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1. INTRODUCTION

Real life applications sometimes require one to compute approximatiaithe derivative
of f, whenf is acquired experimentally (with some noise). The differentiation of noisy data is
an ill-posed problem: small perturbationsliff (0, 1) — norm of the function may lead to large
errors in its derivative in.>°(0, 1) — norm. In [5] and [6], different regularization algorithms
for stable differentiation of f, giverfs, || fs — [l = 0, were analyzed; namely, the regularized
difference method, the method by spline approximation, and the method of variational regu-
larization. Before computing an approximationtg one has to first locate the discontinuity
points of f. In this paper, we propose and justify a method for finding jump discontinuities of
the functionf defined onla, b], given the seftfs, 0} and My (My := sup,¢(, 4y | £ ()] where
f € C*([a,b]).

2. DISCONTINUITIES OF PIECEWISE -SMOOTH DISCONTINUOUS FUNCTIONS

Let f be a piecewis&?([a, b]) function, andu < z; < 2 < ... < z; < b,1 < j < J be the
points of discontinuity off. We do not have any information about their numbeaind their
location. We assume that their limif$x; £ 0) exist, and
(2.1) sup | f™(2) |< My, m=0,1,2.

wFw; 1<j<J
Suppose thafs is given,|| fs — f ||o< d, wherefs € L>°(0, 1) represents the noisy samples
of f that are known at points on a uniform grid

(2.2) A:={a<a+h<a+2h<..<b}.

The problem is: given the sétfs, 6} and M, whered € (0,60) andd, > 0 is small, find
the locations of discontinuity points; of f, their number J, and estimate the jumBs :=
f(z; +0) — f(x; —0) of facrosse;, 1 <j <J.
The method discussed in this paper, unlike the methods in [3][and [8], looks for these points
x; at which the gradient of the first derivative is greater tAén The pointsz; corresponding
to jump sizes of a specific order of magnitude can be located with an accluyradyere the
parametefh can be made arbitrarily small.

Lemma 2.1. Supposef : D € R* — R is twice continuously differentiable. Then for all

x € D such thatBy,, (z) :== {y : [ly — =[|, < ||h|l,} C D, the inequality

[ frth) = 2f@) 4 =) | _
12lp[171lq -

holds. Hereh € R" with [|A],, < ho and(¢ = sup,cp [|V*f (@), 1 <p < o0, L+ 1 =1and

| - ||, denotes the p-norm for a vectotH(|, := (3_}_, |h;|P)!/?) or the induced p-norm for a

: A
matrix (| Al := sup, ””wﬂp).

(2.3)

Proof. Sincef is C?(D), the hessian is continuous for alle D. Using Taylor’s theorem and
Holder’s inequality, we obtain

| f(z+h) —2f(z) + flx — h) |=| %hTVQf(a: +th)h + %hTVQf(x — sh)h |
< % | WIN2 f(z + th)h | +% | WI'V2f(x — sh)h |

< %HthHth(IIVQf(I +th)|lp, + [V*f(z = sh)ll,)
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< [[Rllpll~llq¢
forsometandsin (0,11
Theorem 2.2. Let f be a piecewis&-?([a, b]) function withJ > 1 points of discontinuity
{xj}jzlwhich are unknown a priori. Suppose the $¢t, 0} and )M, are given, wheref; is
known on the uniform grid\ as defined in[(2]2), and/, is as defined in (2]1). For a given

one can locate the discontinuity points phaving jump sizegP;| > 84, with an accuracy:
and their numbek, & < J. The intervalgz — h, z + h] where the inequality:

(2.4) | fs(z +h) — 2fs5(x) + fs(x — h) |> Mah® + 46

holds contain discontinuity points ¢gf For h small enough/( < 1), the jump sizes can be
estimated by the formula

Py~ fs(x+h) = fs(x = h),
with an error estimate
(2.5) 1Py = (fs(z + h) — fs(z — h))| = 26.

