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2 CIRO D’A PICE

1. I NTRODUCTION

We consider a curvilinear strip of the form of an arch–like regionS, which in plane polar
coordinatesθ andr is described byS : a ≤ r ≤ b, 0 ≤ θ ≤ α, wherea, b andα(< 2π)
are prescribed positive constants. Such a region is assumed to be filled with an inhomogeneous
and isotropic elastic material subjected to no body force. The arch–like region is maintained
in equilibrium under self–equilibrated traction on the edgeθ = 0, while the other three edges
r = a, r = b andθ = α are traction free. Then, the specific Airy stress functionφ is the solution
of the following boundary–value problemP (see the Appendix A for the bases leading to this
equation)

(1.1) Lφ ≡ Lφ+ L0φ = 0 in S,

with the boundary conditions

(1.2) φ(a, θ) =
∂φ

∂r
(a, θ) = 0, φ(b, θ) =

∂φ

∂r
(b, θ) = 0 for θ ∈ [0, α],

(1.3) φ(r, α) =
∂φ

∂θ
(r, α) = 0 for r ∈ [a, b],

and

(1.4) φ (r, 0) = ϕ1 (r) ,
∂φ

∂θ
(r, 0) = ϕ2 (r) for r ∈ [a, b],

whereϕ1 (r) andϕ2 (r) are appropriate prescribed functions over[a, b]. Moreover, the operators
L andL0 are defined as follows

Lφ ≡ ∂2

∂r2

(
εr
∂2φ

∂r2

)
+

∂2

∂θ2

(
ε

r3

∂2φ

∂θ2

)
+ 2

∂2

∂r∂θ

(
ε

r

∂2φ

∂r∂θ

)
−(1.5)

− ∂

∂r

(
ε

r

∂φ

∂r

)
+

4ε

r3

∂2φ

∂θ2 ,

L0φ ≡ −
(

3

r2

∂ε

∂r
+

1

r

∂2ε̄

∂r2

)
∂2φ

∂θ2 + 2

[
1

r2

∂ε

∂θ
+

∂

∂r

(
1

r

∂ε̄

∂θ

)]
∂2φ

∂r∂θ
+(1.6)

+

(
−1

r

∂2ε̄

∂θ2 +
∂ε̄

∂r

)
∂2φ

∂r2
− 2

r

∂

∂r

[
1

r

∂

∂θ
(ε+ ε̄)

]
∂φ

∂θ
+

+

(
1

r2

∂2ε

∂θ2 −
∂2ε̄

∂r2

)
∂φ

∂r
,

whereε = ε (r, θ) and ε̄ = ε̄ (r, θ) are prescribed characteristics of the elastic material which
are related to the well–known Lamé coefficientsλ (r, θ) andµ (r, θ) by means of

(1.7) ε =
λ+ 2µ

4µ (λ+ µ)
, ε̄ =

λ

4µ (λ+ µ)
.

It is assumed throughout that (see [1])

(1.8) µ > 0, 3λ+ 2µ > 0,

and therefore, we have

(1.9) ε > 0.

We have to outline that, in the case of a homogeneous elastic material whenε =constant and
ε̄ =constant, the operatorL is related to the biharmonic operator in plane polar coordinates,
whileL0 ≡ 0.
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A GENERALIZED BIHARMONIC EQUATION 3

We are interested in the spatial decay bounds for the solution of the boundary–value problem
P when the following two types of smoothly varying inhomogeneity are considered:

(i) the elastic coefficients vary smoothly with the polar angleθ, that is

(1.10) ε = ε (θ) , ε̄ = ε̄ (θ) ,

(ii) they vary smoothly with the polar distance, that is

(1.11) ε = ε (r) , ε̄ = ε̄ (r) .

It should be noted that the above classes of smoothly varying inhomogeneous elastic materials
provide a model for technologically important functionally graded materials. These materials
have received considerable attention in recent literature (see, for example, the fundamental re-
search developed in the papers [2, 3, 4, 5, 6]). Our aim is to derive sufficient conditions on the
elastic coefficientsε and ε̄ which will allow us to introduce appropriate measures concerning
the Airy stress function and moreover, under such conditions we will obtain some second–order
differential inequalities whose integration furnish some explicit spatial exponential decay re-
sults. The study is exemplified on the well–known class of inhomogeneous (isotropic) elastic
materials occuring in literature [7] and characterized by

(1.12) ε (r) = ε0r
p, ε̄ (r) = fε (r) ,

whereε0 > 0, p andf are constants andf is such that0 < f < 1.
Decay bounds of the solution of a biharmonic equation in an inhomogeneous rectangular

strip have been investigated in the last years by other authors as, for instance, [2, 8, 9, 4].

2. M AIN RESULTS

Throughout this paper we will denote bySθ the curvilinear rectangle bounded by the straight
lines corresponding to the arbitrary angular variableθ andθ = α, as well as those defined by
r = a andr = b.

