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ABSTRACT. Let E C (—1,1) be a compact set and lgtbe a positive Borel measure with

support supp. = E. Let
1 " "
D, = (/ x”%l,u(:v)) .
27T E i,7=0

In the case whel® = [a,b] C (—1,1) andy satisfies the conditiody/dz > 0 a.e. onE,

we investigate asymptotic behavior of singular numlaegys,, of the Hankel matrixD,,, where
kn/n — 6 € [0,1] asn — oco. Moreover, we obtain asymptotics of the Kolmogorov, Gelfand
and lineark-widths, k = k,,, of the unit ballA,, » of P, N Lo(T") in the space..(u, E'), where

I' ={z:|z| = 1} andP, is the class of all polynomials of the degree at mast
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2 VASILIY A. PROKHOROV

1. INTRODUCTION

1.1. Notation. LetG = {z : |z| < 1} be the open unit disk with boundaty= {z : |z| = 1}
in the complex plan€. We assume that circumferenteis positively oriented with respect
to G. Above and thereaftef,(I'),1 < p < oo, stands for the Lebesgue space of functigns
measurable ofr, with the norm

1/p _
ol = ( / rso<t>|prdtr) £ 1<p< oo
T

Hwa>=<%S§up|w(ﬂ\ if p=oo0.

and

Denote by(y, 1), the inner product in the Hilbert spadg(I'):

(0,0, = /E GO)D)Idt], b € Lo(T),

Let C(I") be the Banach space of continuous function$ avith the supremum norr - || on
r.

Denote byH,(G),1 < p < oo, the Hardy space of analytic functions 6h Here and in
what follows we considef],(G) as a subspace of the spacgI’). We represent,(I') as the
direct sumLy (") = Ho(G) ® Hy (G), whereH;-(G) is the orthogonal complement &f,(G)
in Ly("). We remark that: € Hj (G) if and only if there exists a functiohe H,(G) such that

a(t) = b(t)E a.e.on I

1.2. Singular numbers. Let X andY be Hilbert spaces and let : X — Y be a compact
linear operator, then the-th singular numbes,, = s,,(A) is defined by

5u(A) = inf || 4~ K]|

where the infimum is taken over all linear operatérs X — Y having rank at most. Here
|| - || denotes the norm of the corresponding linear operator. Equivalepilygiven by
(1) 5n(A) = inf [|Alx_, ||

—n

where X_,, runs over all subspaces &f of codimensionn (see, for example| [33]). More-
over, the sequencgs,(A)},n =0,1,2,..., coincides with the sequence of eigenvalues of the
operatoff A| = (A*A)'/2, whereA* : Y — X is the adjoint ofA.

1.3. N-widths. Let A be a convex, compact, centrally symmetric subset of a Banach $pace
Here and subsequenth, (A, X) stands for Kolmogorow-width of A in X:

dn(A7X) = inf sup inf ||S0 - g”u
k peA gEXn

where X,, denotes an arbitrary dimensional subspace o&f. The Gelfandn-width of A in X

is defined as follows:

(1.2) d"(A, X) ::)i(nf sup ||zll,

-ngxeX_,NA

where X _,, varies over all subspaces &f of codimensiom. The linearn-width of A in X is
given by
on(A, X) = infsup [|p — K¢l
K pEA
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where K : X — X runs over all linear operators of ramk(see [[24] for more details about
n-widths).

1.4. N-widths and the restriction operator. Let F be a compact subset of the open interval
(—1,1). We assume thalt' contains infinitely many points. Let be a positive Borel measure
with support supp: = E. Denote byL,(u, E) the Hilbert space with the inner product

(0, B), = /E (G0)(@)du(e), o0 € Lo(yu, B),

and the norm|¢||2 .-

Denote byJ : Hy(G) — Lo(u, E) the restriction operator. The operatdris given by
restricting an element € Hy(G) to E' = suppu: Jyp = ¢ . Let J* 1 Ly(u, E) — Ho(G) be
the adjoint ofJ. It is easy verified that fop € Hy(G)

