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1. INTRODUCTION

Consider the following second-order neutral differential equation

(1.1)

(
x(t)−

n∑
i=1

cix(t− δi)

)′′
+ a(t)x(t) = λb(t)f(x(t− τ(t))),

where λ is a positive parameter; ci and δi, i = 1, 2, . . . , n, n ∈ Z+, are constants with∑n
i=1 |ci| 6= 1; f(x) ∈ C(R, [0,∞)), and f(x) > 0 for x > 0; a(t) ∈ C(R, (0,∞)) with

max{a(t) : t ∈ [0, ω]} < (π
ω

)2, b(t) ∈ C(R, (0,∞)), τ ∈ C(R,R), a(t), b(t) and τ(t) are
ω-periodic functions.

In recent years, the existence of positive periodic solutions for differential delay equations has
attracted much attention, see [1, 3, 6, 8] and the references therein. However, compared with
the ample results on the existence of positive periodic solutions for various types of first-order
or second-order ordinary delay differential equations, studies on positive periodic solutions for
neutral differential equations are relatively less. This is because the latter is much more intricate
than the former. In [11], Zhang presents some results for the neutral operator (Ãx)(t) = x(t)−
cx(t−δ) which become effective tools for research on differential equations with the prescribed
neutral operator, see [4, 7, 9, 10], etc. Lu and Ge in [5] obtain some results on the generalized
neutral operator Ax(t) = x(t) −

∑n
i=1 cix(t − δi), and using Mawhin’s continuation theorem

they proved the existence of periodic solutions for a differential delay equation. However, the
results in [5] do not apply to the study of positive periodic solutions to the generalized neutral
differential equations.

Motivated by this problem, we first analyze properties of the generalized neutral operator
A which will be helpful for further study on differential equations with a generalized neutral
operator, and then by an application of the fixed-point index theorem, we obtain sufficient con-
ditions for the existence, multiplicity and nonexistence of positive periodic solutions to (1.1).
An example is also given to illustrate our results. Our results improve and extend the works in
[5, 9, 11].

2. ANALYSIS OF THE GENERALIZED NEUTRAL OPERATOR

Let X = {x(t) ∈ C(R,R) : x(t + ω) = x(t), t ∈ R} with norm ‖x‖ = supt∈[0,ω] |x(t)|.
Then (X, ‖ · ‖) is a Banach space. A cone K in X is defined by K = {x ∈ X : x(t) ≥ α‖x‖},
where α is a fixed positive number. Moreover, define operators A, A1 : X → X by

(Ax)(t) = x(t)−
n∑
i=1

cix(t− δi), (A1x)(t) =
n∑
i=1

cix(t− δi),

respectively, here ci and δi are defined as in the previous section. We have

Lemma 2.1. If
∑n

i=1 |ci| < 1, then A has a continuous bounded inverse A−1 on X and

(2.1) [A−1y](t)

= y(t) +
∑
j≥1

n∑
r1=1

n∑
r2=1

· · ·
n∑

rj=1

cr1cr2 · · · crjy(t− δr1 − δr2 − · · · − δrj ), for all y ∈ X.
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Proof. From the definition of A1y, we obtain

‖A1‖ = sup
‖y‖=1

‖A1y‖

= sup
‖y‖=1

max
t∈[0,ω]

∣∣∣∣∣
n∑
i=1

ciy(t− δi)

∣∣∣∣∣
≤ sup
‖y‖=1

max
t∈[0,ω]

n∑
i=1

|ci||y(t− δi)|

≤
n∑
i=1

|ci| < 1.

Then, by the Neumann expansion of A−1, i.e., A−1 = (I − A1)
−1 = I +

∑
j≥1A

j
1, we have

[A−1y](t) = y(t) +
∑
j≥1

n∑
r1=1

n∑
r2=1

· · ·
n∑

rj=1

cr1cr2 · · · crjy(t− δr1 − δr2 − · · · − δrj ).

We now define an operator H : X → X by

H(y(t)) = −
n∑
i=1

ci(A
−1y)(t− δi).