If /" also has points of discontinuity, then the point$or which inequality [(2.4) holds are
either in the h-neighborhood of points of discontinuityfadr in the h-neighborhood of points
of discontinuity off’. They are in the h-neighborhood of points of discontinuity’of

(2.6) | fs(x+h) — fs(x—h) |< 46.
Let f; be defined as follows:
fsla+ jh+1(9)) - fs(a+ jh — h(3))

fi=

2h(0)
To locate the points of discontinuity ¢f, one can compute the quantitig¢sand| ;.1 — f; |,
n < j < k. Heren = @ andk = ih(‘” The discontinuity points of are located on the
intervals(jh, jh + h), where the inequality:
(2.7) | fi+1 = fil > 2e(8) + Mah

holds. Hereh(0) := 1/1\24_52 ande(d) := +/2M,0 represent respectively the discretization para-
meter and the approximation error as defineddj

Remark 2.1. In (2.7), h represents the mesh size of the ghidwhich can be made arbitrarily
small. In Theorem 2]2, we only consider the case whésa constant; however, proceeding
along the same lines one only needs to make some minor modifications to derive Thegrem 2.2
for the most general cageé varies on each subinterval of the grid A).

Proof. Supposef is a piecewise=?([a, b]) function. Theny = € Ss := [a, b]\ U;.le(xj—h,xfr
h) such thatBy, (z) := {y : |y — z| < h} C S5, we have:

| fsw+h) = 2fs(@) + folw—h) | [ fleth)=2f(@)+flz—-h)]| 40

h? h? h2’
Sincef € C*(Ss), by Lemmg 2.]1 we obtain:
’ fg(x + h) - 2f5(l’) + f(s(l‘ - h) ‘ 46
> < Mo+ 1.

Therefore, given that a point iia, 0] is either a point wherg is twice differentiable or a point
wheref has a discontinuity, it follows that if inequality (2.4) holdgshas a discontinuity some-
where on the intervele — h, z + h).
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Estimate[(2.5) can be obtained as follows. Suppgse (z — h, z + h). One has:
| B = fo(x 4+ h) + fs(x = h) [=] fz; +0) = fz; = 0) = fs(x + h) + fs(z — h) |
<204 [ fz; +0) = flz+h) |+ | fz; = 0) = f(z —h) |
< 25 + 2hM,.
Forh <« 1,v =2hM; + 20 ~ 26 and we have:
| B = (fs(z +h) = fs(z — h)) |< v =20

To obtain inequalit?), let us now assume that S; := [a + h(J),b— h(5)]\ szl(mj +
h(8),z; — h(d)), is a point at whichf is continuous buf’ is not. For allz € S; such that
(x —h(d),z + h+ h(d)) C Ss, one has:

20
< O+ =
’fj+1 f] |— +h(5)7

sion formula one can derive the estimate:

So,
| [+ — i 1< 2e(0) + hMs.
Therefore, if inequality[ (2]7) holds, there is a paing (z — h(d),z + h + h()) wheref is
not twice continuously differentiable. Singes not a point of discontinuity of, it is a point of
discontinuity of /. 1

3. DISCONTINUITIES OF PIECEWISE -SMOOTH DISCONTINUOUS FUNCTIONS IN R"™

The numerical method described in the previous section is computationally efficientfwhen
is a function of one variable. The whole computation only takés) operations, wherg is the
number of data points on the grixl The same idea can be used to locate points of discontinuity
of functions ofn variables. One will have to repeat the process described above on each axis
using different values o/, along each axis; however, such a method is not computationally
efficient as it take$) (k™) operations which can become very large as n gets large. Instead,
whenn is large(n > 3) one can consider a different approach that only t@kgs operations.

Theorem 3.1. Supposef : A € R* — B C R is a piecewisa>?(A) function. Let
{e1, e, ....., €, } represent the canonical orthonormal basisRfi. Assume that the noisy sam-
ples fs (|Ifs — fll < d) are known at points on a uniform n-dimensional grig on which
consecutive points along lines parallel to the coordinate axis are equidistant. Tkat is=

x; + h;, if the line through the points;,, andz; on A, is parallel toe;. Hereh; = hge;,

1 < j <nandhy > 0. Denote byR the set of all points i where f is discontinuous and
by S the set of all pointdy;}, on A, where f has a discontinuity. Lets(x) be defined as
¥5(x) 1= max; <<, 4(x), where

S3(x) = | fs(x + hy) = 2f5(x) + f5(x — hy)|.