(T D)(2)(z) = [E A0 @), | <1

:ﬂ 1—z2x

(see, for examplel, [15]).
The restriction toF of the closed unit ball off,(G) forms a compact, convex, centrally sym-
metric subsefA, of Ly(u, E). It is possible to determine the size of the #et as measured
by its n-width. For any positive integer let B,, denote the class of all Blaschke produBtef
degree at most:
l p 5
B(z) =\ —1 €G, 1<n,|\=1
() g1_5k27 gk ) = 7”

S.D. Fisher and C.A. Micchelli[12], [15] proved that
$n(J) = dn(Ag, Lo(p, E)) = d"(Ag, La(pt, E)) = 6,(Aa, La(p, E))

At sup [[9B]l2,.

whered,, (As, Ly(p, E)), d"(As, La(1, E)), ando,, (As, La(1, E')) are the Kolmogorov, Gelfand

and linearn-widths of A, in the space.»(u, £'), ands,(.J) is the singular number of the re-
striction operatov. Itis also proved by S. D. Fisher and C.A. Micchelli that the eigenvalues for
J*J : Hy(G) — H,(G) are simple, the corresponding eigenspaces are one dimensional and the
(n + 1)-th eigenfunction has exacttyzeros inG ( see also [13]/[14]).

1.5. Connection with Hankel operators. For any nonnegative integer denote byP,, the
class of all polynomials of degree at mast_et M,, ..(G) be the following class of meromor-
phic functions inGG with at mostn poles:

Mioo(G) ={P/Q: P € Hx(G), Q € Pn, @ # 0}

Let f be a continuous function dn. The deviation off in L. (I") from the classM,, .(G)
is denoted by\,, . (f; G):

A (@)= inf AT
n,OO(faG) he/\/%n (G)Hf h|oo

n,00

The Hankel operatad; : Hy(G) — Hy-(G) is defined by

Ap(g) =P _(f9g),

whereP _ is the orthogonal projection df,(T") onto H, (G). The Adamyan, Arov, and Kfe
Theorem asserts/[1],][2] (see also][25]) that foe C(T"), we have

ANpoo(f;G) =sn(Af), n=0,1,2,....
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4 VASILIY A. PROKHOROV

For Markov functionsf the singular numbers, (A;) turn out to be related to the singular
numbers of the embedding operatbr Hy(G) — Lo (u, E) [4] (see alsol[5].[6] and [7]):

For the Markov function
1 [ du(z)
1(z) = 27rz'[Ez—:c’
wherey is a positive Borel measure with suppstppy = E C (—1, 1) containing infinitely
many points, there holds
AGAy = (J*J)%
Moreover, forn = 0,1, ...,
An,oo(f; G) = Sn(Af) = Sn(J)z-

1.6. Motivation. Let y be a positive Borel measure with support sypp= £ C (—1,1)
containing infinitely many points. Let

1 " "
D, = (—/ x“”d,u(x))
27T E i,j=0

be the Hankel matrix whose elements are momgpts*dy(x)/2r of yu/2x. The theory of
Hankel matrices finds applications in questions of rational approximatiori [3], [32], orthogonal
polynomials [31], random matrices (see, for example, [9]} [11]). We mention the works of G.
Szed [30], Widom and Wilf [34], and Berg and Szwalc [8], where the behavior of the smallest
eigenvalue of Hankel matrices studied as the dimension of the matrices tends to infinity (a
bibliography relating to this circle of problems is given in [8]; see also [20], [35], [23], [10],
[36]).

In Section 2 we introduce the Hankel operatgt,, which acts on the clasB, of all polyno-
mials of degree at mostin order to relate the AAK theory and the error of best approximation.
An analogue of the AAK Theorem (the smallest singular numbet of is equal to the error of
best approximation) for a continuous on the unit circle symfbisldeveloped, based on duality.
We also establish some propertiesAf,,. We remark that in[26] we defined a Hankel-type
operator acting on the cla$3, of all polynomials of degree at mostand proved an analogue
of the AAK Theorem in the case when a symlgabf the corresponding operator is an analytic
function in the open disk:| < R, R > 1.