Lemma 2.2. If ci < 0 for all i = 1, 2, . . . , n and
∑n

i=1 |ci| < min{1, α}, we have for y ∈ K
that:

α−
∑n

i=1 |ci|
1− (

∑n
i=1 ci)

2‖y‖ ≤ (A−1y)(t) ≤ 1

1−
∑n

i=1 |ci|
‖y‖;(a) ∑n

i=1 |ci| (α−
∑n

i=1 |ci|)
1− (

∑n
i=1 ci)

2 ‖y‖ ≤ H(y(t)) ≤
∑n

i=1 |ci|
1−

∑n
i=1 |ci|

‖y‖.(b)

Proof. (a). Since ci < 0 for all i = 1, 2, . . . , n, and
∑n

i=1 |ci| < min{1, α}, by Lemma 2.1, we
have for y ∈ K that

(A−1y)(t) = y(t) +
∑
j≥1

n∑
r1=1

n∑
r2=1

· · ·
n∑

rj=1

cr1cr2 · · · crjy(t− δr1 − δr2 − · · · − δrj )

= y(t) +
∑

j=2(m+1)

n∑
r1=1

n∑
r2=1

· · ·
n∑

rj=1

cr1cr2 · · · crjy(t− δr1 − δr2 − · · · − δrj )

−
∑

j=2m+1

∣∣∣∣∣∣
n∑

r1=1

n∑
r2=1

· · ·
n∑

rj=1

cr1cr2 · · · crjy(t− δr1 − δr2 − · · · − δrj )

∣∣∣∣∣∣
= y(t) +

n∑
r1=1

n∑
r2=1

cr1cr2y(t− δr1 − δr2) + · · · −

∣∣∣∣∣
n∑

r1=1

cr1y(t− δr1)

∣∣∣∣∣
−

∣∣∣∣∣
n∑

r1=1

n∑
r2=1

n∑
r3=1

cr1cr2cr3y(t− δr1 − δr2 − δr3)

∣∣∣∣∣− · · ·
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≥ α‖y‖+
n∑

r1=1

n∑
r2=1

cr1cr2α‖y‖+ · · · −

∣∣∣∣∣
n∑

r1=1

cr1

∣∣∣∣∣ ‖y‖
−

∣∣∣∣∣
n∑

r1=1

n∑
r2=1

n∑
r3=1

cr1cr2cr3

∣∣∣∣∣ ‖y‖ − · · ·
= α‖y‖+

(
n∑
i=1

ci

)2

α‖y‖+ · · · −

∣∣∣∣∣
n∑
i=1

ci

∣∣∣∣∣ ‖y‖ −
∣∣∣∣∣
n∑
i=1

ci

∣∣∣∣∣
3

‖y‖ − · · ·

=
α− |

∑n
i=1 ci|

1− (
∑n

i=1 ci)
2‖y‖

=
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2‖y‖,

where m ∈ N. On the other hand, from [5], we can obtain the other inequality.

(b). It can be directly derived from the definition of H(y(t)) and part (a).

Lemma 2.3. If ci > 0 for all i = 1, 2, . . . , n and
∑n

i=1 ci < 1, α < 1, then for y ∈ K we have:

α

1−
∑n

i=1 ci
‖y‖ ≤ (A−1y)(t) ≤ 1

1−
∑n

i=1 ci
‖y‖;(a)

α
∑n

i=1 ci
1−

∑n
i=1 ci

‖y‖ ≤ H(y(t)) ≤
∑n

i=1 ci
1−

∑n
i=1 ci

‖y‖.(b)

Proof. (a). Since ci > 0 for all i = 1, 2, . . . , n,
∑n

i=1 ci < 1. By Lemma 2.1, we have for y ∈ K
that

(A−1y)(t) = y(t) +
∑
j≥1

n∑
r1=1

n∑
r2=1

· · ·
n∑

rj=1

cr1cr2 · · · crjy(t− δr1 − δr2 − · · · − δrj )

= y(t) +
n∑

r1=1

cr1y(t− δr1) +
n∑

r1=1

n∑
r2=1

cr1cr2y(t− δr1 − δr2)

+
n∑

r1=1

n∑
r2=1

n∑
r3=1

cr1cr2cr3y(t− δr1 − δr2 − δr3) + · · ·

≥ α‖y‖+
n∑

r1=1

cr1α‖y‖+
n∑

r1=1

n∑
r2=1

cr1cr2α‖y‖

+
n∑

r1=1

n∑
r2=1

n∑
r3=1

cr1cr2cr3α‖y‖+ · · ·

= α‖y‖+
n∑
i=1

ciα‖y‖+

(
n∑
i=1

ci

)2

α‖y‖+

(
n∑
i=1

ci

)3

α‖y‖+ · · ·

=
α

1−
∑n

i=1 ci
‖y‖.

The proof of the remaining parts is similar to that for Lemma 2.2, and will be omitted.
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3. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR (1.1)

Define the Banach space X as in Section 2, and let C+
ω = {x(t) ∈ C(R, (0,+∞)) : x(t +

ω) = x(t)}. Denote

M = max{a(t) : t ∈ [0, ω]}, m = min{a(t) : t ∈ [0, ω]}, β =
√
M,

L =
1

2β sin βω
2

, l =
cos βω

2

2β sin βω
2

, k = l(M +m) + LM,

k1 =
k −
√
k2 − 4LlMm

2LM
, α =

l [m− (M +m)
∑n

i=1 |ci|]
LM (1−

∑n
i=1 |ci|)

.

