inexpensive to compute.
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1. I NTRODUCTION

Let A ∈ Rn×n be a positive definite matrix,x, b ∈ Rn and consider the linear system
Ax = b. The condition number cond(A), the spectral radiusρ(A) and the spread sp(A) are
important to the qualitative analysis of the behaviour of techniques aimed at solving the system.
Accurate bounds on the spectrumσ(A) are vital to the polynomial approximations of functions
of A, for example the inverseA−1 [7], using the spectral mapping theorem [3]. In almost
all spheres of engineering and science, knowledge of these eigenvalues are crucial. While
there exists numerical techniques of approximating these extremal values, usually an initial
approximation is required. Eigenvalue location by Gerschgorin disks, ovals of Cassini [2],
Rayleigh quotient, power method [3], bounds based on traces [8],[6], are some tools that are
inexpensive, yet effective. In addition for symmetric tridiagonal matrices several bounds have
been advocated [4]. Here we also improve the bounds of [8]. The bounds that we derive here
are applicable to symmetric matrices (for a special class of functions), however we choose to
concentrate on positive definite matrices (using a larger class of functions), as we shall describe
below.

2. THEORY

Lemma 2.1. DefineP ∈ Rn×n by

P = I− eje
t
j −

(e− ej)(e− ej)
t

n− 1
,(2.1)

wheree ∈ Rn is the vector with all elements unity andej is the standard unit vector inRn with
unity in thejth position. Then the following is true:

(1) P is idempotent and symmetric

(2) rank (P) = n− 2

(3) an orthonormal basis for the nullspaceN(P) =

{
ej,

e− ej√
n− 1

}
(4) Rn = R(P) ⊕ N(P) is an orthogonal decomposition ofRn, whereR(P) denotes the

range ofP.

Proof.

(1) By direct calculation it follows thatP = P2 andP = Pt.

(2)

rank(I) = rank

(
P + eje

t
j +

(e− ej)(e− ej)
t

n− 1

)

≤ rank(P) + rank(eje
t
j) + rank

(
(e− ej)(e− ej)

t

n− 1

)
= rank(P) + 2
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Hence rank(P) ≥ n− 2. As Pej = P(e− ej) = 0 it follows that rank(P) = n− 2.

(3) This follows from (2).

(4) It follows from the elementary theory of projections thatRn = R(P) ⊕ N(P). This
is an orthogonal decomposition as〈Pz, y〉 = 〈z, Py〉 = 0, wherez ∈ R(P) and
y ∈ N(P). Here〈., .〉 denotes the standard inner product onRn.

Definition 2.1. Let λ = (λi) ∈ Rn be the vector of eigenvalues of a positive definite matrix
A ∈ Rn×n andf : (0, ∞) −→ (0, ∞) be an increasing function. Order the eigenvalues such
that

λ1 ≥ λ2 ≥ · · · ≥ λn.

Definef(λ) = [f(λ1), f(λ2), · · · , f(λn)]t.

Lemma 2.2. Let

m =
〈f(λ), e〉

n
=

trace (f(A))

n
(2.2)

B = f(A)−mI(2.3)

S2 =
1

n
〈f(λ)−me, f(λ)−me〉(2.4)

=
trace (f(A)2)

n
−m2(2.5)

=
trace (B2)

n
(2.6)

then

(2.7) |f(λj)−m)| ≤ S
√

n− 1

Proof. Write f(λ) in terms of its orthogonal components as

(2.8) f(λ) = Pf(λ) + 〈f(λ), ej〉ej +
〈f(λ), e− ej〉√

n− 1

(e− ej)√
n− 1

then it follows from the Pythagorean theorem [5] in an inner product space that
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||f(λ)||2 = 〈f(λ), f(λ)〉 ≥ 〈f(λ), ej〉2 +

(
〈f(λ), e− ej〉√

n− 1

)2

= f(λj)
2 +

1

n− 1
[〈f(λ), e〉 − f(λj)]

2

= f(λj)
2 +

[mn− f(λj)]
2

n− 1

=
n

n− 1
f(λj)

2 − 2mn

n− 1
f(λj) +

m2n2

n− 1

Hence

f(λj)
2 − 2mf(λj) + m2 + m2(n− 1) ≤ n− 1

n
〈f(λ), f(λ)〉

(f(λj)−m)2 ≤ (n− 1)

(
〈f(λ), f(λ)〉

n
−m2

)

= (n− 1)

(
trace (f(A)2)

n
−m2

)
= (n− 1)S2.

The result follows by taking the square root.