The main results of the paper are presented in Sections 3 and 4. In Section 3 we investigated
properties the Hankel operatdir;,, for the special case of being a Markov function, made
a link with singular numbers of the Hankel matrix,, a restriction operator, k-widths, and
simplified the formula for singular numbers. We also show connection singular numbers of
the Hankel matrixD,,, the Kolmogorov, Gelfand and linearwidths of the unit ballA,, » of
P, N Lo(I") in the spacd.q (i, E), with the following extremal problem:

Trn = inf  sup Husz,u'
uEPK yeP,, _y ’ ’uU’ ’2
In Section 4, in the case whdnh = [a,b] C (—1, 1) and the measure satisfies the condition
du/dx > 0 a.e. onE, we study the:-th root behavior of singular numbers, ,, of the Hankel
matrix D,,, wherek,,/n — 60 € [0,1] asn — oo. Using the works of Gonchar and Rakhmanov
[18] and [19], we reduce the investigation of asymptotic behavior of singular nurapefof
D,, to the investigation of asymptotics of the following extremal constants:
[luolle

X = inf sup ———, n=0,1,2,....
kn,n “G’Pknve’Pn,kn HUUHF’ 3 Ly Ay
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This minimax problem was investigated by Prokhorov, Saff and Yattselév [27]. The results ob-
tained are based on extremal problems of potential theory, central among which is the problem
of equilibrium in an external field.

2. THE HANKEL OPERATOR

2.1. Definition and some properties. Fix a nonnegative integet. Let I, be a(n + 1)-
dimensional subspace éf; (&) defined as follows:

K, ={a:at) :wtﬁ—il

Let f be a continuous function dn. The Hankel operatad;,,, : P, — K, is defined by
Asy(a) =Py(af), ae Py,

whereP,, is the orthogonal projection af,(I") onto IC,,. Denote byH, ,(G) a subspace of
H,(G) consisting of function® € H,(G) such that each functiop has a zero of order at least
n+ 1 atz = 0. Itis not hard to see that we can represBEptG) as the direct sum

Hy(G) =P, & Hyn(G).
According to the definition of the operatdr;,, the equality

\dt| . |dt|
2.1 Ap o = — =
(2.1) e =af =3 Gl e

holds for any polynomiakv € P,,, whereg € Hy(G), ¢ € H,,(G) andp € P, are uniquely
determined by the relation
dt )
O A

Arnalls = ||
1Asnallz = llaf =5 -2 — seme™ e @
Let us define an antilinear operatby,, : P,, — P, as follows

ae.on ', beP,}.

a.e. onl’
dt

Bf,na =D a € Py
For anya € P,, we have

(2.2) Afpo = Bypo % a.e. onl.

For a pair of polynomials, v € P, the bilinear symmetric fornfu, v] is defined by

wol = [ (o)t
r
On account of[(2]1) andl (2.2), we get
(2.3) [u,v] = (v, Bypu), = (u, Bynv), .
Consequently,

(Af}nu, Af7nv>2 = (Bf,nv, vanu>2
and

<u, A’}}nAf,nv>2 = <u, B?ynv>2 )
From this we obtain the following formula (compare with|[28])
(2.4) tnAfn = B}%m,
WhereA},n : K, — P, is the adjoint of4 ,,.

Let {0} }}_, be the set of all singular numbers,, = sx(Ay,) of Ay,
Oo,n 2 O1,n 2 e Z Onn-

AJMAA Vol. 14, No. 1, Art. 7, pp. 1-17, 2017 AIJMAA


http://ajmaa.org

6 VASILIY A. PROKHOROV

Denote by Q. }}_, associated orthonormal polynomials (compare with [28]):

(2-5) Bf,an,n = Uk,an,n
and p

— t

Af,an,n = Uk:,an,n %
There existP;,, € Hy(G), ¢y, € Ha,(G) such that
o |dt\ \dt\

2. — P, — — n.
( 6) Qk’,nf k,n gpk,n dt ank n dt a.e. o

By (2.6), the polynomialg);. , are characterized by the double orthogonality conditions:
[Qz ns Q] n] - Uzn 7R <Qz n Q] n>2 - 51]7

whered;; is the Kronecker symbol.
Let v be any function in the Hardy spa¢é (G). We can represent as a sum of its Taylor

series:
= Z 0.2, z2€G
=0
Let
z) = Z )2
k=0

be then-th partial sum of the Taylor series pf Tr_1e equality[(2]6) implies that

(27) {Sn(gﬁ), Qk,n] = O-k,n<907 Qk,n>2-
According to [1.1) and (2}3), the following formula for theth singular numbet, ,, holds:
A dt
(2.8) Oppn = inf M = inf sup |fru—vf|
uePn Juf2 u€Pn vep, |[ull2]lvlla

