The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 3, Issue 2, Article 2, pp. 1-15, 2006

ON A GENERALIZED BIHARMONIC EQUATION IN PLANE POLARS WITH
APPLICATIONS TO FUNCTIONALLY GRADED MATERIALS

CIRO D’APICE
Received 17 February, 2006; accepted 12 April, 2006; published 3 August, 2006.
dapice@diima.unisa.it

DEPARTMENT OFINFORMATION ENGINEERING AND APPLIED MATHEMATICS (DIIMA), U NIVERSITY OF
SALERNO, 84084 KSCIANO (SA), SALERNO, ITALY.

ABSTRACT. In this paper we consider a generalized biharmonic equation modelling a two—
dimensional inhomogeneous elastic state in the curvilinear rectangle: < 5,0 < 0 < q,
where(r, 8) denote plane polar coordinates. Such an arch-like region is maintained in equilib-
rium under self-equilibrated traction applied on the edge 0, while the other three edges

r = a,r = bandf = « are traction free. Our aim is to derive some explicit spatial exponential
decay bounds for the specific Airy stress function and its derivatives. Two types of smoothly
varying inhomogeneity are considered: (i) the elastic moduli vary smoothly with the polar angle,
(i) they vary smoothly with the polar distance. Such types of smoothly varying inhomogeneous
elastic materials provide a model for technological important functionally graded materials. The
results of the present paper prove how the spatial decay rate varies with the constitutive profile.
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2 CIROD’APICE

1. INTRODUCTION

We consider a curvilinear strip of the form of an arch-like regiyrwhich in plane polar
coordinates) andr is described byS : @« < r < b, 0 < 0 < «, wherea, b anda(< 27)
are prescribed positive constants. Such a region is assumed to be filled with an inhomogeneous
and isotropic elastic material subjected to no body force. The arch-like region is maintained
in equilibrium under self—equilibrated traction on the edge 0, while the other three edges
r =a,r = bandf = « are traction free. Then, the specific Airy stress functios the solution
of the following boundary—value problefA (see the Appendix A for the bases leading to this
equation)

(1.2) LO=Lop+ Lop=0 1in S,
with the boundary conditions
1.2 0_8¢ 0)=0 b9—8¢b0—0f 0el|0
() ¢(a7)_5(a7)_7 Qs(’)_a(a)_ or E[,OéL
(1.3) o(r,a) = % (r,a) =0 for r € [a,b],
and
o9
(14) ¢ (Ta O) =¥ (T) ) % (7’, O) = 9 (T) fOf re [aa b]’

wherep, () andy, () are appropriate prescribed functions ojeb|. Moreover, the operators
L and L, are defined as follows

0? 0? 0% [ e 0? 0% (e 0?
(1.5) Lo = 52 (a_¢> o (‘f) 2580 (;ar§e> B
_9 (i%) L b
or \r or 3 06%’
30 10%)\ 0? 10 0 (10 0?
18 L = - (ﬁ@* ‘a—> s [ﬁ%+E (@)1 oo
+<_1%+%) @_gg [12( +g)] %4_
rog>  Or) or:2  ror |rof 00
N (i% _ 5_25) 9¢
r290%  Or2) or’

wheree = ¢ (r,6) ande = & (r, 0) are prescribed characteristics of the elastic material which
are related to the well-known Lamé coefficieats-, #) and (r, §) by means of

A+ 20 _ A
(1.7) 5:m, €:m.
It is assumed throughout that (seé [1])
(1.8) w>0, 3AN+2u>0,
and therefore, we have
(2.9) e > 0.

We have to outline that, in the case of a homogeneous elastic materiakwhsanstant and
£ =constant, the operatar is related to the biharmonic operator in plane polar coordinates,
while Ly = 0.
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We are interested in the spatial decay bounds for the solution of the boundary—value problem
‘P when the following two types of smoothly varying inhomogeneity are considered:
(i) the elastic coefficients vary smoothly with the polar angjléhat is

£(9),

(1.10) e=¢e(0), €
(i) they vary smoothly with the polar distance, that is
(1.11) e=e(r), e=¢e(r).