2.1. Spatial decay bounds for angular inhomogeneity.We assume that the elastic coeffi-
cients vary smoothly with the polar angleθ and hence (1.10) holds true. We set

(2.1) ε̇ =
dε

dθ
, ε̈ =

d2ε

dθ2 , ˙̄ε =
dε̄

dθ
, ¨̄ε =

d2ε̄

dθ2

and then we define

E1 (θ) =

∫∫
Sθ

ε

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+
2

r

(
∂2φ

∂r∂η
− 1

r

∂φ

∂η

)2

+(2.2)

+
¨̄ε

εr

(
∂φ

∂r

)2

− 2˙̄ε

εr2

∂φ

∂r

∂φ

∂η

}
drdη, θ ∈ [0, α].

With a view to establish sufficient conditions thatE1 (θ) to be positive definite inφ we apply
the identity

(2.3) − 4ε

r2

∂φ

∂θ

∂2φ

∂r∂θ
= − ∂

∂r

[
2ε

r2

(
∂φ

∂θ

)2
]
− 4ε

r3

(
∂φ

∂θ

)2
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4 CIRO D’A PICE

and then use the boundary condition (1.2) to write the relation (2.2) in the following form

E1 (θ) =

∫∫
Sθ

ε

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+
2

r

(
∂2φ

∂r∂η

)2

+(2.4)

− 2

r3

(
∂φ

∂η

)2

+
¨̄ε

εr

(
∂φ

∂r

)2

− 2˙̄ε

εr2

∂φ

∂r

∂φ

∂η

}
da, θ ∈ [0, α].

Furthermore, we apply the inequality (7.2a) – given in the Appendix B – withψ = φ and the
inequality (7.1a) withψ = ∂φ

∂θ
(noting that the relevant boundary conditions are satisfied in view

of the relation (1.2)), so that we have the following inequalities

(2.5)
∫ b

a

r

(
∂2φ

∂r2

)2

dr ≥ k

∫ b

a

1

r

(
∂φ

∂r

)2

dr

and

(2.6)
∫ b

a

1

r

(
∂2φ

∂r∂θ

)2

dr ≥

[
1 +

π2(
ln b

a

)2
]∫ b

a

1

r3

(
∂φ

∂θ

)2

dr

where

(2.7) k ≥ π2(
ln b

a

)2 .
Thus, if we use the relations (2.5) and (2.6) in (2.4), then we obtain

E1 (θ) ≥
∫∫

Sθ

ε

r

{(
k +

¨̄ε

ε

)(
∂φ

∂r

)2

− 2˙̄ε

εr

∂φ

∂r

∂φ

∂η
+

2π2(
ln b

a

)2 1

r2

(
∂φ

∂η

)2
}
drdη +(2.8)

+

∫∫
Sθ

ε

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

drdη.

Let us assume henceforward that

(2.9) k +
¨̄ε

ε
> 0, max

θ∈[0,α]

[(
˙̄ε

ε

)2
]
<

2π2(
ln b

a

)2 min
θ∈[0,α]

(
k +

¨̄ε

ε

)
.

In these circumstances it is clear thatE1 (θ) represents a global measure of the magnitude of
the stress functionφ in Sθ. Consequently we can introduce the following measure

F1 (θ) =

∫ α

θ

E1 (η) dη =

=

∫ α

θ

(η − θ) ε

∫ b

a

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+(2.10)

+
2

r

(
∂2φ

∂r∂η
− 1

r

∂φ

∂η

)2

+
¨̄ε

εr

(
∂φ

∂r

)2

− 2˙̄ε

εr2

∂φ

∂r

∂φ

∂η

}
drdη, θ ∈ [0, α].

The main result of the paper concerning the present type of inhomogeneity is expressed in the
following theorem.

Theorem 2.1.Consider an inhomogeneous arch–like region withε andε̄ satisfying the relations
(1.10) and (2.9). Suppose that the Airy stress functionφ ∈ C1

(
S̄
)
∩C4 (S) satisfies the equation

(2.11) Lφ+
2

r2
(ε̇− ˙̄ε)

∂2φ

∂r∂θ
−

¨̄ε

r

∂2φ

∂r2
+

2

r3
(ε̇+ ˙̄ε)

∂φ

∂θ
+

ε̈

r2

∂φ

∂r
= 0 in S
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and the boundary conditions described by the relations (1.2) and (1.3). Then there exists a
positive constantκ1 such that

(2.12) 0 ≤ F1 (θ) ≤ F1 (0) e−κ1θ for all θ ∈ [0, α].