It is easy to see that M,m, β, L, l, k, k1 > 0.
Here, the cone K in X is defined by K = {x ∈ X : x(t) ≥ α‖x‖} as in Section 2, where α

is as defined above. Note that Kr = {x ∈ K : ‖x‖ < r} and ∂Kr = {x ∈ K : ‖x‖ = r}.
Now we consider (1.1). First let

f0 = lim
x→0+

f(x)

x
, f∞ = lim

x→∞

f(x)

x
,

and denote

i0 = number of zeros in the set {f0, f∞}, i∞ = number of infinities in the set {f0, f∞}.

It is clear that i0, i∞ = 0, 1, 2. We will show that (1.1) has i0 or i∞ positive w-periodic solu-
tion(s) for sufficiently large or small λ, respectively.

In the following we discuss (1.1) in two cases, namely, the case where ci < 0 for all
i = 1, 2, . . . , n, and

∑n
i=1 ci > −min

{
k1,

m
M+m

} [∑n
i=1 ci > −

m
M+m

assures α > 0; when∑n
i=1 ci > −k1, then

∑n
i=1 |ci| < α

]
; and the case where ci < 0 for all i = 1, 2, . . . , n and∑n

i=1 ci < min
{

m
M+m

, LM−lm
(L−l)M−lm

} [
when

∑n
i=1 ci <

m
M+m

, then α > 0; when
∑n

i=1 ci <

LM−lm
(L−l)M−lm , then α < 1

]
. Obviously, we have

∑n
i=1 |ci| < 1 which makes Lemma 2.1 hold for

both cases, and Lemma 2.2 or 2.3 also hold, respectively.
Let y(t) = (Ax)(t), then from Lemma 2.1 we have x(t) = (A−1y)(t). Hence (1.1) can be

transformed into

(3.1) y′′(t) + a(t)(A−1y)(t) = λb(t)f((A−1y)(t− τ(t))),

which can be further rewritten as

(3.2) y′′(t) + a(t)y(t)− a(t)H(y(t)) = λb(t)f((A−1y)(t− τ(t))),

where

H(y(t)) = y(t)− (A−1y)(t) = −
n∑
i=1

ci(A
−1y)(t− δi)

is defined as Section 2.
Now we discuss the two cases separately.
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3.1. Case I. ci < 0 for all i = 1, 2, . . . , n, and
∑n

i=1 ci > −min
{
k1,

m
M+m

}
.

Denote

F (r) = max

f(t) : 0 ≤ t ≤ r

1−
n∑
i=1

|ci|

 ,

f1(r) = min

f(t) :

α−
n∑
i=1

|ci|

1− (
n∑
i=1

ci)2

r ≤ t ≤ r

1−
n∑
i=1

|ci|

 .

Lemma 3.1. The equation

(3.3) y′′(t) +My(t) = h(t), h ∈ C+
ω ,

has a unique positive ω-periodic solution

(3.4) y(t) =

∫ t+ω

t

G(t, s)h(s)ds,

where

(3.5) G(t, s) =
cos β

(
ω
2

+ t− s
)

2β sin βω
2

, s ∈ [t, t+ ω].

Remark 3.1. The conclusion has been presented in [9] without a proof. For the convenience of
readers, we give the details here.

Proof. First it is easy to see that the associate homogeneous equation of (3.3) has the solution
y(t) = c1 cos βt+ c2 sin βt. Applying the method of variation of parameters, we get

c′1(t) =
− sin βt

2β
h(t), c′2(t) =

cos βt

2β
h(t).

Noticing that y(t), y′(t) are periodic functions, we have

c1(t) =

∫ t+ω

t

h(s) cos
(
s− ω

2

)
2β sin βω

2

ds, c2(t) =

∫ t+ω

t

h(s) sin
(
s− ω

2

)
2β sin βω

2

ds.

Therefore

y(t) = c1(t) cos βt+ c2(t) sin βt

=

∫ t+ω

t

G(t, s)h(s)ds,

where G(t, s) is as defined in (3.5).

Lemma 3.2 ([9]). We have
∫ t+ω
t

G(t, s)ds = 1
M

. Furthermore, if max{a(t) : t ∈ [0, ω]} <
(π
ω

)2, then 0 < l ≤ G(t, s) ≤ L for all t ∈ [0, ω] and s ∈ [t, t+ ω].

Proof. For the proof, readers are referred to [9].