2.2. An analogue of the AAK Theorem. We now study an analogue of the AAK Theorem for
the operatord,,. Letn be a nonnegative integer. Denote By, ,,(G) a subspace aoff . (G)
consisting of functions € H,(G) such that each functiop has a zero of order at least+ 1
atz = 0. Let £,, be a subspace df..(I") such that every functiot € £,, can be represented
asasum) = 3+ p|dt|/dt, where € Ho(G), ¢ € Hoon(G).

Suppose thaf is a continuous function oh. Let us consider the following approximation
problem

A, = inf - %

YELy,aEPy 6] o
We note that the dual of the quotient spa¢d’)/ H..(G) is H,(G) (see, for example [17],
[21]). Moreover, each continuous linear functiohah C(I")/ H..(G) can be represented in the
form

<l >= /F(gv)(t)dt,

wherex € C(I')/H.(G) is an equivalence clags+ H..(G), g € C(I'), andv € H,(G). From
this it follows immediately that the dual of the quotient spagé’)/L,, is P,,.

Fix u € P, andu # 0 onI. On the basis of duality relations following from the Hahn—
Banach Theorem (see, for example,/[22]), we get

w7 = 2 = sup /2]
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and
dt
(2.9) A, = inf sup —‘ fF wf |,

wherewu runs over the class of all polynomialse P, andu # 0 onI'. Since polynomials
u € P, with the conditionu # 0 onI" are dense in the uniform metric @nin the class of all
polynomialsP,, we can omit in[(2.9) the conditiom # 0 onT".

We now state an analogue of the AAK Theorem for the operdtor. The n-th singular
number of the operatot ,, can be characterized as an error of the best approximatignrof
the spacd. . (I") by functionsy /a, wherey € L,,, a € P,,.

Theorem 2.1. We have
(2.10) Onn = Ap.

Proof. The inequality
Un,n S An
follows directly from [2.8) and (2]9), and
vl < lull2lv]le.

Multiplying both sides of[(2)6) by an arbitrary polynomiak P,,, v # 0, settingk = n and
integrating, we obtain that

| / Qnnfdt] = ounl / Qo] < GnnllvQunllne
T I

Hence

sup | Jp v@nnfdt]

= Unmn
vEP, ||UQn,n| |1
From this, on accounf (3.9), we get
An S Un,n

and, then,[(2.10n
3. MARKOV FUNCTIONS

3.1. Hankel matrix. Let u be a positive Borel measure with support sypg- £ C (—1,1)
containing infinitely many points. Here and in what follows we assumefthatis the Markov

function . du(z)
s
F(z) = 2_/ apr)
m™ Jp 22—
For anyu,v € P,

@yl = [wonwi= [ o= [EOR g [ wo@duto)
Obviously,

1 d i
Zf(z>:%/;zﬂf(i),zzzil7 |Z’>17

where

Set
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Letting p(t) = t,1 = 0,...,nin (2.7), and taking into accourjt (3.1) and

r

we get
(3.2) Z i firt = Okl k-
=0
Let
1 o "
D, = <—/ x’ﬂd,u(x)) .
2 Jg i =0
By 3.2),
Dnak = Uk,na_ka
where
o,k
ax =
Qp,
So, forallk = 0,...,n, oy, is a singular number of the Hankel mati, .

3.2. Connection with restriction operator. Let J, : P, — Lo(u, E) be the restriction op-
erator given by restricting an elementc P, to E: J,a = «p. It is easily seen that for
a e P,

(3.3) @ = o [ L= GO @ydu(e),

:% 1—zx

whereJ’ : Lo(u, E) — P, is the adjoint ofJ,,.

