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ABSTRACT. Let E ⊂ (−1, 1) be a compact set and letµ be a positive Borel measure with
support suppµ = E. Let

Dn =
(

1
2π

∫
E

xi+jdµ(x)
)n

i,j=0

.

In the case whenE = [a, b] ⊂ (−1, 1) andµ satisfies the conditiondµ/dx > 0 a.e. onE,
we investigate asymptotic behavior of singular numbersσkn,n of the Hankel matrixDn, where
kn/n → θ ∈ [0, 1] asn → ∞. Moreover, we obtain asymptotics of the Kolmogorov, Gelfand
and lineark-widths,k = kn, of the unit ballAn,2 of Pn ∩ L2(Γ) in the spaceL2(µ,E), where
Γ = {z : |z| = 1} andPn is the class of all polynomials of the degree at mostn.
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2 VASILIY A. PROKHOROV

1. I NTRODUCTION

1.1. Notation. LetG = {z : |z| < 1} be the open unit disk with boundaryΓ = {z : |z| = 1}
in the complex planeC. We assume that circumferenceΓ is positively oriented with respect
to G. Above and thereafterLp(Γ), 1 ≤ p ≤ ∞, stands for the Lebesgue space of functionsϕ
measurable onΓ, with the norm

‖ϕ‖p =

(∫
Γ

|ϕ(t)|p|dt|
)1/p

if 1 ≤ p <∞,

and
‖ϕ‖∞ = ess sup

Γ
|ϕ(t)| if p = ∞.

Denote by〈ϕ, ψ〉2 the inner product in the Hilbert spaceL2(Γ):

〈ϕ, ψ〉2 =

∫
E

(ϕψ)(t)|dt|, ϕ, ψ ∈ L2(Γ).

LetC(Γ) be the Banach space of continuous functions onΓ with the supremum norm‖ · ‖Γ on
Γ.

Denote byHp(G), 1 ≤ p ≤ ∞, the Hardy space of analytic functions onG. Here and in
what follows we considerHp(G) as a subspace of the spaceLp(Γ). We representL2(Γ) as the
direct sumL2(Γ) = H2(G) ⊕H⊥

2 (G), whereH⊥
2 (G) is the orthogonal complement ofH2(G)

in L2(Γ). We remark thata ∈ H⊥
2 (G) if and only if there exists a functionb ∈ H2(G) such that

a(t) = b(t)
|dt|
dt

a.e. on Γ.

1.2. Singular numbers. Let X andY be Hilbert spaces and letA : X → Y be a compact
linear operator, then then-th singular numbersn = sn(A) is defined by

sn(A) = inf
K
||A−K||,

where the infimum is taken over all linear operatorsK : X → Y having rank at mostn. Here
|| · || denotes the norm of the corresponding linear operator. Equivalently,sn is given by

(1.1) sn(A) = inf
X−n

||A|X−n||,

whereX−n runs over all subspaces ofX of codimensionn (see, for example, [33]). More-
over, the sequence{sn(A)}, n = 0, 1, 2, . . . , coincides with the sequence of eigenvalues of the
operator|A| = (A∗A)1/2, whereA∗ : Y → X is the adjoint ofA.

1.3. N-widths. Let A be a convex, compact, centrally symmetric subset of a Banach spaceX.
Here and subsequently,dn(A, X) stands for Kolmogorovn-width of A in X:

dn(A, X) := inf
Xk

sup
ϕ∈A

inf
g∈Xn

||ϕ− g||,

whereXn denotes an arbitraryn dimensional subspace ofX. The Gelfandn-width of A in X
is defined as follows:

(1.2) dn(A, X) := inf
X−n

sup
x∈X−n∩A

||x||,

whereX−n varies over all subspaces ofX of codimensionn. The linearn-width of A in X is
given by

δn(A, X) := inf
K

sup
ϕ∈A

||ϕ−Kϕ||,
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HANKEL MATRICES OFMARKOV FUNCTIONS 3

whereK : X → X runs over all linear operators of rankn (see [24] for more details about
n-widths).

1.4. N-widths and the restriction operator. Let E be a compact subset of the open interval
(−1, 1). We assume thatE contains infinitely many points. Letµ be a positive Borel measure
with support suppµ = E. Denote byL2(µ,E) the Hilbert space with the inner product

〈ϕ, ψ〉2,µ =

∫
E

(ϕψ)(x)dµ(x), ϕ, ψ ∈ L2(µ,E),

and the norm‖ϕ‖2,µ.
Denote byJ : H2(G) → L2(µ,E) the restriction operator. The operatorJ is given by

restricting an elementϕ ∈ H2(G) toE = suppµ: Jϕ = ϕ|E. Let J∗ : L2(µ,E) → H2(G) be
the adjoint ofJ . It is easy verified that forϕ ∈ H2(G)

(J∗J)(ϕ)(z) =
1

2π

∫
E

ϕ(x)

1− zx
dµ(x), |z| < 1

(see, for example, [15]).
The restriction toE of the closed unit ball ofH2(G) forms a compact, convex, centrally sym-
metric subsetA2 of L2(µ,E). It is possible to determine the size of the setA2 as measured
by itsn-width. For any positive integern let Bn denote the class of all Blaschke productsB of
degree at mostn:

B(z) = λ
l∏

k=1

z − ξ1

1− ξkz
, ξk ∈ G, l ≤ n, |λ| = 1.