2.2. Spatial decay bounds for radial inhomogeneity.In this subsection we assume that the
elastic coefficients vary smoothly with the polar distancer so that (1.11) holds true. Then we
set

(2.13) ε′ =
dε

dr
, ε′′ =

d2ε

dr2
, ε̄′ =

dε̄

dr
, ε̄′′ =

d2ε̄

dr2

and introduce the function

E2 (θ) =

∫∫
Sθ

ε

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+

+
2

r

(
∂2φ

∂r∂η
− 1

r

∂φ

∂η

)2

+
ε̄′′

εr

(
∂φ

∂η

)2

+(2.14)

+
ε̄′

ε

(
∂φ

∂r

)2
}
drdη, θ ∈ [0, α].

It is worth to outline thatE2 (θ) represents a measure of the Airy stress function, provided
ε̄′′ > 0 andε̄′ > 0. We can relax these restrictions if we use the identity

(2.15) − 4ε

r2

∂φ

∂θ

∂2φ

∂r∂θ
= − ∂

∂r

[
2ε

r2

(
∂φ

∂θ

)2
]

+
2

r3
(rε′ − 2ε)

(
∂φ

∂θ

)2

in order to write the relation (2.14) in the following form

E2 (θ) =

∫∫
Sθ

ε

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+
2

r

(
∂2φ

∂r∂η

)2

+(2.16)

+
ε̄′

ε

(
∂φ

∂r

)2

+

(
r2ε̄′′

ε
+

2rε′

ε
− 2

)
1

r3

(
∂φ

∂η

)2
}
drdη.

Furthermore, we use the boundary condition (1.2) in order to apply the inequality (8.1) – given
in the Appendix C – withψ = r ∂φ

∂r
and then withψ = ∂φ

∂θ
. Thus, we can write the following

inequalities

(2.17)
∫ b

a

εr

(
∂2φ

∂r2

)2

dr ≥
∫ b

a

(
λ1 +

rε′

ε

)
ε

r

(
∂φ

∂r

)2

dr,

(2.18)
∫ b

a

ε

r

(
∂2φ

∂r∂θ

)2

dr ≥ (λ1 + 1)

∫ b

a

ε

r3

(
∂φ

∂θ

)2

dr,

whereλ1 is the lowest eigenvalue defined in the Appendix C. So, if we use the estimates (2.17)
and (2.18) in the relation (2.16), then we get

E2 (θ) ≥
∫∫

Sθ

ε

{
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+
[
λ1 +

r

ε
(ε′ + ε̄′)

] 1

r

(
∂φ

∂r

)2

+(2.19)

+

(
r2ε̄′′

ε
+

2rε′

ε
+ 2λ1

)
1

r3

(
∂φ

∂η

)2
}
drdη.

AJMAA, Vol. 3, No. 2, Art. 2, pp. 1-15, 2006 AJMAA

http://ajmaa.org
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We now assume for henceforward that

(2.20) λ1 +
r

ε
(ε′ + ε̄′) > 0,

r2ε̄′′

ε
+

2rε′

ε
+ 2λ1 > 0,

so thatE2 (θ) represents a global measure of the Airy stress functionφ in Sθ. Thus, we can
introduce the following measure

F2 (θ) =

∫ α

θ

E2 (η) dη =

=

∫ α

θ

∫ b

a

(η − θ) ε

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+(2.21)

+
2

r

(
∂2φ

∂r∂η
− 1

r

∂φ

∂η

)2

+
ε̄′′

εr

(
∂φ

∂η

)2

+
ε̄′

ε

(
∂φ

∂r

)2
}
drdη, θ ∈ [0, α].

The main result concerning this type of inhomogeneity is expressed in the following theorem.

Theorem 2.2.Consider an inhomogeneous arch–like region withε andε̄ satisfying the relations
(1.11) and (2.20). Suppose that the Airy stress functionφ ∈ C1

(
S̄
)
∩ C4 (S) satisfies the

equation

(2.22) Lφ−
(

3

r2
ε′ +

1

r
ε̄′′
)
∂2φ

∂θ2 + ε̄′
∂2φ

∂r2
− ε̄′′

∂φ

∂r
= 0 in S

and the boundary conditions described by the relations (1.2) and (1.3). Then there is a positive
constantκ2 such that

(2.23) 0 ≤ F2 (θ) ≤ F2 (0) e−κ2θ for all θ ∈ [0, α].

3. THE PROOF OF THE THEOREM 2.1

Let us considerφ a solution of the equation (2.11) and let us introduce the function

I1 (θ) =

∫ b

a

[
− ε

r3
φ
∂2φ

∂θ2 +
ε

r3

(
∂φ

∂θ

)2

+
ε

r

(
∂φ

∂r

)2

− 2ε

r3
φ2

]
dr −

−
∫∫

Sθ

[
− ε̇

r3

(
∂φ

∂η

)2

− ε̇

r

(
∂φ

∂r

)2

+
ε̇+ ˙̄ε

r3
φ2+(3.1)

+
2ε

r2

∂φ

∂r

∂φ

∂η

]
drdη, θ ∈ [0, α].