For a givend one can locate the discontinuity pointsfohaving jump sizes
|P;| > 8, with an accuracy:. These points are located in the h-neighborhood of pairts
A,, where the inequality

(3.1) S5(x) > 40 + B2V fllp.a
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holds; 1 < p < co. Here||V?f]|, 4 denotessup,c 4z || V2 f ()], In particular, whenp = 2
we obtain

(3.2) Y (x) > 46 + h2)
where\ = sup,¢ 4\ p max{ A (x)}7_, and\;(z) represent the eigenvalues of the hessian of f
at a pointx in A.

Proof. Let us first note that as € A\R and f is C?(A\R), V*f(z) is well defined and sym-
metric. Suppose € A\ R is such thatB,, (x) C A\R. We then have:

(3.3) Ss(z) < B(x) + 40.

From Lemma 2.1 we obtain

(3.4) S(@) < [llplAll IV Fllpa = BV
Therefore,

S5(x) < B2V p.a + 46.
This result holds for all g1 < p < oo) and thus certainly holds fgr = 2. As V?f(z) is
symmetric for allz € A\ R, we have
(3.5) IV2F (@) 2 = max \/2%(x).

Let \ := sup,ca\r|| V> f()]|2, we obtain
(3.6) Ys(r) < 46 + h2A.

We thus conclude that if inequality (3.1) ¢r (B.2) holds at a peirthenz does not belong to
A\R. Thereforer belongs taR or is in the h-neighborhood of a discontinuity pointfofa

4. DEPENDENCE OF THE METHOD ON M,

Let f, f5, R, S andA,, be defined as in the statement of Theofem 3.1. Suppdseiscon-
tinuous att € R™ in the direction ofv. Let P, be defined as:

Fe:=[f(§+0) = f(€=0),

wheref (£ +0) = lim. o f(§ + ev) andf(§ — 0) = lim._o f(£ — ev). Suppose that one does
not know the values dfV f||,.4 and||V?f||,.4, but instead knows them to be boundedhy

IV fllpa + IV fllpa < 5.

Here||[Vfll,a == SUDzeA\R IV £ (), HvaHp,A ‘= SUPgzeAa\R ||V2f(1‘)||p, andp > 1. The
problem is: given the sdltfs, d, o, 5}, what values of the parametercan one use to locate all
the discontinuity points; of f on A, having jump size

(4.1) P, > 8 +o,
o€ (0,1).

Theorem 4.1.Suppose one is given the $¢%, J, o, 5}. Thenvh € (0, H), inequality 3.1 holds
at every pointr € A,, located in the proximity of a point of discontinuity of f having jump
sizeP,, > 8J + o, given thatmin; [z, — z;| > 2h. Here

0
(4.2) Hi= 15
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Proof. Let ¢ € By, (x) be a discontinuity points of where [(4.1) holds. Here, x + h;,
x —h; € A, are points wher¢ is twice continuously differentiable anf,, (x) := {y € R™:
|x — v/l < ho}. Let us assume thdtis the only discontinuity point of that belongs td3,,.

Let £5(x) be defined as in Theorgm B.1. One has:

Ys(x) = [fs(x+hy) = 2f5(x) + f5(x — hy)]

= [fs(x+hy) = f(E+0)+ f(€+0)+ f(§—0) - f(€—0)

— 2f5(x) + fs(x = hy)]

> |f(€+0) = f(€—=0)| = [fs(x+hy) - f(+0)|

— (€ —=0) = fs(x)| = fs(x) = fs(x — hy)|
for somej, 1 < j < n. From Taylor’s formula, we get:

Zg(X) Z Pg — 46

— [(€—x—hy) "V (x+h;+t(§—-x—

— (€ =) "V (x+ta(€ —x))
— | Vf(x = (1 —t3)hy)],

h;))|

wheret, t2,t3 € (0,1). Using Holder's and Minkowski's inequality we obtain

Zg(X) Z Pg — 46

— (€ —x —hy)[[IVf(x+h;+t:(§ —x—hy)),
— € =) IV f(x+t2(& — %)),

— |[hyl[oIVf(x = (1 =t3)h))],

> P — 4(6+ hol|Vll,a), ]19+1: 3

Note that

1€ = x = hylly < [hylly + lx = &lly < 2ho,

since||h;||, = ho and
1€ = xllg < (1€ = x[l1 < ho.