It should be noted that the above classes of smoothly varying inhomogeneous elastic materials
provide a model for technologically important functionally graded materials. These materials
have received considerable attention in recent literature (see, for example, the fundamental re-
search developed in the papers|[2,13,/4,'5, 6]). Our aim is to derive sufficient conditions on the
elastic coefficients andz which will allow us to introduce appropriate measures concerning
the Airy stress function and moreover, under such conditions we will obtain some second—order
differential inequalities whose integration furnish some explicit spatial exponential decay re-
sults. The study is exemplified on the well-known class of inhomogeneous (isotropic) elastic
materials occuring in literature![7] and characterized by

(1.12) e(r)=cor’?, E(r)=fe(r),

wheres, > 0, p and f are constants anflis such thad < f < 1.
Decay bounds of the solution of a biharmonic equation in an inhomogeneous rectangular
strip have been investigated in the last years by other authors as, for instahcg [2, 8, 9, 4].

2. MAIN RESULTS

Throughout this paper we will denote By the curvilinear rectangle bounded by the straight
lines corresponding to the arbitrary angular variabndf = «, as well as those defined by
r =aandr = b.

2.1. Spatial decay bounds for angular inhomogeneity. We assume that the elastic coeffi-
cients vary smoothly with the polar angleand hence (1.10) holds true. We set

. de , de . dE . d
&Y cw T @
and then we define
9% 182  9¢ 2 (8¢ 106\°
2.2) Ei( Z _ -7
(22) Eaf //598{7“((%2> t (7‘877 +(‘3r) +r(8ran r@n) +
£ /90 % 9 b
7(5) r2aran}dd 0 €0,al.

With a view to establish sufficient conditions that (¢) to be positive definite ip we apply
the identity

4e O 929 0 d¢ d¢
(2:3) T r2000r00 or [ (ae) ] (ae)
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and then use the boundary conditipn [1.2) to write the relafion (2.2) in the following form
9% 10%¢  0¢ 2 (9% \°
28 B //Sf{r(w (T ey (2

2 (YL (e _z@a_d)}da, 9 0.0l
an er

or er? Or On

Furthermore, we apply the inequalify (7.2a) — given in the Appendix B —with ¢ and the
inequality (7.1g) with) = 22 (noting that the relevant boundary conditions are satisfied in view
of the relation|(1.R2)), so that we have the following inequalities

(2.5) /:T(@jf) 7’2/{:/;%(%)2%

and
b1/ 0%\ n? "1 (09
) - > I
(2.6) /a r <8T89> drz |1+ (mé)Q /a r3 (89) dr
where
2

(2.7) k>

(In2)

Thus, if we use the relations (2.5) afd (2.6)[in[(2.4), then we obtain
06\° 260000 212 1 [06\°
2.8 — ] - === — | = drd
285 //s {( )(m) croron | (mey?e \ag) [T
2
2 (122 ey
s, T\ 7 On?
Let us assume henceforward that

¢ A o
(2.9) kE+—->0, max <—) < — (k’ + )
€ 6€0,qa] € (1n ) ae[o a] €

In these circumstances it is clear tHat (0) represents a global measure of the magnitude of
the stress function in Sy. Consequently we can introduce the following measure

Fi(6) = /9 Ex (n) dy =
_ [ Pl (0%0N\? 1 [(18% 06
(2.10) = /0 (U—Q)e/a {r (W) _|_; (;W—i_a) +
2( 96 106\ 96\> 2 960¢
r (87“677 a ;8_17> T o ((97") - 5?58_77} drdn, 6 € 0,al.

The main result of the paper concerning the present type of inhomogeneity is expressed in the
following theorem.

Theorem 2.1.Consider an inhomogeneous arch-like region withndz satisfying the relations
(1.10) and[(2.9). Suppose that the Airy stress funatianC" (5)NC* (S) satisfies the equation
Po  E0% dp € 0o

S gt EHD S S0 S

(2.11) Lo+ % (e—¢8)
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and the boundary conditions described by the relatigns| (1.2) (2.3). Then there exists a
positive constants; such that

(2.12) 0< F(0) < F (0)e ™ forall 6cl0,al

2.2. Spatial decay bounds for radial inhomogeneity.In this subsection we assume that the
elastic coefficients vary smoothly with the polar distane® that [(1.I]l) holds true. Then we
set

, de , d* _, de _, d’
(213) 5—%, 5—@, 8—%, 5—@
and introduce the function

%o 1/10% 96\°
//sf{r(arz) *?(?a—nz*%) !
¢ 106\° & [0
2.14 = — ==

( ) +7" (87“87] ran) to (877) +

~ 2
+2 <%) }drdn, 6 €0, al.
e \Or

It is worth to outline thatF, (6) represents a measure of the Airy stress function, provided
g” > 0andé’ > 0. We can relax these restrictions if we use the identity