By successive differentiations with respect toθ we obtain

dI1
dθ

(θ) =

∫ b

a

[
−φ ∂

∂θ

(
ε

r3

∂2φ

∂θ2

)
+

ε

r3

∂φ

∂θ

∂2φ

∂θ2 +
2ε

r

∂φ

∂r

∂2φ

∂r∂θ
+(3.2)

+
2ε

r2

∂φ

∂r

∂φ

∂θ
− 4ε

r3
φ
∂φ

∂θ
+

˙̄ε− ε̇

r3
φ2

]
dr,
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and

d2I1

dθ2 (θ) =

∫ b

a

[
−φ ∂

2

∂θ2

(
ε

r3

∂2φ

∂θ2

)
+

ε

r3

(
∂2φ

∂θ2

)2

+
2ε

r

(
∂2φ

∂r∂θ

)2

+

+
∂φ

∂r

∂

∂θ

(
2ε

r

∂2φ

∂r∂θ

)
+

2ε

r2

∂φ

∂θ

∂2φ

∂r∂θ
+

2ε

r2

∂φ

∂r

∂2φ

∂θ2−

−4ε

r3

(
∂φ

∂θ

)2

+
2ε̇

r2

∂φ

∂r

∂φ

∂θ
− 4ε

r3
φ
∂2φ

∂θ2 +
2 (˙̄ε− 3ε̇)

r3
φ
∂φ

∂θ
+(3.3)

+
¨̄ε− ε̈

r3
φ2

]
dr.

Further, by using the equation (2.11), the integration by parts and the boundary condition (1.2),
we obtain that

d2I1

dθ2 (θ) =

∫ b

a

ε

{
r

(
∂2φ

∂r2

)2

+
1

r

(
1

r

∂2φ

∂θ2 +
∂φ

∂r

)2

+
2

r

(
∂2φ

∂r∂θ

)2

+(3.4)

− 2

r3

(
∂φ

∂θ

)2

+
¨̄ε

εr

(
∂φ

∂r

)2

− 2˙̄ε

εr2

∂φ

∂r

∂φ

∂θ

}
dr

and hence, by means of the relations (2.5) and (2.6), we deduce that

(3.5)
d2I1

dθ2 (θ) ≥ σm

∫ b

a

ε

r

[(
∂φ

∂r

)2

+
1

r2

(
∂φ

∂θ

)2
]
dr +

∫ b

a

ε

r

(
1

r

∂2φ

∂θ2 +
∂φ

∂r

)2

dr ≥ 0,

where

µ1 = min
θ∈[0,α]

(
k +

¨̄ε

ε

)
, µ2 = max

θ∈[0,α]

∣∣∣∣ ˙̄εε
∣∣∣∣ ,(3.6)

σm =
1

µ1

[
µ2 −

√
µ2

2 −
2π2(
ln b

a

)2µ1

]
.

On the other hand, by means of the boundary condition (1.3), from the relations (3.1) and
(3.2), we obtain

(3.7) I1 (α) = 0,
dI1
dθ

(α) = 0.

Thus, the relations (3.5) and (3.7) give

(3.8)
dI1
dθ

(θ) ≤ dI1
dθ

(α) = 0 for all θ ∈ [0, α],

(3.9) I1 (θ) ≥ I1 (α) = 0 for all θ ∈ [0, α].

Moreover, by integrating the relations (3.4) and (3.5) successively with respect toθ over [0, α]
and by using the relations (3.7) and (3.8), we get

− dI1
dθ

(θ) = E1 (θ) ≥ σm

∫∫
Sθ

ε

r

[(
∂φ

∂r

)2

+
1

r2

(
∂φ

∂η

)2
]
drdη +(3.10)

+

∫∫
Sθ

ε

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

drdη,

(3.11) I1 (θ) = F1 (θ) for all θ ∈ [0, α].
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We proceed now to establish a second–order differential inequality in terms of the measure
I1 (θ) = F1 (θ). We will determine the positive constantsα1 andβ1 such that

(3.12)
d2I1

dθ2 (θ)− α1
dI1
dθ

(θ)− β1I1 (θ) ≥ 0 for all θ ∈ [0, α].