The operator”' : Lo(u, E) — Lo(p, E) is defined byC'p =@, ¢ € Lo(p, E'). The operator
C satisfies the following properties! is an antilinear operatof;? = I is the identical operator,
and

<090’¢>27u = (C¥, Pl for pue Ly(u, E).
Let U : Ho(G) — Hy(G) be the antilinear isometric conjugation éfy(G) defined by the
formula
(U(,O)(Z) = @7 pE H2(G)v z€QG.
It is not hard to see thdf satisfies the following properties? is an antilinear operatot]? = I,
and

<U907¢>2 = <U77ZJ’ @)2 for 90,770 € HQ(G)

For the Markov functiory there is a connection between the operatbyg Ay, and(.J;;.J,)?
(compare with([4],1[6],28]).

Lemma 3.1. We have

(3.4) A} Apn = (JXCJ,)* = (J5J,)?
and
(35) Okn = Sk(Jn)z, k= 0, e,y

whereo ,, andsy(J,,) are the singular numbers of the operatots,, and.J,,, respectively.
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Proof. For any pair of polynomials, v € P,,,

[u,v] = /E(uv)(x)du(m) = (Jou, CJpv), ,
= (u,J;CJ,v),.
From this, on the basis of formula (2.3), we get
B, = J.CJ,.

So, by [2.4), ) )
A Apn = B3, = (J:CT,)%

It follows immediately from the definitions of the operatérsandU that
Jp =CJ,U.
Hence, we have
(3.6) Jod, = J2CJU = By ,U.
For any pair of polynomials, v € P,,,
(Jpdnu,v) = (J,CTUu,v) = (CJUu, Jyv), ,
(CTyv, JUu)y , = (J,CJpv, Uu)
= (v,UJ:CJ,u).
Therefore,
(3.7) JoJn =UJ;CJ, =UBy,,.
SincelU? = I, from (3.6) and|[(3]7), we g&t/:C'J,,)% = (J:J,)%. 1
By (1.1) and|[(3.5), the following formula holds for all integérs= 1,. .., n,

[lull3,,

Ok = inf sup 2
2

UL yenny Ul EPpy UEP,

where the supremum is taken over all polynomials P,,, satisfying the conditions
<wu,u; >2=0,7=1,... k. In particularly,

2
U
Onn = Inf —H H2’2’"L.
’ uePn |[|ull3

3.3. Singular numbers and k-widths. Let £ andn be integers) < k < n. Denote byA,, »
the restriction toL,(y, E') of the unit ball of P, N Ly(I"). It is a convex, compact, centrally
symmetric subset af,(u, ). Let us define the following extremal constants:

(3.8) Tkn = Inf sup 0]l =0,1,2,....

wePevep,  [[uvlly

Theorem 3.2.Letyu be a positive Borel measure with suppsuppy = F C (—1, 1) containing
infinitely many points. Foralk =0, 1,...n,

Okm = Sp(Jn)? = di(As o, La(p, E))?
d"(Anz, La(p, E))* = 0k(Anz, Lo(p, E))* = 73,

wheredy (A, 9, Ly(11, E)), d*(An2, La(p, E)), anddy (A, 2, Lo (i, E)) are the Kolmogorov,
Gelfand and lineak-widths ofA,,  in the space..(u, £).
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Proof. We have defined the sat, , as the restriction td,(x, £) of the unit ball of P,,N Ly(T') :
An,2 - {an : ||p||2 S 17]9 S Pn}

It is the well-known result (see [24], Chapter V) that the corresponding eigenvalue problem for
JrJ, is connected wittk—widths of A,, », and for allk = 0,1,.. . n,

se(Jn) = di(Ang, Lo(p, E)) = d*(Ans, Lo(p, E)) = 61(An s, La(p, E)).

Moreover, by|[(3.5)g1n = si(Jn)? forall k = 0,1, ...n. To prove Theorerp 3|2 it is sufficient
to prove thatalk = 0,1, ...n,

dk(An,Qa L2(,u> E)) = Tkn-
By (1.2),

(3.9) d*(Ans, Ly(p, E)) = inf  sup ||80||2,u’
X_k peX_ynAns |9l]2

where X _, denotes an arbitrary subspacelafy, £') of codimensiont. From this it follows
that

dk(An,Qa LQ(M? E)) S T]c,n'
We will show that
(3.10) d* (A2, Lo(it, B)) > Thp.
Without loss of generality we can assume that k£ < n. Let S?**! be (2k + 1)-sphere in the
spaceCk+! .