Let us assume that

Pe = A(0 + hol|V llp.4) = 40 + hg[|V* £|.4.

Using the fact thaf’: satisfies|[(4]1), we obtain

(4.3) 0 > hgl[V2 fllp.a + 4ho|V flp.a-
For small values ok (hy < 1), if

(4.4) 0 > 4ho[|V2 fllp.a + 4ol V f 5.4

holds, inequality[(4]3) follows. From (4.4), we obtain:

h0<£

i3

Note that the assumption, < 1 still holds, since) < p < 1 andjg > }l ]

AJMAA Vol. 4, No. 1, Art. 2, pp. 1-17, 2007
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5. COMPARISON OF SOME METHODS OF NUMERICAL DIFFERENTIATION

Over the course of years different methods have been developed for numerical differentia-
tion. In this section we analyze and discuss two well known methods: Ramm’s method and the
method of approximation by cubic splines.

Let || - || denote thd.?-norm of square integrable functions ovér 1), and letfs be the noisy
samples off, || fs — f|| < d. For the purpose of this paper we will only consider the case when
f € H?[0,1], whereH?[0, 1] denotes the Sobolev space of functighs C*[0, 1] whose2nd
derivative belongs td.%(0, 1).

The method of approximation by cubic splines for stable numerical differentiation was dis-
cussed in[[2] and recently inl[1]. The general approach to the method of approximation by cubic
splines is presented ihl[1]. Given the noisy samgfesf a smooth functiory over a uniform
gridA = {0 = 2y < 27 < ... < x, = 1}, and the boundary data which are assumed to be
known exactly {5(0) = f(0), fs(1) = f(1)), one computes a smooth approximatigrof f’
defined for allx € (0, 1). The functiong. is obtained by minimizing the functional

1 n—1

(5.1 B(9) 1= —— > (fslaw) — gla))? + allg |

over the class of all smooth functiopsatisfying the boundary conditiog$0) = f(0), g(1) =
f(1), where The regularization parameteris chosen such that the minimizing functign
satisfies:

n—1

S (i) = gulwg) = 5.

=1

1
n—1

(5.2)

It was shown by Schoenberg [11] and Reinsch [10] that the minimizér df (5.1) is a natural cubic
spline overA. Using the properties of natural cubic splines, it was shownlin [1] that the error
bound in this particular method of numerical differentiation is:

(5.3) g2 () = f/(2)]| < V8(hMs + \/6M,) := £(8, h),

whereM, = || f?].

The general approach to Ramm’s algorithm using a finite difference formula depending on
d was first given in[[9]. Given the sdtfs;, 0}, one obtains an approximation ¢f defined as
follows:

M O<z<h
(5.4) Bafa(a) = | G hEl h <o <1k
w l—-h<z<1lh>0.

Hereh is a discretization parameter. Using Taylor's expansion, the error estimate obtained by
this approximation is then:

Dyl 0<a<h

(5.5) [Rnfs = FII<Q2+M2 h<z<l-h

2

B M ] —h<a<l,h>0.
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To minimize the approximation error, we then chobse h(é) defined as follows:
2 i 0<z<h(s
(5.6) h(d) == /2 h((S) <z <1—h()

2,/ 7 1—h(§)<z<1l,h>0.

The minimal error bound obtained usihg) is then:

2\/0M, 0 <z < h(5)
(5.7) e(8) == < V25My h(d) <z <1—h(J)

2v/6My 1—h(0) <x<1,h>0.