2 2
@ i (3)] e (5)

r2 00 (‘37’89 or

in order to write the relatiorj (2.14) in the following form
¢ 9 0 2 [ 8¢\’
(2.16)  E»(0 //gf{r(ar2> +_<F%+E) +;(aran) +
g (002 rg’ e 1 (80>
Furthermore, we use the boundary conditjon|(1.2) in order to apply the ineqiiality (8.1) — given

in the Appendix C — with) = %2 and then withy) = %5. Thus, we can write the following
inequalities

(2.17) /b er (%) dr > /b <)\1 ) (gf) dr,
b 2 b 2
(2.18) / ;(;ﬂ;ﬁe) dr > (M + )/ %(g—?) dr,

where)\, is the lowest eigenvalue defined in the Appendix C. So, if we use the estifates (2.17)
and [2.18) in the relation (2.1.6), then we get

P 06 r, 1 (06
(219) B (0 //S { (Mn +8T) [A1+g(5+€)};(5) T
" 2
+<T2€ e 2)\) ! <a_¢> }drdn.
3 € on
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We now assume for henceforward that

r2e”  2re
+

(2.20) A+ g (e"+&)>0,

so thatFEs (0) represents a global measure of the Airy stress functiagm Sy. Thus, we can
introduce the following measure

RO) = [ B)an-
52 1/18% 0
(221) = / / n— 9 5{’/‘ (37’?> —|—; (;%‘i‘ a(f) +
2/ 9% 106 AN g (06\°
- ((97”877 - ;8_77> + — (87]) + z (E) }d?"dn, 0 €0, al.

The main result concerning this type of inhomogeneity is expressed in the following theorem.

Theorem 2.2.Consider an inhomogeneous arch-like region wiendz satisfying the relations
(1.11) and [(2.20). Suppose that the Airy stress functioa C* (S) N C*(S) satisfies the
equation

3 ¢ P 00
(2.22) Lo — <—€+ )862+ 52 €E—O in S

and the boundary conditions described by the relatipng (1.2)[anf (1.3). Then there is a positive
constants, such that

(2.23) 0< F(0) < F(0)e? forall §<0,al.

3. THE PROOF OF THE THEOREM 2.1

Let us considep a solution of the equatiof (2./11) and let us introduce the function

bl e 0% L) L) 2

i — —

1 (9) / [ o T (ae) 7 (87’) B

2 . =
(3.) //[ (%) - (a¢) gy
S or r

2 0 09

+§Ea—n] drdn, 6 € |0,q].

By successive differentiations with respectitae obtain

al, o o (e 8% £ D% 209 0¢
(3.2) o0 0 = / {— @(ﬁ@)*‘s%w+?ﬁarae+

26 09 0¢p  4e %

t2aran 1 ae+ 3

¢]dr
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and
&1, Pl 0% (202 | e (0%\, 2 (%’
70 = [ [‘% (o) + 5 (r) + % (ovm) +
090 (2 ¢\  20¢ 8¢  260¢5°¢
ar 00 \ r orod r2 00 Ord — r? or 96*
de (9 20009 Ae 0%¢  2( — 3¢) 9,
(3:3) S (%) Teoros mlr T Yo
+g_f¢1 dr.
r

Further, by using the equatign (2}11), the integration by parts and the boundary condifion (1.2),
we obtain that

b 2 2 2
oo G = [l G G )
2 (f&) LB (8_¢) . Q_é%%} "
r3 \ 06 er \ Or er? or 00
and hence, by means of the relatigns|(2.5) and (2.6), we deduce that
CORRENT zam/abi [(%)+ : (2?) ]dr /b§ (%%+%)er20,
where

(3.6) = min} </€ + g) , Mg = max

0€l0,a 0€l0,a]

o 1 ] 272
m m Ha My — (1 b)gﬂl :

On the other hand, by means of the boundary condifior} (1.3), from the reldtiops (3.1) and
(3.2), we obtain

g

)
3

dl,

(37) [1 (Oé) = O, % (Oé) =0.

Thus, the relations (3.5) and (B.7) give

(3.8) %(9) < c;g (@)=0 forall € 0,a]
(3.9) IL(0)>L(a)=0 forall 8 €]0,ql.