To this end we combine the relations (3.1), (3.5) and (3.10) to obtain

d2I1

dθ2 (θ)− α1
dI1
dθ

(θ)− β1I1 (θ) ≥
∫ b

a

[
(σm + 1− β1 − γ)

ε

r

(
∂φ

∂r

)2

+

+ (σm − β1)
ε

r3

(
∂φ

∂θ

)2

+

(
1− β1

8
− 1

γ

)
ε

r3

(
∂2φ

∂θ2

)2

+

+2β1

ε

r3

(
φ+

1

4

∂2φ

∂θ2

)2

+
ε

r

(
√
γ
∂φ

∂r
+

1
√
γr

∂2φ

∂θ2

)2
]
dr +

+

∫∫
Sθ

{(
α1σm − β1 − β1

ε̇

ε

)
ε

r

[(
∂φ

∂r

)2

+
1

r2

(
∂φ

∂η

)2
]

+(3.13)

+α1
ε

r3

(
∂2φ

∂η2
+ r

∂φ

∂r

)2

+ β1

ε

r

(
∂φ

∂r
+

1

r

∂φ

∂η

)2

+

+β1

ε̇+ ˙̄ε

ε

ε

r3
φ2

]
drdη,

whereγ is a positive parameter at our disposal. Now we set

(3.14)
1

γ
= 1− β1

8
, β1 = min

{
8, σm,

1

2

[
9 + σm −

√
(σm − 7)2 + 32

]}
and moreover, we introduce the notation

(3.15) µ3 = max
θ∈[0,α]

∣∣∣∣ ε̇ε + 1

∣∣∣∣ ,
so that the relation (3.13) yields

d2I1

dθ2 (θ)− α1
dI1
dθ

(θ)− β1I1 (θ) ≥
∫∫

Sθ

[
(α1σm − β1µ3)

ε

r

(
∂φ

∂r

)2

+(3.16)

+ (α1σm − β1µ3)
ε

r3

(
∂φ

∂η

)2

+ β1

ε̇+ ˙̄ε

ε

ε

r3
φ2

]
drdη.

Furthermore, we set

(3.17) µ4 = max
θ∈[0,α]

∣∣∣∣ ε̇+ ˙̄ε

ε

∣∣∣∣
and then we take

(3.18) α1 =
β1

σm

µ3 + µ4

(
1 +

π2(
ln b

a

)2
)−1

 ,
so that, by making use of the inequality (7.1a), from (3.16) we obtain the second–order differ-
ential inequality (3.12).

We now have all the preliminary material to prove the Theorem 2.1. In fact, by the inequal-
ity (3.12) and a well–known Comparison Principle (a generalization of the curve under chord
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property for convex functions) it follows thatI1 (θ) is bounded above by the solution of the
differential equation corresponding to the differential inequality (3.12) with the same boundary
conditions, that is the functionG1 (θ) satisfying

(3.19)
d2G1

dθ2 (θ)− α1
dG1

dθ
(θ)− β1G1 (θ) = 0 for all θ ∈ [0, α]

with

(3.20) G1 (0) = I1 (0) , G1 (α) = 0.

On this basis we get

(3.21) 0 ≤ I1 (θ) ≤ 1− e−(ν1+ν2)(α−θ)

1− e
−(ν1+ν2)α

I1 (0) e−ν2θ for all θ ∈ [0, α],

where

(3.22) ν1 =
1

2

(
α1 +

√
α2

1 + 4β1

)
, ν2 =

1

2

(
−α1 +

√
α2

1 + 4β1

)
.

This result yields

(3.23) 0 ≤ I1 (θ) ≤ I1 (0) e−ν2θ for all θ ∈ [0, α],

which when combined with the relation (3.11) furnishes the estimate (2.12) withκ1 = ν2 and
so the proof is complete.

4. THE PROOF OF THE THEOREM 2.2

With the solution of the equation (2.22) we associate the following function

I2 (θ) =

∫ b

a

[
− ε

r3
φ
∂2φ

∂θ2 +
ε

r3

(
∂φ

∂θ

)2

+
ε

r

(
∂φ

∂r

)2

+(4.1)

+

(
−2ε

r3
+

3ε′

2r2
+
ε̄′′

2r

)
φ2

]
dr −

∫∫
Sθ

2ε

r2

∂φ

∂r

∂φ

∂η
drdη, θ ∈ [0, α]

and note that, by successive differentiations with respect toθ, we obtain

dI2
dθ

(θ) =

∫ b

a

[
−φ ∂

∂θ

(
ε

r3

∂2φ

∂θ2

)
+

ε

r3

∂φ

∂θ

∂2φ

∂θ2 +
2ε

r

∂φ

∂r

∂2φ

∂r∂θ
+(4.2)

+

(
−4ε

r3
+

3ε′

r2
+
ε̄′′

r

)
φ
∂φ

∂θ
+

2ε

r2

∂φ

∂r

∂φ

∂θ

]
dr,

d2I2

dθ2 (θ) =

∫ b

a

{
−φ ∂

2

∂θ2

(
ε

r3

∂2φ

∂θ2

)
+

ε

r3

(
∂2φ

∂θ2

)2

+
2ε

r

(
∂2φ

∂r∂θ

)2

+

+
∂φ

∂r

∂

∂θ

(
2ε

r

∂2φ

∂r∂θ

)
+

(
−4ε

r3
+

3ε′

r2
+
ε̄′′

r

)[(
∂φ

∂θ

)2

+ φ
∂2φ

∂θ2

]
+(4.3)