S.D. Fisher and C.A. Micchelli [12], [15] proved that

sn(J) = dn(A2, L2(µ,E)) = dn(A2, L2(µ,E)) = δn(A2, L2(µ,E))

= inf
B∈Bn

sup
ϕ∈A2

||ϕB||2,µ,

wheredn(A2, L2(µ,E)), dn(A2, L2(µ,E)), andδn(A2, L2(µ,E)) are the Kolmogorov, Gelfand
and linearn-widths ofA2 in the spaceL2(µ,E), andsn(J) is the singular number of the re-
striction operatorJ. It is also proved by S. D. Fisher and C.A. Micchelli that the eigenvalues for
J∗J : H2(G) → H2(G) are simple, the corresponding eigenspaces are one dimensional and the
(n+ 1)-th eigenfunction has exactlyn zeros inG ( see also [13], [14]).

1.5. Connection with Hankel operators. For any nonnegative integern denote byPn the
class of all polynomials of degree at mostn. LetMn,∞(G) be the following class of meromor-
phic functions inG with at mostn poles:

Mn,∞(G) = {P/Q : P ∈ H∞(G), Q ∈ Pn, Q 6≡ 0} .
Let f be a continuous function onΓ. The deviation off in L∞(Γ) from the classMn,∞(G)

is denoted by∆n,∞(f ;G):

∆n,∞(f ;G) = inf
h∈Mn,∞(G)

||f − h||∞.

The Hankel operatorAf : H2(G) → H⊥
2 (G) is defined by

Af (g) = P−(fg),

whereP− is the orthogonal projection ofL2(Γ) ontoH⊥
2 (G). The Adamyan, Arov, and Kreı̆n

Theorem asserts [1], [2] (see also [25]) that forf ∈ C(Γ), we have

∆n,∞(f ;G) = sn(Af ), n = 0, 1, 2, . . . .

AJMAA, Vol. 14, No. 1, Art. 7, pp. 1-17, 2017 AJMAA

http://ajmaa.org


4 VASILIY A. PROKHOROV

For Markov functionsf the singular numberssn(Af ) turn out to be related to the singular
numbers of the embedding operatorJ : H2(G) → L2(µ,E) [4] (see also [5],[6] and [7]):

For the Markov function

f(z) =
1

2πi

∫
E

dµ(x)

z − x
,

whereµ is a positive Borel measure with supportsuppµ = E ⊂ (−1, 1) containing infinitely
many points, there holds

A∗fAf = (J∗J)2.

Moreover, forn = 0, 1, . . . ,

∆n,∞(f ;G) = sn(Af ) = sn(J)2.

1.6. Motivation. Let µ be a positive Borel measure with support suppµ = E ⊂ (−1, 1)
containing infinitely many points. Let

Dn =

(
1

2π

∫
E

xi+jdµ(x)

)n

i,j=0

be the Hankel matrix whose elements are moments
∫
E
xkdµ(x)/2π of µ/2π. The theory of

Hankel matrices finds applications in questions of rational approximation [3], [32], orthogonal
polynomials [31], random matrices (see, for example, [9], [11]). We mention the works of G.
Szeg̋o [30], Widom and Wilf [34], and Berg and Szwarc [8], where the behavior of the smallest
eigenvalue of Hankel matrices studied as the dimension of the matrices tends to infinity (a
bibliography relating to this circle of problems is given in [8]; see also [20], [35], [23], [10],
[36]).

In Section 2 we introduce the Hankel operatorAf,n which acts on the classPn of all polyno-
mials of degree at mostn in order to relate the AAK theory and the error of best approximation.
An analogue of the AAK Theorem (the smallest singular number ofAf,n is equal to the error of
best approximation) for a continuous on the unit circle symbolf is developed, based on duality.
We also establish some properties ofAf,n. We remark that in [26] we defined a Hankel-type
operator acting on the classPn of all polynomials of degree at mostn and proved an analogue
of the AAK Theorem in the case when a symbolf of the corresponding operator is an analytic
function in the open disk|z| < R,R > 1.

The main results of the paper are presented in Sections 3 and 4. In Section 3 we investigated
properties the Hankel operatorAf,n for the special case off being a Markov function, made
a link with singular numbers of the Hankel matrixDn, a restriction operator, k-widths, and
simplified the formula for singular numbers. We also show connection singular numbers of
the Hankel matrixDn, the Kolmogorov, Gelfand and lineark-widths of the unit ballAn,2 of
Pn ∩ L2(Γ) in the spaceL2(µ,E), with the following extremal problem:

τ k,n = inf
u∈Pk

sup
v∈Pn−k

||uv||2,µ
||uv||2

.