While using Ramm’s method, one is only interested in the datum at a uniform spgéing

however, if one is given datum at a uniform spacztng - % wheren > 1isan integer, by using
all the data one can obtain a better (over smaller subintervals) piecewise-linear approximation
of f” on the interval(d) < = < 1 — h(d), where the error bound defined [n (5. 7) stiII holds.
The new approximation of’, forall z € S, S = {nt, (n + 1)t, (n + 2)t, .., kt}, k = =44 js
then:

(5.8) Rh((g)fg(jt) =

fs(gt + h(5)) — fs(jt — R(d))
21(3) ’

n<j<k.

The complete algorithm for the Ramm’s method takdsn) ~ 4m operations, while the
computation of the method of approximation by cubic splines excluding the determination of
the lagrangian multipliers take&s(n) ~ 12n operations#f = ( = +). Hereh(s) andh
represent respectively the discretization parameter of Ramm’s method and the mesh size of the
grid A. For a given value of, both methods have error bounds of the same af@é¢x/4));
however,Y M, such thatV, # 0, we have:

£(0,h) = 2e(6) + hMyV/3.
The optimal error bound that one can attain using the method of approximation by cubic splines
is:
(59) gopt((;v h) =V 85M2

This error bound is twice that of Ramm’s method over the intefkél) < = < 1 — h(J)) for
the same value of and is obtained by takinim,. ., £(d, &) which requiresO(n) operations,
neoo.

So far we have only defined Ramm s method for valuek ef “) 1 € N (5.8); however, it

might occur in practice that = , 7 € RT. In this case we extend Ramm’s method, and we
examine how its error bound compares to the method of approximation by cubic splines.
Leto(h) be defined as:

(5.10) o(h) = T(h,x) = f'(2)|
whereT'(h, z) = W We assume that is smooth over the interva0, 1).

Lemma 5.1. Suppose the observation points are given at a spaguid) on a uniform gridA,
wherec > 0. Forallc € I, T := (2 — /3,2 + V3),

(511) U(Ch((S)) < gopt(67 h)?
VM, # 0 andVd > 0 on the interval(ch(d), 1 — ch(J)).
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Proof. supposer € (ch(d),1 — ch(6)). If one computes(ch(0)), after a Taylor's expansion
and a short manipulation, one gets:

(5.12) a(ch(9)) < (1 +c) %
C
1 1
< Z —
< 28(5)(C +¢)
If
1.1
holds, then by{(5]9), we have:
(5.14) o (ch(8)) < €y, ).
Assuming [(5.1B) and solving fet, we obtain:
(5.15) 2-V3<e<2+V3
1

Lemma 5.2. Suppose the observation points are given at a spaking }lh(é) on a uniform
grid A. ThenvM, # 0, andVs > 0, we have:

(5.16) a(h) <&(4,h),
forall z € (h,1 —h).

Proof. Supposer € (h,1 — h). If we bound and then perform a Taylor expansiorsg¢h), we
obtain:

(5.17) o) = [T(h2) ~ F)] < 5+ 22

From (5.3) and[(5.17) if:

(5.18) VI > .

then inequality[(5.16) holds. Assumirig (5.18) and solving/feve get:

) 1
>
S8My — 4h(5>

(5.19) h >

Theorem 5.3. Let & be the spacing between consecutive data points on a uniformZgrid
Vh > 0,3 ho(d) > 0 defined oM\ such that:

(5.20) o(ho(9)) < &(d,h).
Proof. Given a mesh siz#, there are two cases to consider:
Let us first assume that
h> ih(é).
By Lemma[5.2,Vhy(d) > h, inequality [5.2D) holds, thus proving Theorém|5.3 for the first

case.
Let us now assume that

1
h < Zh(5>‘

AJMAA Vol. 4, No. 1, Art. 2, pp. 1-17, 2007 AJMAA
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Let e be defined as

(5.21) e = inf |h(d) — nhl,

ne N

whereN denotes the set of positive integers. We have

(5.22) e < %h(é).