+
2ε

r2

∂φ

∂θ

∂2φ

∂r∂θ
+

2ε

r2

∂φ

∂r

∂2φ

∂θ2

}
dr.
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By using the equation (2.22), the integration by parts and the boundary condition (1.2), we can
write

d2I2

dθ2 (θ) =

∫ b

a

{
εr

(
∂2φ

∂r2

)2

+
ε

r3

(
∂2φ

∂θ2

)2

+
ε

r

(
∂φ

∂r

)2

+
2ε

r

(
∂2φ

∂r∂θ

)2

+

+
2ε

r2

∂φ

∂r

∂2φ

∂θ2 −
4ε

r2

∂φ

∂θ

∂2φ

∂r∂θ
+

2ε

r3

(
∂φ

∂θ

)2

+(4.4)

+
ε̄′′

r

(
∂φ

∂θ

)2

+ ε̄′
(
∂φ

∂r

)2
}
dr,

or, by means of the identity (2.15),

d2I2

dθ2 (θ) =

∫ b

a

{
ε

r

(
1

r

∂2φ

∂θ2 +
∂φ

∂r

)2

+

[
εr

(
∂2φ

∂r2

)2

+ ε̄′
(
∂φ

∂r

)2
]

+(4.5)

+

[
2ε

r

(
∂2φ

∂r∂θ

)2

+
1

r

(
−2ε

r2
+

2ε′

r
+ ε̄′′

)(
∂φ

∂θ

)2
]}

dr.

Therefore, if we use the relations (2.17) and (2.18) into (4.5), then we can write

d2I2

dθ2 (θ) ≥
∫ b

a

{
ε

r

(
1

r

∂2φ

∂θ2 +
∂φ

∂r

)2

+
[
λ1 +

r

ε
(ε′ + ε̄′)

] ε
r

(
∂φ

∂r

)2

+(4.6)

+

(
r2

ε
ε̄′′ +

2rε′

ε
+ 2λ1

)
ε

r3

(
∂φ

∂θ

)2
}
dr

and hence we have

(4.7)
d2I2

dθ2 (θ) ≥
∫ b

a

[
ε

r

(
1

r

∂2φ

∂θ2 +
∂φ

∂r

)2

+ ξ1

ε

r

(
∂φ

∂r

)2

+ ξ2

ε

r3

(
∂φ

∂θ

)2
]
dr ≥ 0,

where

(4.8) ξ1 = min
r∈[a,b]

[
λ1 +

r

ε
(ε′ + ε̄′)

]
, ξ2 = min

r∈[a,b]

(
r2

ε
ε̄′′ +

2rε′

ε
+ 2λ1

)
.

On the other hand, the relations (1.3), (4.1) and (4.2) furnish

(4.9) I2 (α) = 0,
dI2
dθ

(α) = 0

and hence, by means of (4.7), we deduce that

(4.10)
dI2
dθ

(θ) ≤ 0, I2 (θ) ≥ 0 for all θ ∈ [0, α].

Further, by integrating the relation (4.7) successively with respect toθ over [θ, α] and by using
the relations (2.16) and (4.9), we get
(4.11)

− dI2
dθ

(θ) = E2 (θ) ≥
∫∫

Sθ

[
ε

r

(
1

r

∂2φ

∂η2
+
∂φ

∂r

)2

+ ξ1

ε

r

(
∂φ

∂r

)2

+ ξ2

ε

r3

(
∂φ

∂η

)2
]
drdη,

(4.12) I2 (θ) = F2 (θ) for all θ ∈ [0, α].
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In what follows we prove that it is possible to determine the positive parametersα2 andβ2

such that

(4.13)
d2I2

dθ2 (θ)− α2
dI2
dθ

(θ)− β2I2 (θ) ≥ 0 for all θ ∈ [0, α].

To this end we combine the relations (4.1), (4.7) and (4.11) to obtain

d2I2

dθ2 (θ)− α2
dI2
dθ

(θ)− β2I2 (θ) ≥
∫∫

Sθ

[
α2ξ1

ε

r

(
∂φ

∂r

)2

+ α2ξ2

ε

r3

(
∂φ

∂η

)2

+

+2β2

ε

r2

∂φ

∂r

∂φ

∂η

]
drdη +

∫ b

a

[
ε

r3

(
∂2φ

∂θ2

)2

+

+β2

ε

r3
φ
∂2φ

∂θ2 +
2ε

r2

∂φ

∂r

∂2φ

∂θ2 +(4.14)

+ (ξ1 + 1− β2)
ε

r

(
∂φ

∂r

)2

+ (ξ2 − β2)
ε

r3

(
∂φ

∂θ

)2

+

+β2

(
2− 3rε′

2ε
− r2ε̄′′

2ε

)
ε

r3
φ2

]
dr.