In Section 4, in the case whenE = [a, b] ⊂ (−1, 1) and the measureµ satisfies the condition
dµ/dx > 0 a.e. onE, we study then-th root behavior of singular numbersσkn,n of the Hankel
matrixDn, wherekn/n→ θ ∈ [0, 1] asn→∞. Using the works of Gonchar and Rakhmanov
[18] and [19], we reduce the investigation of asymptotic behavior of singular numbersσkn,n of
Dn to the investigation of asymptotics of the following extremal constants:

χkn,n = inf
u∈Pkn

sup
v∈Pn−kn

||uv||E
||uv||Γ

, n = 0, 1, 2, . . . .
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This minimax problem was investigated by Prokhorov, Saff and Yattselev [27]. The results ob-
tained are based on extremal problems of potential theory, central among which is the problem
of equilibrium in an external field.

2. THE HANKEL OPERATOR

2.1. Definition and some properties.Fix a nonnegative integern. Let Kn be a(n + 1)-
dimensional subspace ofH⊥

2 (G) defined as follows:

Kn = {a : a(t) = b(t)
|dt|
dt

a.e. on Γ, b ∈ Pn}.

Let f be a continuous function onΓ. The Hankel operatorAf,n : Pn → Kn is defined by

Af,n(α) = Pn(αf), α ∈ Pn,
wherePn is the orthogonal projection ofL2(Γ) ontoKn. Denote byH2,n(G) a subspace of
H2(G) consisting of functionsϕ ∈ H2(G) such that each functionϕ has a zero of order at least
n+ 1 at z = 0. It is not hard to see that we can representH2(G) as the direct sum

H2(G) = Pn ⊕H2,n(G).

According to the definition of the operatorAf,n the equality

(2.1) Af,nα = αf − β − ϕ
|dt|
dt

= p
|dt|
dt

a.e. onΓ

holds for any polynomialα ∈ Pn, whereβ ∈ H2(G), ϕ ∈ H2,n(G) andp ∈ Pn are uniquely
determined by the relation

‖Af,nα‖2 = ‖αf − β − ϕ
|dt|
dt
‖2 = inf

β1∈H2(G),ϕ1∈H2,n(G)
‖αf − β1 − ϕ1

|dt|
dt
‖2.

Let us define an antilinear operatorBf,n : Pn → Pn as follows

Bf,nα = p, α ∈ Pn.
For anyα ∈ Pn we have

(2.2) Af,nα = Bf,nα
|dt|
dt

a.e. onΓ.

For a pair of polynomialsu, v ∈ Pn the bilinear symmetric form[u, v] is defined by

[u, v] =

∫
Γ

(uvf)(t)dt.

On account of (2.1) and (2.2), we get

(2.3) [u, v] = 〈v,Bf,nu〉2 = 〈u,Bf,nv〉2 .
Consequently,

〈Af,nu,Af,nv〉2 = 〈Bf,nv,Bf,nu〉2
and 〈

u,A∗f,nAf,nv
〉

2
=

〈
u,B2

f,nv
〉

2
.

From this we obtain the following formula (compare with [28])

(2.4) A∗f,nAf,n = B2
f,n,

whereA∗f,n : Kn → Pn is the adjoint ofAf,n.
Let {σk,n}nk=0 be the set of all singular numbersσk,n = sk(Af,n) of Af,n:

σ0,n ≥ σ1,n ≥ · · · ≥ σn,n.
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6 VASILIY A. PROKHOROV

Denote by{Qk,n}nk=0 associated orthonormal polynomials (compare with [28]):

(2.5) Bf,nQk,n = σk,nQk,n

and

Af,nQk,n = σk,nQk,n

|dt|
dt
.

There existPk,n ∈ H2(G), ϕk,n ∈ H2,n(G) such that

(2.6) Qk,nf − Pk,n − ϕk,n
|dt|
dt

= σk,nQk,n

|dt|
dt

a.e. onΓ.

By (2.6), the polynomialsQk,n are characterized by the double orthogonality conditions:

[Qi,n, Qj,n] = σi,nδij, 〈Qi,n, Qj,n〉2 = δij,

whereδij is the Kronecker symbol.
Let ϕ be any function in the Hardy spaceH1(G). We can representϕ as a sum of its Taylor

series:

ϕ(z) =
∞∑
i=0

ϕiz
i, z ∈ G.

Let

Sn(ϕ)(z) =
n∑
k=0

ϕkz
i

be then-th partial sum of the Taylor series ofϕ. The equality (2.6) implies that

(2.7) [Sn(ϕ), Qk,n] = σk,n〈ϕ,Qk,n〉2.
According to (1.1) and (2.3), the following formula for then-th singular numberσn,n holds:

(2.8) σn,n = inf
u∈Pn

‖Af,nu‖2

‖u‖2

= inf
u∈Pn

sup
v∈Pn

|
∫

Γ
uvfdt|

||u||2||v||2
.

2.2. An analogue of the AAK Theorem. We now study an analogue of the AAK Theorem for
the operatorAf,n. Let n be a nonnegative integer. Denote byH∞,n(G) a subspace ofH∞(G)
consisting of functionsϕ ∈ H∞(G) such that each functionϕ has a zero of order at leastn+ 1
at z = 0. LetLn be a subspace ofL∞(Γ) such that every functionψ ∈ Ln can be represented
as a sumψ = β + ϕ|dt|/dt, whereβ ∈ H∞(G), ϕ ∈ H∞,n(G).