G2k+L — {w = (wg, wr, ..., wy) : |wo|2 + |wl]2 + ...|wk|2 = 1, wp,wy, ..., wy € C}.

In [12] Fisher and Micchelli constructed an odd mappingS?+! — B;, from S?+1! into the
set of all Blaschke products of degree at mogt H..(G), that is continuous wheH . (G) is
given the topology of uniform convergence on compact subsets dfet r : 5, — Py be the
mapping defined by

T(B) :)\H(Z_fk)v

k=1

l
z =&
B(z) =\ == €eG, I<k|\N=1L1
(2) g % 3 A
This mapping is odd and continuous in the topology of uniform convergence on compact subsets
of G.
Fix u € Py, u # 0. Consider the following extremal problem

@.11) s= s il
VEP, _k,v#0 HUFUH2

(compare with[[13]). On the basis of the normal family arguments, we can assert that there
exists a polynomiab € P,,_,w # 0, such that
5 Nl
[luwl]2

The polynomialw is zero free onG. Indeed, letw(a) = 0 for somea € G. Setw*(z) =
w(z)(1 —az)/(z — a). We havew* € P,_y, ||luw]||s = ||uw*||2 and

|w*(2)| > |w(z)| forall z € G.
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Hence
Juw*||au _ [|uwlla,

luw*l[z ~ [Juwl]z
which contradicts the extremality af.
The standard variation arguments show that any extremal functsatisfies the following
equation
(w, uw), , = 6% (uv, uw),

for all v € P,. From this it follows that ifw andw; are two extremal solutions, thew + c;w;
is also an extremal solution. Consequently, since all extremal solutions are zero frethene
is a uniquev € P, such that|uw||> = 1, w(0) > 0 and

5 Nl
||UW||2

We will denote the unique solution df (3]11) by.

We now show that the mapping — v, is continuous orP, with the topology of uniform
convergence on compact subsetdbfLet u; € Py, vy — u,u € Pr,u Z 0, uniformly on
compact subsets @ asi — oo. We will prove that,, — v, uniformly on compact subsets of
C asl — oo. Sincel|uvy,, |2 = 1 andu; — w uniformly on compact subsets 6f asi — oo,
it follows that there exist a sequende C N, a polynomialv* € P,_; such that,, — v*
uniformly on compact subsets @f as! — oo, € A. Since||yvy, |2 = 1, v,,(0) > 0, we get
||luv*||s = 1 andv*(0) > 0. For anyv € P,,_,v Z 0,

wollap _ [[wow 2,

lwolls = Jlwwy[l2
Clearly,

lwollzp = [luvlla, and  fluollz — [Juv]l2
as! — oo, | € A. Moreover,
[wrvw |20 = Juv™[l2, and w2 — [fuv?|l2

asl — oo, [ € A. Thus

uollap _ [luv*]la,

luolla = fJuv*|l2

which impliesv* = v, andv,, — v, uniformly on compact subsets @f asi — oc.

We now apply standard arguments involving the Borsuk’s antipodality Thearem [24] to prove
). Letly,...[x be anyk continuous linear functionals ob,(y, ). Let us consider the
mappingl : P, — CF* such that

L(u) = (I (uvy), ..., lk(uvy,)), u € Py.

Thus the mapping’ o 7 o ¢ is continuous and odd frorf?**! into C*. It follows from the
Borsuk’s Theorem that this map has a zero; that thetg is Py, uq # 0 such that

Li(ugvy,) =0, j=1,... k.
So, for any subspac¥ ;. of L,(u, E') of codimensiork

> inf sup m:ﬁw.

wp el o Tovelloy o ool

CEX_pNAnp2 lolla ™ uovull2 veP_i ||Uov|]2 u€Pk vep,_, ||[uv]2

From this we obtain (se€ (3.9)) the desired lower bo{ind [3.10J4X,, >, L2 (1, £)) and then
equalityd®(A,, 2, La(u, E)) = 71, Which proves the theoren.

AJMAA Vol. 14, No. 1, Art. 7, pp. 1-17, 2017 AJMAA


http://ajmaa.org

12 VASILIY A. PROKHOROV

3.4. Properties of eigenfunctions.Here and in what follows we assume that support @$
the closed intervalkl = [a, b] C (0, 1). The kernel

K(a,) = 5-(1= (o)™ /(1= ) = 5= Yo'y

of the integral operator .