Moreover, by integrating the relatiorfs (8.4) ahd|(3.5) successively with respéciver 0, o]
and by using the relations (3.7) afd (3.8), we get

3.10)  — %(0) = B (0) >0 //Sef [(@f le (gﬁ) ]drdn+
J s Gag ) i

(3.11) I (0)=F,(6) forall 6 € 0,a.
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We proceed now to establish a second—order differential inequality in terms of the measure
I, (0) = Fy (6). We will determine the positive constants and/3; such that

d*I dly
(3.12) o (0) — a5 (0)

To this end we combine the relatiofs (3.1), [3.5) and (3.10) to obtain

d’I dI b 5
O g O-5L0) 2 / (Om+1—B =)= (a‘f) +

¢ By 1\ £ (9*6)°
( 61) (30) —|—< ___§>T_3<W) +
£ 10% € 1 9%\’
2675 ((“ 4092) ; ( t A 592)
E\ e | [0 1 [0¢\°
(3.13) +//Se{(alam—ﬁl—ﬁlg);[(m) *7(3—77)

2
+0¢%(%+ %) +61§(8—f+1%) +

~B,L(0)>0 forall 6¢cl0,al

dr +

E4E ¢

+064 gb } drdn,

where~ is a positive parameter at our dlsposal. Now we set

(3.14) %:1—%, ﬁlzmin{&am,% {9+0m—\/(0m_7)2+32}}

and moreover, we introduce the notation

(3.15) {3 = max

0€l0,a] | €

S+,

so that the relatiorj (3.13) yields

( )( ) = 10;[;( ) = P16y (6 //59 [algm Prsa) ( (b)

96\ 2
+ (o — Bipis) % <8_(£> + 51

E4ce

—¢ ] drdn.
3

Furthermore, we set
E+E

(3.17) fq = MAX | —

0€(0,a]

and then we take

) -1
(3.18) a; = f; |:N3 + (1 + (lnﬂ—g)2> ] ;

so that, by making use of the inequality (7.1a), from (B.16) we obtain the second—order differ-

ential inequality [(3.12).
We now have all the preliminary material to prove the Thedrern 2.1. In fact, by the inequal-
ity (8.17) and a well-known Comparison Principle (a generalization of the curve under chord

AJMAA Vol. 3, No. 2, Art. 2, pp. 1-15, 2006 AJMAA


http://ajmaa.org

A GENERALIZED BIHARMONIC EQUATION 9

property for convex functions) it follows thdi (¢) is bounded above by the solution of the
differential equation corresponding to the differential inequality (3.12) with the same boundary
conditions, that is the functio@, () satisfying

G dG
d921 (6) — ozld—el () — B,G1(6) =0 forall 6¢€]0,q]

(3.19)
with

On this basis we get

1— 67(1/1+1/2)(a79)

(3.21) 0<L(0 < R TTT I, (0)e™2 forall € |0,a],
— €
where
1 2 1 2
(3.22) 1/125 ar +/as +46, ), V2:§ —ay + /a7 +45, ).

This result yields
(3.23) 0<I,(0)<I,(0)e™? forall 6c]0,al

which when combined with the relation (3]11) furnishes the estimate|(2.12pwith v, and
so the proof is complete.

4. THE PROOF OF THE THEOREM [2.2

With the solution of the equatiof (2]22) we associate the following function
bloe 9% e [00\® e [06\°
41) I = e+ — [ = i
(41) L(®) /a [ 37 06? + r3 (@9) * r (87°) +

2 3 '\ 5 2 0¢ 00
—i—( 7ﬁ:))—i-2762+27ﬁ)q§1d7’ //Serzﬁrandnin’ 0 € 10,q]

and note that, by successive differentiations with respegtue obtain

dl, o d (e 9% £ 000 20 9%
(4.2) w9 = /[ @(EW)W%WW@?@T@N
4e 3¢ &'\ 00 200 0¢
+(_ﬁ+ﬁ+7)¢%+ﬁ5%}dr’
a2, b 0% (e 8% e (2O\° 2 [ ¢\’
a Y= /{‘ () s () 7 (avon)
06 0 (2 8% e 3 & oo\° 9%

(43) o a9 <7arae)+(_ﬁ+r_2+?> [(% g | T

2e 0 0%¢  2e 0¢ 0%¢
Y aearos T arar ™
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By using the equatiorj (2.22), the integration by parts and the boundary confitipn (1.2), we can

write
&1y b AN A 00\*  2¢ [ 0%\’
w9 = l{” <W) +E(W> T <8r> +7<arae) i

2e 0 0%°¢p  4e O 0?¢ 8gz5
(4.4) +EEW_T_2%8T89+ ) T

e [0\ _ (00
+? (%) + £ (E) }d?”,

or, by means of the identity (2.]15),

a2, B 182  0¢ Po\°  _ [(96\?
(45) W(Q) = /a: {7’ <7“(992 +8_) + ler (W) + £ (E)

2 (0% \° 1( 2 2 _)\ [06\°
*[7 (arae) +;(‘ﬁ+7+ )(%) dr.