Suppose thatf is a continuous function onΓ. Let us consider the following approximation
problem

∆n = inf
ψ∈Ln,α∈Pn

∥∥∥∥f − ψ

α

∥∥∥∥
∞
.

We note that the dual of the quotient spaceC(Γ)/H∞(G) is H1(G) (see, for example [17],
[21]). Moreover, each continuous linear functionall onC(Γ)/H∞(G) can be represented in the
form

< x, l >=

∫
Γ

(gv)(t)dt,

wherex ∈ C(Γ)/H∞(G) is an equivalence classg+H∞(G), g ∈ C(Γ), andv ∈ H1(G). From
this it follows immediately that the dual of the quotient spaceC(Γ)/Ln isPn.

Fix u ∈ Pn andu 6= 0 on Γ. On the basis of duality relations following from the Hahn–
Banach Theorem (see, for example, [22]), we get

inf
ψ∈Ln

||f − ψ

u
||∞ = sup

v∈Pn

|
∫

Γ
uvfdt|

||uv||1
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and

(2.9) ∆n = inf
u∈Pn

sup
v∈Pn

|
∫

Γ
uvfdt|

||uv||1
,

whereu runs over the class of all polynomialsu ∈ Pn andu 6= 0 on Γ. Since polynomials
u ∈ Pn with the conditionu 6= 0 on Γ are dense in the uniform metric onΓ in the class of all
polynomialsPn we can omit in (2.9) the conditionu 6= 0 onΓ.

We now state an analogue of the AAK Theorem for the operatorAf,n. The n-th singular
number of the operatorAf,n can be characterized as an error of the best approximation off in
the spaceL∞(Γ) by functionsψ/α, whereψ ∈ Ln, α ∈ Pn.

Theorem 2.1.We have

(2.10) σn,n = ∆n.

Proof. The inequality
σn,n ≤ ∆n.

follows directly from (2.8) and (2.9), and

||uv||1 ≤ ||u||2||v||2.
Multiplying both sides of (2.6) by an arbitrary polynomialv ∈ Pn, v 6≡ 0, settingk = n and

integrating, we obtain that

|
∫

Γ

vQn,nfdt| = σn,n|
∫

Γ

vQn,n|dt| ≤ σn,n||vQn,n||1.

Hence

sup
v∈Pn

|
∫

Γ
vQn,nfdt|

||vQn,n||1
≤ σn,n.

From this, on account (2.9), we get
∆n ≤ σn,n

and, then, (2.10).

3. M ARKOV FUNCTIONS

3.1. Hankel matrix. Let µ be a positive Borel measure with support suppµ = E ⊂ (−1, 1)
containing infinitely many points. Here and in what follows we assume thatf(z) is the Markov
function

f(z) =
1

2πi

∫
E

dµ(x)

z − x
.

For anyu, v ∈ Pn,

(3.1) [u, v] =

∫
Γ

(uvf)(t)dt =

∫
E

1

2πi

∫
Γ

(uv)(t)dt

t− x
dµ(x) =

∫
E

(uv)(x)dµ(x).

Obviously,

if(z) =
1

2π

∫
E

dµ(x)

z − x
=

∞∑
i=0

fi
zi+1

, |z| > 1,

where

fi =
1

2π

∫
E

xi dµ(x).

Set

Qk,n(z) =
n∑
i=0

ai,kz
i.
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8 VASILIY A. PROKHOROV

Lettingϕ(t) = tl, l = 0, . . . , n in (2.7), and taking into account (3.1) and∫
Γ

titj |dt| = 2πδij,

we get

(3.2)
n∑
i=0

ai,kfi+l = σk,nal,k.

Let

Dn =

(
1

2π

∫
E

xi+jdµ(x)

)n

i,j=0

.

By (3.2),
Dnak = σk,nak,

where

ak =

 a0,k

. . .
an,k

 .

So, for allk = 0, . . . , n, σk,n is a singular number of the Hankel matrixDn.

3.2. Connection with restriction operator. Let Jn : Pn → L2(µ,E) be the restriction op-
erator given by restricting an elementα ∈ Pn to E: Jnα = α|E. It is easily seen that for
α ∈ Pn

(3.3) (J∗nJn)(α)(z) =
1

2π

∫
E

1− (zx)n+1

1− zx
α(x)dµ(x),

whereJ∗n : L2(µ,E) → Pn is the adjoint ofJn.
The operatorC : L2(µ,E) → L2(µ,E) is defined byCϕ = ϕ, ϕ ∈ L2(µ,E). The operator

C satisfies the following properties:C is an antilinear operator,C2 = I is the identical operator,
and

〈Cϕ,ψ〉2,µ = 〈Cψ, ϕ〉2,µ for ϕ, ψ ∈ L2(µ,E).

Let U : H2(G) → H2(G) be the antilinear isometric conjugation onH2(G) defined by the
formula

(Uϕ)(z) = ϕ(z), ϕ ∈ H2(G), z ∈ G.
It is not hard to see thatU satisfies the following properties:U is an antilinear operator,U2 = I,
and

〈Uϕ, ψ〉2 = 〈Uψ, ϕ〉2 for ϕ, ψ ∈ H2(G).