Theorem 2.3.Upper and lower bounds forf(λ1) andf(λn) are given by

f(λ1) ≤ m + S
√

n− 1(2.9)

f(λn) ≥ m− S
√

n− 1(2.10)

Proof. Let j = 1 andj = n in 2.2.

Theorem 2.4.Lower and upper bounds forf(λ1) andf(λn) are given by

(2.11) f(λ1) ≥ m +
S√

n− 1

(2.12) f(λn) ≤ m− S√
n− 1

AJMAA, Vol. 21 (2024), No. 1, Art. 1, 9 pp. AJMAA

https://ajmaa.org


BOUNDS BASED ONPROJECTS 5

Proof. We use the fact that for real numbersf(λi), i = 1, 2, · · · , n the varianceS satisfies the
inequality [1].

(2.13) S2 ≤ [f(λ1)−m][m− f(λn)].

We prove only (2.11) as (2.12) is proved similarly. From (2.13) and (2.10) we have

f(λ1) ≥ m +
S2

m− f(λn)

≥ m +
S√

n− 1

Theorem 2.5.All f(λj) are bounded below by

(2.14) f(λj) ≥ trace (f(A))−
√

(n− 1) trace (f(A)2)

Proof. From (1) and the Pythagorean theorem we have

||f(λ)||2 = 〈f(λ), f(λ)〉 ≥
(
〈f(λ), e− ej〉√

n− 1

)2

=
(〈f(λ), e〉 − f(λj))

2

n− 1

and hence
[trace (f(A))− f(λj)]

2 ≤ (n− 1)trace (f(A)2)

from which the result follows. This result is particularly useful forj = n if the right hand side
in (2.14) is positive.

Theorem 2.6.f(λ1) is bounded below by

(2.15) f(λ1) ≥ m +
S2√

(n− 1)trace (f(A)2)−m(n− 1)

Proof. Use inequality (2.14) withj = n together with (2.13) and solve forf(λ1)

Lemma 2.7. Letv /∈ N(P) then

|〈Pf(λ), v〉| ≤ 〈Pf(λ), f(λ)〉
1
2 〈Pv, v〉

1
2

Proof. Use the Cauchy Schwarz inequality and the fact thatP is a symmetric projection to get

|〈Pf(λ), v〉| = |〈P2f(λ), v〉|
= |〈Pf(λ), Pv〉|

≤ 〈Pf(λ), Pf(λ)〉
1
2 〈Pv, Pv〉

1
2

= 〈Pf(λ), f(λ)〉
1
2 〈Pv, v〉

1
2 .(2.16)
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Theorem 2.8.Define

mj =
〈f(λ), e− ej〉

n− 1
(2.17)

=
trace (f(A))− f(λj)

n− 1
,(2.18)

then all the eigenvalues satisfy

(2.19) |f(λk)−mj| ≤
√

n− 2

(
trace (f(A)2)− f(λj)

2

n− 1
−m2

j

) 1
2

,

for k 6= j and

(2.20) |f(λj)−m| ≤ S
√

n− 1

Proof. Use 2.7 withv = ek, k 6= j to get

〈Pf(λ), ek〉 = f(λk)−
trace (f(A))− f(λj)

n− 1

= f(λk)−mj

〈Pf(λ), f(λ)〉 = trace (f(A)2)− f(λj)
2 − [trace (f(A))− f(λj)]

2

n− 1

= trace (f(A)2)− f(λj)
2 − (n− 1)m2

j

〈Pek, ek〉 =
n− 2

n− 1

and the result follows by substitution into (2.16). Result (2.20) has already been proved in 2.2,
however it also follows by noting that the discriminant in (2.19) is positive which yields

(2.21) f(λj)
2 − 2 trace (f(A))f(λj)

n
+

[trace (f(A))]2

n
− n− 1

n
trace (f(A)2) ≤ 0

which simplifies to

f(λj)
2 − 2mf(λj) + m2 + (n− 1)m2 − (n− 1)(m2 + S2) ≤ 0(2.22)

or [
f(λj)

2 −m
]2 ≤ (n− 1)S2(2.23)

from which the result follows. Withk = 1 andj = n in (2.19) we have the upper bound

(2.24) f(λ1) ≤ mn +
√

n− 2

(
trace (f(A)2)− f(λn)2

n− 1
−m2

n

) 1
2

and withk = n andj = 1 in (2.19) we have the lower bound

(2.25) f(λn) ≥ m1 −
√

n− 2

(
trace (f(A)2)− f(λ1)