Therefore, if we use the relatioris (2/17) ahd (R.18) ihtg (4.5), then we can write

@ Tl > /{—(—%+?) e re) 2 (g¢) "

r?_,  2rée e [0\
+ (?E - 1) ﬁ (%) }d?"

+

and hence we have

a2, ble (102 06\° e (00> e [0\

4.7 —2() > S (e i S b (= >
(4.7) d6? ( )—/a [r <7’892+0r) +§1r (8r> +€2r3<80> dr =0,
where
(4.8) £ min [/\ + - (5’4—5’)} 1 min TQ_" 2re’

' L e LY Y2 e € '

On the other hand, the relations (1.8), [4.1) (4.2) furnish

dl,
(4.9 2 () =0, 7 () =0
and hence, by means ¢f (4.7), we deduce that
1

(4.10) % (0) <0, I,(@#)>0 forall € [0,q]

Further, by integrating the relation (4.7) successively with respetbier [0, o] and by using
the relations[(2.16) anfl (4.9), we get
(4.11)

dlg a2¢ ) o d¢
b //3[ <7“377 5) ey <3_> e 3( n> ]drd"’

(4.12) I,(0)=F,(0) forall 6€|0,q].
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In what follows we prove that it is possible to determine the positive parameteand 3,

such that

d21,
d6?

(4.13)

(0) — 042% (0) — By15(#) >0 forall #€l0,ql

To this end we combine the relatiofs (4.1), [4.7) and (4.11) to obtain

d212 dl,
a2 D meegy

(4.14)

9
+ @y —
2627,3

(6) ~ 515 () > //5 l%g (?) (g_j)+

e 8¢ 8¢ ble 10%0\°
+2527’_258_7]:| dT’d?? ‘i‘/av [ﬁ (w -+

e 0% 200 0%
et 2o o
o\’
(5) +

@)2+ (6 - 5o)

ar)

£
r3

+(£1+1—ﬁ2)5<

-
+6, (2 —~

7,25//

2e

3re’
2e

£

—aﬂ dr.

r3

At this instant we set

(4.15)

By = aa\/§1€ss

so that the relatior (4.14) furnishes

&I,
g’

(4.16)

where

(4.17)

0) — «

dl,

€
22 (0) = Br12 (0)

SAIGHE R

m = Imax

réela,b] 2e

Further, we use the arithmetic—geometric mean inequalify in|(4.16) to obtain

d*I,

a2 O —egy

(4.18)

AJMAA Vol. 3, No. 2, Art. 2, pp. 1-15, 2006
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r3

926\ >
(%) +

(0) ~ BT (6) > /[(1—%—1)

2
+(51+1_52_7)§ (g_f) +
a 2
(6= B) (a—ﬁ) @m%«z?] ar,
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with 7 a positive constant at our disposal. At this instant we set

@19 T-1-2 gomin{selavo- e -t )L mes

8
so that the relatiorj (4.18) gives

8 \e [0p)°

(ene3): (5) -

€

—ﬁQmﬁﬁ} dr.

By using the inequality] (8]1), fronp (4.20) we obtain

2 b
(4.20)% (9)—0@%(9)—62& @) > /

(4.21)
d?I dl. b 8
FO-a P ®-0n0> [ |(ar1-6- 75 ) 0 - sm] St
Thus, if we set
(4.22) By = min { 33,5,
s 1
(423 B = gy (M D649+ 8me

—\/[(Al +1) (€, +9)+8m)* =326, (M +1) (M +1 —i—m)},

then the relatiorf (4.21) implies the second-order differential inequglity|(4.13).
The integration of this differential inequality leads to the estinjate [2.23) with

(4.24) Hy = % (—a2 +4/a3 + 452)

and the proof is complete.