For the Markov functionf there is a connection between the operatorsA∗f,nAf,n and(J∗nJn)
2

(compare with [4], [6], [28]).

Lemma 3.1. We have

(3.4) A∗f,nAf,n = (J∗nCJn)
2 = (J∗nJn)

2

and

(3.5) σk,n = sk(Jn)
2, k = 0, . . . , n,

whereσk,n andsk(Jn) are the singular numbers of the operatorsAf,n andJn, respectively.
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Proof. For any pair of polynomialsu, v ∈ Pn,

[u, v] =

∫
E

(uv)(x)dµ(x) = 〈Jnu,CJnv〉2,µ

= 〈u, J∗nCJnv〉2 .
From this, on the basis of formula (2.3), we get

Bf,n = J∗nCJn.

So, by (2.4),
A∗f,nAf,n = B2

f,n = (J∗nCJn)
2.

It follows immediately from the definitions of the operatorsC andU that

Jn = CJnU.

Hence, we have

(3.6) J∗nJn = J∗nCJnU = Bf,nU.

For any pair of polynomialsu, v ∈ Pn,

〈J∗nJnu, v〉 = 〈J∗nCJnUu, v〉 = 〈CJnUu, Jnv〉2,µ
= 〈CJnv, JnUu〉2,µ = 〈J∗nCJnv, Uu〉
= 〈v, UJ∗nCJnu〉 .

Therefore,

(3.7) J∗nJn = UJ∗nCJn = UBf,n.

SinceU2 = I, from (3.6) and (3.7), we get(J∗nCJn)
2 = (J∗nJn)

2.

By (1.1) and (3.5), the following formula holds for all integersk = 1, . . . , n,

σk,n = inf
u1,...,uk∈Pn

sup
u∈Pn

||u||22,µ
||u||22

,

where the supremum is taken over all polynomialsu ∈ Pn, satisfying the conditions
< u, ui >2= 0, i = 1, . . . , k. In particularly,

σn,n = inf
u∈Pn

||u||22,µ
||u||22

.

3.3. Singular numbers and k-widths. Let k andn be integers,0 ≤ k ≤ n. Denote byAn,2

the restriction toL2(µ,E) of the unit ball ofPn ∩ L2(Γ). It is a convex, compact, centrally
symmetric subset ofL2(µ,E). Let us define the following extremal constants:

(3.8) τ k,n = inf
u∈Pk

sup
v∈Pn−k

||uv||2,µ
||uv||2

, n = 0, 1, 2, . . . .

Theorem 3.2.Letµ be a positive Borel measure with supportsuppµ = E ⊂ (−1, 1) containing
infinitely many points. For allk = 0, 1, . . . n,

σk,n = sk(Jn)
2 = dk(An,2, L2(µ,E))2

= dk(An,2, L2(µ,E))2 = δk(An,2, L2(µ,E))2 = τ 2
k,n,

wheredk(An,2, L2(µ,E)), dk(An,2, L2(µ,E)), andδk(An,2, L2(µ,E)) are the Kolmogorov,
Gelfand and lineark-widths ofAn,2 in the spaceL2(µ,E).
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Proof. We have defined the setAn,2 as the restriction toL2(µ,E) of the unit ball ofPn∩L2(Γ) :

An,2 = {Jnp : ||p||2 ≤ 1, p ∈ Pn}.
It is the well-known result (see [24], Chapter IV) that the corresponding eigenvalue problem for
J∗nJn is connected withk−widths ofAn,2, and for allk = 0, 1, . . . n,

sk(Jn) = dk(An,2, L2(µ,E)) = dk(An,2, L2(µ,E)) = δk(An,2, L2(µ,E)).

Moreover, by (3.5),σk,n = sk(Jn)
2 for all k = 0, 1, . . . n. To prove Theorem 3.2 it is sufficient

to prove that allk = 0, 1, . . . n,

dk(An,2, L2(µ,E)) = τ k,n.

By (1.2),

(3.9) dk(An,2, L2(µ,E)) = inf
X−k

sup
ϕ∈X−k∩An,2

||ϕ||2,µ
||ϕ||2

,

whereX−k denotes an arbitrary subspace ofL2(µ,E) of codimensionk. From this it follows
that

dk(An,2, L2(µ,E)) ≤ τ k,n.

We will show that

(3.10) dk(An,2, L2(µ,E)) ≥ τ k,n.

Without loss of generality we can assume that1 ≤ k ≤ n. Let S2k+1 be(2k + 1)-sphere in the
spaceCk+1 :

S2k+1 = {w = (w0, w1, . . . , wk) : |w0|2 + |w1|2 + . . . |wk|2 = 1, w0, w1, . . . , wk ∈ C}.
In [12] Fisher and Micchelli constructed an odd mappingσ : S2k+1 → Bk from S2k+1 into the
set of all Blaschke products of degree at mostk in H∞(G), that is continuous whenH∞(G) is
given the topology of uniform convergence on compact subsets ofG. Let τ : Bk → Pk be the
mapping defined by

τ(B) = λ
l∏

k=1

(z − ξk),

if

B(z) = λ

l∏
k=1

z − ξk
1− ξkz

, ξk ∈ G, l ≤ k, |λ| = 1.