At this instant we set

(4.15) β2 = α2

√
ξ1ξ2,

so that the relation (4.14) furnishes

d2I2

dθ2 (θ)− α2
dI2
dθ

(θ)− β2I2 (θ) ≥
∫ b

a

[(
1− β2

8

)
ε

r3

(
∂2φ

∂θ2

)2

+

+
2ε

r2

∂φ

∂r

∂2φ

∂θ2 + (ξ1 + 1− β2)
ε

r

(
∂φ

∂r

)2

+(4.16)

+ (ξ2 − β2)
ε

r3

(
∂φ

∂θ

)2

− β2m
ε

r3
φ2+

+2β2

ε

r3

(
φ+

1

4

∂2φ

∂θ2

)2
]
dr,

where

(4.17) m = max
r∈[a,b]

∣∣∣∣3rε′2ε
+
r2ε̄′′

2ε

∣∣∣∣ .
Further, we use the arithmetic–geometric mean inequality in (4.16) to obtain

d2I2

dθ2 (θ)− α2
dI2
dθ

(θ)− β2I2 (θ) ≥
∫ b

a

[(
1− β2

8
− 1

τ

)
ε

r3

(
∂2φ

∂θ2

)2

+

+ (ξ1 + 1− β2 − τ)
ε

r

(
∂φ

∂r

)2

+(4.18)

+ (ξ2 − β2)
ε

r3

(
∂φ

∂θ

)2

− β2m
ε

r3
φ2

]
dr,
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with τ a positive constant at our disposal. At this instant we set

(4.19)
1

τ
= 1− β2

8
, β∗2 = min

{
8, ξ2,

1

2

[
ξ1 + 9−

√
(ξ1 − 7)2 + 32

]}
, β2 < β∗2,

so that the relation (4.18) gives

d2I2

dθ2 (θ)− α2
dI2
dθ

(θ)− β2I2 (θ) ≥
∫ b

a

[(
ξ1 + 1− β2 −

8

8− β2

)
ε

r

(
∂φ

∂r

)2

−(4.20)

−β2m
ε

r3
φ2
]
dr.

By using the inequality (8.1), from (4.20) we obtain
(4.21)
d2I2

dθ2 (θ)− α2
dI2
dθ

(θ)− β2I2 (θ) ≥
∫ b

a

[(
ξ1 + 1− β2 −

8

8− β2

)
(λ1 + 1)− β2m

]
ε

r3
φ2dr.

Thus, if we set

(4.22) β2 = min
{
β∗2, β̂

∗
2

}
,

β̂
∗
2 =

1

2 (λ1 + 1 +m)
{(λ1 + 1) (ξ1 + 9) + 8m−(4.23)

−
√

[(λ1 + 1) (ξ1 + 9) + 8m]2 − 32ξ1 (λ1 + 1) (λ1 + 1 +m)

}
,

then the relation (4.21) implies the second–order differential inequality (4.13).
The integration of this differential inequality leads to the estimate (2.23) with

(4.24) κ2 =
1

2

(
−α2 +

√
α2

2 + 4β2

)
and the proof is complete.

Let us consider now the class of elastic materials characterized by the relation (1.12). It
is a straightforward task to see that the assumption (2.20) imposes upon the exponentp the
following restrictions

(4.25) λ1 + p (1 + f) > 0, fp2 + (2− f) p+ 2λ1 > 0.

Thus, we can see that the parameterp has to satisfy

(4.26) p > − λ1

1 + f

for (2− f)2 − 8fλ1 < 0, or

(4.27) p > max

{
− λ1

1 + f
,
1

2

[
−2 + f +

√
(2− f)2 − 8fλ1

]}
for (2− f)2 − 8fλ1 ≥ 0.

We note that, for this case, we have

(4.28) ξ1 = λ1 + p (1 + f) , ξ2 = fp2 + (2− f) p+ 2λ1, m =
3

2
p+

1

2
fp (p− 1)

and so, by means of the relations (4.19), (4.23) and (4.24), we can obtain the explicit dependence
of the decay rateκ2 with respect to the parametersp andf characterizing the considered class
of elastic materials.
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5. CONCLUDING REMARKS

The present paper establishes some decay bounds for a generalized biharmonic equation for
an arch–like region when the characteristic coefficients are depending only on the polar angle
or on the polar distance. It should be noted that the smoothly varying inhomogeneous elastic
materials provide a model for technologically important functionally graded materials. These
materials have received considerable attention in recent literature on solid mechanics. Our main
results described by the theorems of the Section 2 offer explicit upper decay bounds for the
measuresF1 (θ) andF2 (θ) and these estimates can be regarded as a version of Saint Venant’s
principle for a curvilinear strip in the context of two dimensional inhomogeneous and isotropic
elastostatics. It is worth to outline that from our results described by the estimates (2.12) and
(2.23) we can rediscover the results established in [10] for a homogeneous arch–like region.