2

n− 1
−m2

1

) 1
2

Theorem 2.9.The spreadsp(f(A)) is bounded above byS
√

2n
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Proof. Consider the symmetric projectorP̄ defined by

P̄ = I− (e1 − en)(e1 − en)t

2
− eet

n
.(2.26)

It is easily shown thatrank(P̄) = n− 2 and that an orthonormal basis forN(P̄) is given by

N(P̄) = span

{
e1 − en√

2
,

e√
n

}
(2.27)

Write f(λ) in terms of its orthogonal components as

(2.28) f(λ) = P̄f(λ) +
〈f(λ), e1 − en〉√

2

(e1 − en)√
2

+
〈f(λ), e〉√

n

e√
n

then it follows from the Pythagorean theorem [5] in an inner product space that

||f(λ)||2 = 〈f(λ), f(λ)〉 ≥ 〈f(λ), e1 − en〉2

2
+
〈f(λ), e〉2

n
(2.29)

trace(f(A)2) ≥ (f(λ1)− f(λn))2

2
+ nm2.(2.30)

Recall thattrace(f(A)2) = n(S2 + m2) so that (2.30) simplifies to

2nS2 ≥ (f(λ1)− f(λn))2(2.31)

f(λ1)− f(λn) ≤ S
√

2n(2.32)

Whenf(x) = xk, we obtain the result

sp(Ak) ≤ S
√

2n(2.33)

≤

√
2

(
trace(A2k)− (trace(Ak))2

n

)
, which fork = 1 agrees with the result derived in [8].

Alternative Proofs
Here is an alternative proof of Theorem 2.3 and Theorem 2.4.

Proof. Let z = f(λ1) − m and use (2.13) and (2.25), also separately letz = m − f(λn) and
use (2.13) and (2.24). Both approaches lead to the quartic inequality inz given by

z4 − n2 − 2n + 2

n− 1
S2z2 + S4 ≤ 0.,(2.34)

the solution of which yields

S√
n− 1

≤ z ≤ S
√

n− 1..(2.35)

Substituting forz = f(λ1)−m and separatelyz = m− f(λn) gives the required result.
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3. RESULTS

Consider the test matrix [8]

A =


4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7


with spectrumσ(A) = {1.4257, 4.7754, 6.423, 9.3759} accurate to four decimal places and
choose. We choosef(x) = xk, k ∈ N as polynomial functions ofA are easy to evaluate.
Our results are summarized fork = 1, 2, 3, 4 in Table 3.1 using equations (2.9)-(2.12). If lower
bounds forf(λn) are negative then we boundλn below by zero (positive definite) otherwise we
take thekth root to recover the bound. Fork = 1, we obtain the bounds of [8] and [6]. From
(14) we getλn ≥ 0.5058 for k = 1 and zero for largerk (negativef(λn)). Inequalities (2.24)
and (2.25) relatef(λ1) andf(λn). If eitherλ1 or λn are known fairly accurately then they may
be used. Withλ1 = 9.3759 we get from (2.25)λn ≥ 1.2675 for k = 1 and negative values for
largerk. Results using (2.24) withλn = 1.4257 are summarized in Table 3.2. From 3.1 we find
that the bounds get better forλ1 for largerk, while worse forλn. However there is no need to
use the samef(x) for the upper and lower bounds here. Inequalities (2.24) and (2.25) are useful
but we need to use the samef(x) here. From (2.33) we obtainsp(A) = 8.1240 andsp(A2) =
89.7218, which differs not much from the exact values of7.9502 and85.8749 respectively. In
addition our work applies to symmetric matrices if the domain off(x) is (−∞,∞) on which
f(x) increases. In this case we are restricted tof(x) = x2k+1, k ∈ N.

k λ1 λn

1 [7.1583, 10.4749] [0.5251, 3.8417]

2 [7.5375, 9.6666] (0, 4.4928]

3 [7.8461, 9.4672] (0, 4.8978]

4 [8.0840, 9.4083] (0, 5.1552]

Table 3.1: Bounds,(2.9)-(2.12)

k λ1

1 9.5497

2 9.4552

3 9.4116

4 9.3918

Table 3.2: Bounds,(2.24)

4. CONCLUSION

We have illustrated by using a simple projection how effective formulae can be derived for
the bounds of extremal eigenvalues of real positive definite matrices. We advocate using these
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formulae for relatively smallk together with other known results to bound these extremal eigen-
values. In addition we have derived a useful result for the spread of functions of the matrix. For
sparse matrices the larger values ofk can be chosen as less numerical effort is required.
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