This mapping is odd and continuous in the topology of uniform convergence on compact subsets
of G.

Fix u ∈ Pk, u 6≡ 0. Consider the following extremal problem

(3.11) δ = sup
v∈Pn−k,v 6≡0

||uv||2,µ
||uv||2

(compare with [13]). On the basis of the normal family arguments, we can assert that there
exists a polynomialω ∈ Pn−k, ω 6≡ 0, such that

δ =
||uω||2,µ
||uω||2

.

The polynomialω is zero free onG. Indeed, letω(a) = 0 for somea ∈ G. Setω∗(z) =
ω(z)(1− az)/(z − a). We haveω∗ ∈ Pn−k, ||uω||2 = ||uω∗||2 and

|ω∗(z)| > |ω(z)| for all z ∈ G.
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Hence
||uω∗||2,µ
||uω∗||2

>
||uω||2,µ
||uω||2

,

which contradicts the extremality ofω.
The standard variation arguments show that any extremal functionω satisfies the following

equation
〈uv, uω〉2,µ = δ2 〈uv, uω〉2

for all v ∈ Pn. From this it follows that ifω andω1 are two extremal solutions, thencω + c1ω1

is also an extremal solution. Consequently, since all extremal solutions are zero free onG, there
is a uniqueω ∈ Pn−k such that||uω||2 = 1, ω(0) > 0 and

δ =
||uω||2,µ
||uω||2

.

We will denote the unique solution of (3.11) byvu.
We now show that the mappingu → vu is continuous onPk with the topology of uniform

convergence on compact subsets ofC. Let ul ∈ Pk, ul → u, u ∈ Pk, u 6≡ 0, uniformly on
compact subsets ofC asl→∞. We will prove thatvul

→ vu uniformly on compact subsets of
C asl → ∞. Since||ulvul

||2 = 1 andul → u uniformly on compact subsets ofC asl → ∞,
it follows that there exist a sequenceΛ ⊂ N, a polynomialv∗ ∈ Pn−k such thatvul

→ v∗

uniformly on compact subsets ofC asl → ∞, l ∈ Λ. Since||ulvul
||2 = 1, vul

(0) > 0, we get
||uv∗||2 = 1 andv∗(0) > 0. For anyv ∈ Pn−k, v 6≡ 0,

||ulv||2,µ
||ulv||2

≤ ||ulvul
||2,µ

||ulvul
||2

.

Clearly,
||ulv||2,µ → ||uv||2,µ and ||ulv||2 → ||uv||2

asl→∞, l ∈ Λ. Moreover,

||ulvul
||2,µ → ||uv∗||2,µ and ||ulvul

||2 → ||uv∗||2
asl→∞, l ∈ Λ. Thus

||uv||2,µ
||uv||2

≤ ||uv∗||2,µ
||uv∗||2

,

which impliesv∗ = vu andvul
→ vu uniformly on compact subsets ofC asl→∞.

We now apply standard arguments involving the Borsuk’s antipodality Theorem [24] to prove
(3.10). Letl1, . . . lk be anyk continuous linear functionals onL2(µ,E). Let us consider the
mappingL : Pk → Ck such that

L(u) = (l1(uvu), . . . , lk(uvu)), u ∈ Pk.
Thus the mappingL ◦ τ ◦ σ is continuous and odd fromS2k+1 into Ck. It follows from the
Borsuk’s Theorem that this map has a zero; that there isu0 ∈ Pk, u0 6≡ 0 such that

lj(u0vu0) = 0, j = 1, . . . , k.

So, for any subspaceX−k of L2(µ,E) of codimensionk

sup
ϕ∈X−k∩An,2

||ϕ||2,µ
||ϕ||2

≥ ||u0vu0||2,µ
||u0vu0||2

≥ sup
v∈Pn−k

||u0v||2,µ
||u0v||2

≥ inf
u∈Pk

sup
v∈Pn−k

||uv||2,µ
||uv||2

= τ k,n.

From this we obtain (see (3.9)) the desired lower bound (3.10) fordk(An,2, L2(µ,E)) and then
equalitydk(An,2, L2(µ,E)) = τ k,n which proves the theorem.
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3.4. Properties of eigenfunctions.Here and in what follows we assume that support ofµ is
the closed intervalE = [a, b] ⊂ (0, 1). The kernel

K(x, y) =
1

2π
(1− (xy)n+1)/(1− xy) =

1

2π

n∑
i=0

xiyi

of the integral operator
1

2π

∫ b

a

1− (xy)n+1

1− xy
ϕ(y)dµ(y)

is a continuous symmetric kernelx, y ∈ E = [a, b] ⊂ (0, 1). Since a generalized Vandermonde
matrix

||xγj

i ||m1 0 < x1 < x2 · · · < xm; γ1 < γ2 · · · < γm
is totally positive, we obtain, by virtue of the Cauchy–Binet formula, that the kernelK(x, y) is
an oscillatory kernelx, y ∈ E = [a, b] ⊂ (0, 1) (for more details about totally positive matrices,
oscillatory matrices and kernels, see [16]). By the Gantmacher-Kreı̆n theory [16] of integral
equations with oscillatory kernels, all eigenvalues of the integral equation∫ b

a

K(x, y)ϕ(y)dµ(y) = λϕ(x)

are positive and simple
λ0 > λ1 > λ2 > . . . ,

the eigenfunctionϕk corresponding to the eigenvalueλk hask nodes on(a, b) and has no other
zeros on[a, b].