6. APPENDIX A

Denoting withur anduθ the radial and transversal components of the displacement vector in
a plane polar reference frame, the geometrical measures of deformation are

(6.1) err =
∂ur

∂r
, erθ =

1

2

(
1

r

∂ur

∂θ
+
∂uθ

∂r
− 1

r
uθ

)
, eθθ =

1

r

(
∂uθ

∂θ
+ ur

)
.

By eliminatingur anduθ in the above relation we obtain the Saint Venant compatibility condi-
tion

(6.2) r
∂2

∂r2
(reθθ) +

(
∂2

∂θ2 − r
∂

∂r

)
err − 2

∂2

∂r∂θ
(rerθ) = 0.

The constitutive equations for a plane strain state in an isotropic and inhomogeneous body are

τ rr = λ (err + eθθ) + 2µerr,

τ θθ = λ (err + eθθ) + 2µeθθ,(6.3)

τ rθ = 2µerθ,

or

(6.4) err = ετ rr − ε̄τ θθ, eθθ = −ε̄τ rr + ετ θθ, erθ = (ε+ ε̄) τ rθ,

where

(6.5) ε =
λ+ 2µ

4µ (λ+ µ)
, ε̄ =

λ

4µ (λ+ µ)
.

In the above relationsτ rr, τ θθ andτ rθ are the components of the plane stress in plane polars and
λ andµ are the elastic Lamé coefficients depending on the variablesr andθ.

The state of plane stress is represented in terms of the Airy stress functionφ as

(6.6) τ rr =
1

r2

∂2φ

∂θ2 +
1

r

∂φ

∂r
, τ θθ =

∂2φ

∂r2
, τ rθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
and so the equilibrium equations are identically satisfied. If we substitute the relation (6.6) into
(6.4) and the result in the relation (6.2), then we get the following equation for the Airy stress

AJMAA, Vol. 3, No. 2, Art. 2, pp. 1-15, 2006 AJMAA

http://ajmaa.org


14 CIRO D’A PICE

function

0 =
∂2

∂r2

(
εr
∂2φ

∂r2

)
+

∂2

∂θ2

(
ε

r3

∂2φ

∂θ2

)
+ 2

∂2

∂r∂θ

(
ε

r

∂2φ

∂r∂θ

)
− ∂

∂r

(
ε

r

∂φ

∂r

)
+

4ε

r3

∂2φ

∂θ2 −

−
(

3

r2

∂ε

∂r
+

1

r

∂2ε̄

∂r2

)
∂2φ

∂θ2 + 2

[
1

r2

∂ε

∂θ
+

∂

∂r

(
1

r

∂ε̄

∂θ

)]
∂2φ

∂r∂θ
+(6.7)

+

(
−1

r

∂2ε̄

∂θ2 +
∂ε̄

∂r

)
∂2φ

∂r2
− 2

r

∂

∂r

[
1

r

∂

∂θ
(ε+ ε̄)

]
∂φ

∂θ
+

+

(
1

r2

∂2ε

∂θ2 −
∂2ε̄

∂r2

)
∂φ

∂r
.

7. APPENDIX B

Let C1
0 ([a, b]) be the class of real–valued functions, each of which is continuously differ-

entiable on the interval[a, b] and vanishes atr = a and r = b. Then for any function
ψ (r) ∈ C1

0 ([a, b]), one has (see [11])

(7.1a)
∫ b

a

1

r

(
dψ

dr

)2

dr ≥

[
1 +

π2(
ln b

a

)2
]∫ b

a

1

r3
ψ2dr.

Let C2
0 ([a, b]) be the class of real–valued functions, each of which is twice continuously

differentiable on the interval[a, b] and vanishes together with its first derivative atr = a and
r = b. Then for any functionψ (r) ∈ C2

0 ([a, b]), one has (see [11])

(7.2a)
∫ b

a

r

(
d2ψ

dr2

)2

dr ≥ k

∫ b

a

1

r

(
dψ

dr

)2

dr,

where

(7.3) k ≥ π2(
ln b

a

)2 .

8. APPENDIX C

Let ε (r) > 0 be a function continuous differentiable on the interval[a, b]. Any smooth
functionψ (r), r ∈ [a, b], such thatψ (a) = ψ (b) = 0, satisfies

(8.1)
∫ b

a

ε

r

(
dψ

dr

)2

dr ≥ (λ1 + 1)

∫ b

a

ε

r3
ψ2dr,

whereλ1 is the lowest eigenvalue of

(8.2)
d

dr

[
ε

r

dψ

dr

]
+ (λ+ 1)

ε

r3
ψ = 0, ψ (a) = ψ (b) = 0,

or (via the transformationu (t) = 1
r

√
εψ, r = et) of

(8.3)
d2u

dt2
+

[
λ+

2√
ε

d

dt

(√
ε
)
− 1√

ε

d2

dt2
(√

ε
)]
u = 0, u (ln a) = u (ln b) = 0.
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