Let us consider now the class of elastic materials characterized by the refation (1.12). It
is a straightforward task to see that the assumpfion |(2.20) imposes upon the exptment
following restrictions

(4.25) MAp(1+£)>0, fp*+(2—f)p+2\ >0.
Thus, we can see that the parameteas to satisfy
At

4.26 > —
(4.26) P=15y
for (2 — f)* —8f\; <0, or

A1 2
(4.27) p>max{—1+f,§l—2+f+\/(2—f) —8f)\1}}

for (2 — f)* — 8f A > 0.
We note that, for this case, we have
3 1
(4.28) & =M+p(A+[f), &= +2—-fp+2N, m= P+ 5frp—1)

and so, by means of the relatiops (4.19), (#.23) pand|4.24), we can obtain the explicit dependence
of the decay rater, with respect to the parameter&nd f characterizing the considered class
of elastic materials.
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5. CONCLUDING REMARKS

The present paper establishes some decay bounds for a generalized biharmonic equation for
an arch-like region when the characteristic coefficients are depending only on the polar angle
or on the polar distance. It should be noted that the smoothly varying inhomogeneous elastic
materials provide a model for technologically important functionally graded materials. These
materials have received considerable attention in recent literature on solid mechanics. Our main
results described by the theorems of the Section 2 offer explicit upper decay bounds for the
measured (0) and F; (0) and these estimates can be regarded as a version of Saint Venant’s
principle for a curvilinear strip in the context of two dimensional inhomogeneous and isotropic
elastostatics. It is worth to outline that from our results described by the estirpatés (2.12) and
(2.23) we can rediscover the results established in [10] for a homogeneous arch-like region.

6. APPENDIX A

Denoting withu, andu, the radial and transversal components of the displacement vector in
a plane polar reference frame, the geometrical measures of deformation are

(6.1) err‘:% 6r9=1<1aur+%—%ua), 69921(&694— )

or 2\r a6 " or r\ag T
By eliminatingu, andu, in the above relation we obtain the Saint Venant compatibility condi-
tion

82

(62) 7’@ (7‘699) + (

2 2
0 0 > o 0 (reqg) = 0.

— —r— —2
06>~ or 10
The constitutive equations for a plane strain state in an isotropic and inhomogeneous body are

Trr = A (67‘7‘ + 699) + 2M6Tra

(6.3) Tog = A(er + ego) + 2pegn,
Trg = 2[€rg,
or
(6.4) Crr = ETpr — ETpg, €99 = —ETrr + ETpg, €rg = (€ +E) Try,
where
A+ 24 B A
(¢ TOrw T mOra

In the above relations,.., 79y andr, are the components of the plane stress in plane polars and
A andy are the elastic Lamé coefficients depending on the varialdesio.
The state of plane stress is represented in terms of the Airy stress func®n

1P 196 9% 0 <1a¢>

(60 =g trar ™= e ™ o\

and so the equilibrium equations are identically satisfied. If we substitute the refatipn (6.6) into
(6.4) and the result in the relation (5.2), then we get the following equation for the Airy stress
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function
R %\ O [ 0% 92 (e 0% 8 (c00\ 4e 0%
0= _( ar2)+ 2( 3802)+28r89 (Farae)_E<FE>+r_3W_

6.7 <385 1a2>a2¢ {1§+3<1ag)} P

r20r  ror?) 96? 200  Or \rof )| orod

1 9% Po 2010 96
+< ror? )__Fﬁ[rae<+)]ae+

N 1 0% 82_
2902  Or?
7. APPENDIX B

Let C} ([a, b]) be the class of real-valued functions, each of which is continuously differ-
entiable on the intervala, ] and vanishes at = a andr = b. Then for any function

¥ (r) € C} ([a,b]), one has (se€[11])
2 b 1 )
2)2] /a ﬁw d’l”.

b 2
(7.1a) / %(‘fl—f) dr >

Let C? ([a, b]) be the class of real-valued functions, each of which is twice continuously
differentiable on the intervdh, b| and vanishes together with its first derivativerat a and
r = b. Then for any functlon/)( € CZ ([a,b]), one has (se€[11])

)
o[ e ()

where

(7.3) k>

8. APPENDIX C

Let e (r) > 0 be a function continuous differentiable on the interjalb]. Any smooth
functiony (r), r € [a, b], such that) (a) = 1 (b) = 0, satisfies

be (dip\® be
(81) /a' ; (%> dr 2 ()\1 + ].)L ﬁw d’f’,
where)\; is the lowest eigenvalue of
edy e B B
62) SEE v Se-0 v@=vm -0
or (via the transformation () = /¢, r = ¢') of
d2u 2 d 1 d?
(8.3) ) {)\—F\/_dt (\/E)_%ﬁ (vVe)|u=0, wu(lna)=u(lnb)=0.
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