L [P1 = (zy)""

o / — e(y)dp(y)
is a continuous symmetric kernely € E = [a,b] C (0,1). Since a generalized Vandermonde
matrix

2717 0<zi <za - <Tmi 71 <Yor < Vm

is totally positive, we obtain, by virtue of the Cauchy—Binet formula, that the ketiel y) is
an oscillatory kernet, y € E = [a,b] C (0, 1) (for more details about totally positive matrices,
oscillatory matrices and kernels, séel[16]). By the GantmachdanrKheory [16] of integral
equations with oscillatory kernels, all eigenvalues of the integral equation

b
/ K(z,y)e(y)du(y) = Ap(z)
are positive and simple
)\0>)\1>)\2>...,
the eigenfunctionp, corresponding to the eigenvaliig hask nodes on(a, b) and has no other
zeros ona, b).

Lemma 3.3. Let F = [a,b] C (0,1). Then all singular numbersy,,, k£ = 0,1,...,n, are
positive and simple, the corresponding eigenspaces are one dimensional. All eigenfunctions
Qr.» have real coefficients and

b n+1
(312) P Quati) = 5 [ T Qualwhiuty)
Moreover, thek-th eigenfunctior), ,, has exactlyc simple zeros on the segmeiatb).
Proof. We note that\, = s;(J,) for k =0, 1,...,n. From this, on account @.5)
Tk = $1(Jn)?,

we obtain that all singular numbess ,,, £ = 0,1,...,n, are positive and simple, the corre-
sponding eigenspaces are one dimensional0lett: < n and let

Qin(2) = (UQkn)(2) = Qrn(2)-
Using (2.5) and[(317), we can write
JnInQrn = UBfnQrn = 0k nUQkn = 010 Q-
Analogously, sincé/? = I, on the basis of (25) anf (3.6), we get
Jndn Q. = Iy JnUQrn = BrnQrpn = OknQrn-

Therefore, by@4)@kn is an eigenfunction ofi} , Ay .. Since the corresponding eigenspace
is one dimensional, we can conclude that, = cgok, c € R, Qy,, has real coefficients and, by
[3.3 satisfies the integral equati¢n (3.12).

By Theorenj 3.2,
‘ |Qk,n| |% "

(3.13) G = 20 levlls,
|Qrnllz  wePever,_, |Juv]]3
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By properties of extremal solutions of (3|13)y, has no more thak zeros onE = [a,b].
Since the eigenfunctio@,.,, has exactlyt nodes ona, b) and has no other zeros @n b}, we
obtain that) ,, hask simple zeros:y ,,, 2., - . . , 1, ON the segmerjt., b], and

_ NQenll3  wknBralls, [|wrnvl13,,

k;, pum— p— pu—
o QeallE wkaBralll ver i lwravll3

wherewy, ,(x) = Hle (= in), Qun = Wby, @and a polynomiap, , is constructed from

the zeros of);,, in C'\ G. 1

3.5. Orthogonality. We have the following lemma (compare with [7]).

Lemma 3.4.LetE = [a,b] C (0, 1). The following orthogonality relations are valid:

bl — Mg, .
G1a) [ s @ Qu(e)dn) =0, =0k,
a k.n
and
b l’i
(3.15) A= @@ @dula) =0, =0, k=1,
a k,n

wherewy, . (z) = Hle(l — Tin).

Proof. Let ¢ be any function in the Hardy spaég (G). By (2.7) and[(3.]1),

b
10(6), Qunl = / 5u() Qi ()dpi(x) = 0402 Qun)e

where S, (¢) is then-th partial sum of the Taylor series ¢f. Lettingp = 2'6,,, i =
0,...,k, we get