Let ho(0) satisfy [5.211), so

(5.23) ho(8) = nh.
Combining inequalitieg (5.21), (5.22), aid (5.23), we obtain:
(5.24) h(s) — %h(é) < ho(6) < h(5) + éh(é).

If we let ¢ be defined as

(5.25) c:ﬁg,
we then obtain
(5.26) ggcg%
Sincehy(d) = ch(d), with ¢ € [Z, 2] C I, wherel := (2 — v/3,2 + /3), by Lemmg 5.1l we
have:
(5.27) o(ch(8)) < €,,(0, h).
|

Ramm’s method therefore has a better error bound than the method of approximation by cubic
splines for all possible choices of the parametgers/,, andh. Though in Ramm’s method h
depends on/,, in many practical problems the value ok, is an a priori knowledge; however,
even if one mistakenly take¥, 10 times its actual value the resulting error is stilh/6).

Let us now assume that is a piecewise=?([0, 1]) function with a discontinuity located
at the pointz; € (0,1) having a jump size of?;. If one uses either method to approxi-
mate f’ without excluding the discontinuity, there is an additional etp¢P;) that is added
to the original error bound, due to the jump discontinuity at the pojnA topic of interest is
that of the effect ofp(P;) on the approximation of’ in general. One would especially want
to know how farp(P;) propagates from the discontinuity. If one uses Ramm’s method,
©(P;) =00n(0,1)\(xz; — h(d),z; + h(0)), and it reaches its maximum somewhere on the in-
terval (z; — h(0), z; + h(d)). If one uses the method of approximation by cubic splines instead,
because of the smoothness conditiorypny(p;) will propagate over the entire intervél, 1),
and the error bound will grow asbecomes small. Therefore, Ramm’s method is better if the
function f is a piecewise=([0, 1]) function.

In general, Ramm’s method is superior given that it uses far fewer operations, it has a better
error bound, and it localizes additional error introduced by discontinuities over finite subinter-
vals.
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6. EXPERIMENTAL RESULTS

We used a series of experiments to test the performance of the newly developed method.
The remainder of this section is divided into three parts. Inpajt 6.1, we test the method on
functions of one variable; noisy data from discontinuous piecewise-smooth functions are con-
structed and the method is used to locate the discontinuities. Ih part 6.2, the method is tested
on multi-variable functions; gray scale image files are generated and the method is used to find
discontinuities in the color intensity of the image. In 6.3, we give some results of our com-
parison on methods of stable numerical differentiation.

6.1. Reconstruction of discontinuities of functions of one variable.In this section we used a
computer program to generate noisy data from discontinuous piecewise-smooth functions. The
method of sectiof|2 was then used in to locate the points of discontinuity. The method was
tested for large, medium, and small values of the parametevs, andd. The functions used

in this experiment were:

x? -1 <x < -5,

x —-5<z<0
6.1 = - ’
.1 fil®) cos(z?) 0<z<.5,

z® S5<r<l

sin(25x) —1 <z <0,
62 =
6.2 f2(@) {005(65x) 0<z<l1.
And

523

e’ —5 0<x <.,

(6'3) fS('I) T {e5x3 5 S r < 1

The noise function used in this experiment wes) = (—1)L"1dcos(z), for all z € [a, b].
The values of the parametersh, and )M, used and the results are given in the following table.

Functions filz) | fo(@) | fs(@)
M, 6| 4225| 39700
Noise level A1 2 A1
Step size A .01 .001
discontinuities found x=-.5, 0, .49 x=0| x=.499
Run time(second) .04 .09 .06

Table 6.1: Results
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Figure 1: Noisy data obtained fronfi, (z) upper left-hand cornerf,(x) upper right-hand corner, ands(x)
bottom.