Lemma 3.3. LetE = [a, b] ⊂ (0, 1). Then all singular numbersσk,n, k = 0, 1, . . . , n, are
positive and simple, the corresponding eigenspaces are one dimensional. All eigenfunctions
Qk,n have real coefficients and

(3.12) σk,nQk,n(x) =
1

2π

∫ b

a

1− (xy)n+1

1− xy
Qk,n(y)dµ(y).

Moreover, thek-th eigenfunctionQk,n has exactlyk simple zeros on the segment[a, b].

Proof. We note thatλk = sk(Jn) for k = 0, 1, . . . , n. From this, on account of (3.5)

σk,n = sk(Jn)
2,

we obtain that all singular numbersσk,n, k = 0, 1, . . . , n, are positive and simple, the corre-
sponding eigenspaces are one dimensional. Let0 ≤ k ≤ n and let

Q∗k,n(z) = (UQk,n)(z) = Qk,n(z).

Using (2.5) and (3.7), we can write

J∗nJnQk,n = UBf,nQk,n = σk,nUQk,n = σk,nQ
∗
k,n.

Analogously, sinceU2 = I, on the basis of (2.5) and (3.6), we get

J∗nJnQ
∗
k,n = J∗nJnUQk,n = Bf,nQk,n = σk,nQk,n.

Therefore, by (3.4),Q∗k,n is an eigenfunction ofA∗f,nAf,n. Since the corresponding eigenspace
is one dimensional, we can conclude thatQk,n = cϕk, c ∈ R, Qk,n has real coefficients and, by
3.3 satisfies the integral equation (3.12).

By Theorem 3.2,

(3.13) σk,n =
||Qk,n||22,µ
||Qk,n||22

= inf
u∈Pk

sup
v∈Pn−k

||uv||22,µ
||uv||22

.

AJMAA, Vol. 14, No. 1, Art. 7, pp. 1-17, 2017 AJMAA

http://ajmaa.org


HANKEL MATRICES OFMARKOV FUNCTIONS 13

By properties of extremal solutions of (3.13),Qk,n has no more thank zeros onE = [a, b].
Since the eigenfunctionQk,n has exactlyk nodes on(a, b) and has no other zeros on[a, b], we
obtain thatQk,n hask simple zerosx1,n, x2,n, . . . , xk,n on the segment[a, b], and

σk,n =
||Qk,n||22,µ
||Qk,n||22

=
||wk,nβk,n||22,µ
||wk,nβk,n||22

= sup
v∈Pn−k

||wk,nv||22,µ
||wk,nv||22

,

wherewk,n(x) =
∏k

i=1 (x− xi,n), Qk,n = wk,nβk,n, and a polynomialβk,n is constructed from
the zeros ofQk,n in C \G.

3.5. Orthogonality. We have the following lemma (compare with [7]).

Lemma 3.4. LetE = [a, b] ⊂ (0, 1). The following orthogonality relations are valid:

(3.14)
∫ b

a

Sn(
xiw∗k,n − xk−iwk,n

w∗k,n
βk,n)(x)Qk,n(x)dµ(x) = 0, i = 0, . . . , k,

and

(3.15)
∫ b

a

Sn(
xi

w∗k,n(x)
)(x)Qk,n(x)dµ(x) = 0, i = 0, . . . , k − 1,

wherew∗k,n(x) =
∏k

i=1(1− xi,nx).

Proof. Let ϕ be any function in the Hardy spaceH1(G). By (2.7) and (3.1),

[Sn(ϕ), Qk,n] =

∫ b

a

Sn(ϕ)Qk,n(x)dµ(x) = σk,n〈ϕ,Qk,n〉2,

whereSn(ϕ) is then-th partial sum of the Taylor series ofϕ. Letting ϕ = xiβk,n, i =
0, . . . , k, we get

(3.16) I = [xiβk,n, Qk,n] = σk,n〈tiβk,n, Qk,n〉2.

SinceI is a real number,

I = σk,n〈tiβk,n, Qk,n〉2 = σk,n〈
tk−iQk,n(t)

w∗k,n(t)
, Qk,n〉2 = [Sn(

xk−iQk,n

w∗k,n
), Qk,n].

From this, on account of (3.16), we get

[Sn(x
iβk,n −

xk−iQk,n

w∗k,n
), Qk,n] = 0, i = 0, . . . , k,

and, then, (3.14).
By (3.12), ∫ b

a

Sn(
1

1− xi,nx
)(x)Qk,n(x)dµ(x) = 0 for i = 1, . . . , k.

Thus for any polynomialω, degω ≤ k − 1,∫ b

a

Sn(
ω

w∗k,n
)(x)Qk,n(x)dµ(x) = 0

Lettingω(x) = xi, i = 0, . . . , k − 1, we get (3.15). This finishes the proof.
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4. ASYMPTOTICS OF THE EXTREMAL CONSTANTS

4.1. The main Theorem. Let E = [a, b] ⊂ (−1, 1). Let us consider the following extremal
constants:

(4.1) χk,n = inf
u∈Pk

sup
v∈Pn−k

||uv||E
||uv||Γ

, n = 0, 1, 2, . . . .