(3.16) I = (2" B s Qrin) = Tren (' Bs Qi) 2-
Sincel! is a real number,

T P Qpn(t) 2" Qe
I = n(t" ) n/2 — O e n/2 — Sn — ) nj-
Ok (' Bh iy Q)2 = Trn w0 Qrn)2 = [Su( L ), Qk.n]
From this, on account of (3.]L6), we get
. xk_i n .
[Sn(xlﬁkm_ #)a@k,n} :07 ZZO?"'vka
wk,n

and, then,[(3.74).
By 3.12),

/sn(l_;)(x)cgk,n(x)du(m):o for i=1,.. .k

Lind

Thus for any polynomiab, degw < k — 1,

b w
/ S () (2)Qun () dpa() = 0

*
k.n

Lettingw(z) = 2%,i = 0,...,k — 1, we get(3.1p). This finishes the proda.
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4. ASYMPTOTICS OF THE EXTREMAL CONSTANTS

4.1. The main Theorem. Let £ = [a,b] C (—1,1). Let us consider the following extremal
constants:

||uv| g

4.1) Xkn = inf sup n=0,1,2,....

u€Pr vep, . ||uv||r’
In [27] asymptotics ofy;, ,, k,/n — 0 € [0,1] asn — oo, investigated in the terms of the
solutions of a minimal energy problem associated with the BegadT".
Let K be a compact set in the complex pla@e Denote byA;(K), § > 0, the set of all
positive Borel measures of massé = [ d\ compactly supported ok’. The sequence of
measuregT, }°°,, suppr, C K, weak-star converges to a measuresuppr C K:

ES
Tp, — T aS N — 00,

if for any continuous functio on K,

/QOdTnH/QOdT as n — oo.

Let 7 be a positive Borel measure with compact support suppr| = | dr. The logarithmic
potential

U (2) = /log ‘Zit’m(t)

of the measure is superharmonic i€ and harmonic irC \ suppr. Denote by

I(7) ://log |Z—it|d7(t)d7(z)

the logarithmic energy of the measurelL et cap( £, I') be the condenser (Green) capacityof
with respect tas.

We now consider the minimal energy problem of the logarithmic potential theory that we
will use in asymptotical analysis of the extremal constants. The following can be proved by the
well-known methods (seé [29], [27]).

For each0 < 6 < 1 there exist unique measurgg € A;_(I") andp, € Ay(E) such that

I(No + pg) = rg\linf()\ + ).
H

wherel € A;_4(T") andu € Ap(FE). Moreover, there exist constanisy andm, such that

(4.2) Urthe —my on supppy = E
and
(4.3) Urotro — min U tre — my+my on supprg C T

In general,[(4.2) and (4.3) hold only g.e.(quazi-everywhere) on sy@md supp.,, respec-
tively. The regularity ofE’ andI is sufficient for this property to hold at every point of sujp

and suppu,. We also remark that the measurgsand, are uniquely deteremined by condi-
tions (4.2) and(413) (see [29l, [27]).

In the case whetly = [a,b] C (0,1), we represen€)y,, ,, in the formQy, » = Wi, w84, n»
wherewy, ,, is constructed from zeros, ,,, o, . . ., T, Of Qk, » ON E. Denote byv(wy,, )
the zero counting measure associated with polynomjal, :

1 k

I/(wknvn) = E 5$7L,n
1=0
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where,d, is the unit Dirac measure with supporta€ C.
We now formulate a theorem characterizing asymptotics of the singular numbersvhere
kn/n — 6 €0, 1] asn — oo.

Theorem 4.1. We assume that the measurdas supporttl = [a,b] C (—1,1) and satisfies
the following condition

d
(4.4) -0 aeon E.
dx
We have
. log Oknyn
lim ——"— = 2my.
n—oo ’I’L
In particular, wherd = 0, k,, — oo andk,, = o(n) asn — oo, we have
! log ok, 2
11m = — .
n—oo Kk, cap(E,T")

Moreover, in the case whefi = [a,b] C (0,1),
V(Wh, n) — flg @S 1 — 00.

By the works of Gonchar and Rakhmanov (se€ [18] and [19]), for any sequence of polyno-

mialsp,, € P,,p, Z 0, we have
1/n
lim (—Hp”||2> —1,
n—=00 \ [|pnl|r

1/n
i (s "
n—o0 \ ||palle

where measure satisfies condition] (4/4). Then Theor¢m|4.1 directly follows from results
obtained in[[2V], where asymptotics of the extremal constapts, and asociated extremal
polynomials is investigated whet) /n — 6 € [0, 1] asn — oo.

and
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