6.2. An application to edge detection. In this experiment we tested the method on image files.
Image files can be considered as functions of two variables where each pixel represents a point
in the zy plane and the grayscale value represents the color intensity evaluated at that point.
We converted image files into 8-bit grayscale pgm files and then used Theoijem 3.1 integrated
in a Matlab program to detect the edges of the image. We tested ineqpaljty (2.4) at each pixel
in the x and y direction separately. The discontinuities obtained in both directions were then
combined to produce the final output. The pixels corresponding to discontinuities in the color
intensity where assigned the grayscale valug5af(white). Those corresponding to points of
continuity where assigned the grayscale valué gblack). The method was tested on four
different images (Lena, Gull, Bridge, Baboon) for different values of the paraméterNo

noise was added to the image files and the distance between two consecutive pixels was set
equal to ongh = 1). The difficulty encountered while processing the images was that of
defining an optimal value for the parameids. We do not offer a definite algorithm that allows

one to determine the right value of the paramétgrfor a given image file. For large values of

M, we lost some minor details in the image, and for small value®/pive detected additional
unwanted discontinuities. The computer time(RT) for each experiment was fairly low. The
results of the experiments are presented below.
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Figure 2: Lena: Original image Top left. Top right, processed image With= 7. Bottom left processed image
with M> = 10. Bottom right, processed image willl; = 13. RT=.109s.

Figure 3: Gull: Original image Top left. Top right, processed image with = 10. Bottom left processed image
with M, = 15. Bottom right, processed image willl, = 20. RT=.075s.
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Figure 4: Bridge: Original image Top left. Top right, processed image wifh = 15. Bottom left processed
image withMs = 20. Bottom right, processed image willl; = 25. RT=.110s.

Figure 5: Baboon: Original image Top left. Top right, processed image Wwith= 15. Bottom left processed
image withM, = 20. Bottom right, processed image willf, = 25. RT=.081s.

6.3. Ramm’s method compared to the method of approximation by cubic splinesOur

main goal was to compare Ramm’s method to the method of approximation by cubic splines.
The comparison was based on the computational speBdafd on the relative erroRf).
HereRE:%, whereCe= sup,c, 5 |f5 — ['| (f5 is the approximation of” obtained by either

1
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method) which was less than the theoretical error for both methods)/and defined as in
(2.7). The detailed results are given in Figug]6, 7,[and 8. Itis clear from these plots that Ramm'’s
method outperforms the method of approximation by cubic splines both in relative error and in
computational speed, even though the underlying model is the same in both cases. The relative
error obtained from the method of approximation by cubic splimess( was far larger than
that of Ramm’s methodrjv) in the first experiment (Figui€ 6). The superiorityr is also
apparent in the third experiment as shown in Figure 8. The computational speedof Waes
much greater than that of thecs(by a factor of one hundred) for all experiments. Furthermore,
themMmcshad a relatively poor performance in the second experiment. The fundamental reason
for this poor performance is the discontinuity in the derivativefait +t = 0. Note however
that the additional error caused by this discontinuity affected the error bound Rithely on
the interval(—.1,.1). On the other hand, that additional error propagated outside of the interval
(—.1,.1) in the case of th&icsand increased the error bound of approximation over the entire
interval (—m, 7). These results are consistent with the theory developed in Se¢tion 5.

The functions used in each experiment are given in the following table along with the values
of the parameters, h, M, andRE The noise function used wagz) = ¢ sin®(z).

Functions f(x) = sin(50z) | f(z) = [sin(z)| | f(z) = e
M, 2500 1 2
Noise level A .005 .25
Step size .001 A 5
RE from themcq%) 30 40 75
RE from theRM (%) 3 10 40
Interval —1,1] [—7, 7] [—5, 5]

Table 6.2: Results

A
<M il ,
:I_ !!!ll '||”“|I -|I_'
AR

Figure 6: Noisy data Top left. Top right, derivative of the original function. Bottom left, numerical approximation
using RM, RT=.062s. Bottom right, numerical approximation using MCS, RT=5.547s.
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Figure 7: Noisy data Top left. Top right, derivative of the original function. Bottom left, numerical approximation
using RM, RT=.032s. Bottom right, numerical approximation using MCS, RT=4.45s.
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Figure 8: Noisy data Top left. Top right, derivative of the original function. Bottom left, numerical approximation
using RM, RT=0.001s. Bottom right, numerical approximation using MCS, RT=6.59s.
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