In [27] asymptotics ofχkn,n, kn/n → θ ∈ [0, 1] asn → ∞, investigated in the terms of the
solutions of a minimal energy problem associated with the setsE andΓ.

Let K be a compact set in the complex planeC. Denote byΛδ(K), δ > 0, the set of all
positive Borel measuresλ of massδ =

∫
dλ compactly supported onK. The sequence of

measures{τn}∞n=1, suppτn ⊆ K, weak-star converges to a measureτ , suppτ ⊆ K:

τn
∗→ τ as n→∞,

if for any continuous functionϕ onK,∫
ϕdτn →

∫
ϕdτ as n→∞.

Let τ be a positive Borel measure with compact support suppτ , |τ | =
∫
dτ . The logarithmic

potential

U τ (z) =

∫
log

1

|z − t|
dτ(t)

of the measureτ is superharmonic inC and harmonic inC \ suppτ . Denote by

I(τ) =

∫ ∫
log

1

|z − t|
dτ(t)dτ(z)

the logarithmic energy of the measureτ . Let cap(E,Γ) be the condenser (Green) capacity ofE
with respect toG.

We now consider the minimal energy problem of the logarithmic potential theory that we
will use in asymptotical analysis of the extremal constants. The following can be proved by the
well-known methods (see [29], [27]).
For each0 ≤ θ ≤ 1 there exist unique measuresλθ ∈ Λ1−θ(Γ) andµθ ∈ Λθ(E) such that

I(λθ + µθ) = min
λ,µ

I(λ+ µ).

whereλ ∈ Λ1−θ(Γ) andµ ∈ Λθ(E). Moreover, there exist constantsmθ andm̂θ such that

(4.2) Uλθ+µθ = m̂θ on suppµθ = E

and

(4.3) Uλθ+µθ = min
E
Uλθ+µθ = mθ + m̂θ on suppλθ ⊆ Γ.

In general, (4.2) and (4.3) hold only q.e.(quazi-everywhere) on suppλθ and suppµθ, respec-
tively. The regularity ofE andΓ is sufficient for this property to hold at every point of suppλθ
and suppµθ. We also remark that the measuresλθ andµθ are uniquely deteremined by condi-
tions (4.2) and (4.3) (see [29], [27]).

In the case whenE = [a, b] ⊂ (0, 1), we representQkn,n in the formQkn,n = wkn,nβkn,n,
wherewkn,n is constructed from zerosx1,n, x2,n, . . . , xk,n of Qkn,n onE. Denote byν(wkn,n)
the zero counting measure associated with polynomialwkn,n:

ν(wkn,n) =
1

n

k∑
i=0

δxi,n
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where,δz is the unit Dirac measure with support atz ∈ C.
We now formulate a theorem characterizing asymptotics of the singular numbersσkn,n, where

kn/n→ θ ∈ [0, 1] asn→∞.

Theorem 4.1. We assume that the measureµ has supportE = [a, b] ⊂ (−1, 1) and satisfies
the following condition

(4.4)
dµ

dx
> 0 a.e. on E.

We have

lim
n→∞

log σkn,n

n
= 2mθ.

In particular, whenθ = 0, kn →∞ andkn = o(n) asn→∞, we have

lim
n→∞

log σkn,n

kn
= − 2

cap(E,Γ)
.

Moreover, in the case whenE = [a, b] ⊂ (0, 1),

ν(wkn,n)
∗→ µθ as n→∞.

By the works of Gonchar and Rakhmanov (see [18] and [19]), for any sequence of polyno-
mialspn ∈ Pn, pn 6≡ 0, we have

lim
n→∞

(
||pn||2
||pn||Γ

)1/n

= 1,

and

lim
n→∞

(
||pn||2,µ
||pn||E

)1/n

= 1,

where measureµ satisfies condition (4.4). Then Theorem 4.1 directly follows from results
obtained in [27], where asymptotics of the extremal constantsχkn,n and asociated extremal
polynomials is investigated whenkn/n→ θ ∈ [0, 1] asn→∞.
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[20] I. I. HIRSCHMAN JR., The strong Szegő limit theorem for Toeplitz determinants,American Jour-
nal of Mathematics, 88 (1966), pp. 577–614.

[21] P. KOOSIS,Introduction toHp-spaces, Cambridge Univ. Press, Cambridge, 1980.

[22] N. KORNEICHUK, Exact Constants in Approximation Theory, Encyclopedia of Mathematics, vol.
38, Cambridge University Press, Cambridge, 1991.
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[30] G. SZEGŐ, On some Hermitian forms associated with two given curves of the complex plane.
Trans. Am. Math. Soc., 40 (1936), pp. 450–461. In Collected Papers (vol. 2), 666–678. Birkhäuser,

AJMAA, Vol. 14, No. 1, Art. 7, pp. 1-17, 2017 AJMAA

http://ajmaa.org


HANKEL MATRICES OFMARKOV FUNCTIONS 17

Boston, Basel, Stuttgart, 1982.
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