Now we study the following equation corresponding to (3.2),

(3.6) y′′(t) + a(t)y(t)− a(t)H(y(t)) = h(t), h ∈ C+
ω .

We define the operators T, B : X → X by

(3.7) (Th)(t) =

∫ t+ω

t

G(t, s)h(s)ds, (By)(t) = (M − a(t))y(t) + a(t)H(y(t)).
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Clearly T,B are completely continuous, (Th)(t) > 0 for h(t) > 0 and

‖B‖ ≤
(
M −m+M

∑n
i=1 |ci|

1−
∑n

i=1 |ci|

)
.

By Lemma 3.1, the solution of (3.6) can be written in the form

(3.8) y(t) = (Th)(t) + (TBy)(t).

In view of ci < 0 for all i = 1, 2, . . . , n, and
∑n

i=1 ci > −min
{
k1,

m
M+m

}
, we have

‖TB‖ ≤ ‖T‖‖B‖ ≤ M −m+m
∑n

i=1 |ci|
M (1−

∑n
i=1 |ci|)

< 1,

and so

(3.9) y(t) = (I − TB)−1(Th)(t).

We define an operator P : X → X by

(3.10) (Ph)(t) = (I − TB)−1(Th)(t).

Obviously, for any h ∈ C+
ω , if max{a(t) : t ∈ [0, ω]} < (π

ω
)2, y(t) = (Ph)(t) is the unique

positive ω-periodic solution of (3.6).

Lemma 3.3. P is completely continuous and

(3.11) (Th)(t) ≤ (Ph)(t) ≤ M (1−
∑n

i=1 |ci|)
m− (M +m)

∑n
i=1 |ci|

‖Th‖, for all h ∈ C+
ω .

Proof. By Neumann expansions of P , we have

P = (I − TB)−1T(3.12)

= (I + TB + (TB)2 + · · ·+ (TB)n + · · · )T
= T + TBT + (TB)2T + · · ·+ (TB)nT + · · · .

Since T and B are completely continuous, so is P . Moreover, by (3.12), and recalling that

‖TB‖ ≤ M −m+m
∑n

i=1 |ci|
M (1−

∑n
i=1 |ci|)

< 1,

we get

(Th)(t) ≤ (Ph)(t) ≤ M (1−
∑n

i=1 |ci|)
m− (M +m)

∑n
i=1 |ci|

‖Th‖.

We define an operator Q : X → X by

(3.13) Qy(t) = P (λb(t)f((A−1y)(t− τ(t)))).

Lemma 3.4. Q(K) ⊂ K.

Proof. From the definition of Q, it is easy to verify that Qy(t + ω) = Qy(t). For y ∈ K, we
have from Lemma 3.2 that

Qy(t) = P (λb(t)f((A−1y)(t− τ(t))))

≥ T (λb(t)f((A−1y)(t− τ(t))))

= λ

∫ t+ω

t

G(t, s)b(s)f [(A−1y)(s− τ(s))]ds

≥ λl

∫ ω

0

b(s)f [(A−1y)(s− τ(s))]ds.
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On the other hand,

Qy(t) = P (λb(t)f((A−1y)(t− τ(t))))

≤ M (1−
∑n

i=1 |ci|)
m− (M +m)

∑n
i=1 |ci|

‖T (λb(t)f((A−1y)(t− τ(t))))‖

= λ
M (1−

∑n
i=1 |ci|)

m− (M +m)
∑n

i=1 |ci|
max
t∈[0,ω]

∫ t+ω

t

G(t, s)b(s)f((A−1y)(s− τ(s)))ds

≤ λ
M (1−

∑n
i=1 |ci|)

m− (M +m)
∑n

i=1 |ci|
L

∫ ω

0

b(s)f((A−1y)(s− τ(s)))ds.

Therefore

Qy(t) ≥ l [m− (M +m)
∑n

i=1 |ci|]
LM (1−

∑n
i=1 |ci|)

‖Qy‖ = α‖Qy‖,

i.e., Q(K) ⊂ K.

From the continuity of P , it is easy to verify that Q is completely continuous in X . Com-
paring (3.2) with (3.6), it is obvious that the existence of periodic solutions for equation (3.2) is
equivalent to the existence of fixed-points for the operator Q on X . Recalling Lemma 3.4, the
existence of positive periodic solutions for (3.2) is equivalent to the existence of fixed-points
of Q on K. Furthermore, if Q has a fixed-point y in K, it means that (A−1y)(t) is a positive
ω−periodic solution of (1.1).

Lemma 3.5. If there exists η > 0 such that

f((A−1y)(t− τ(t))) ≥ (A−1y)(t− τ(t))η, for t ∈ [0, ω] and y ∈ K,
then

‖Qy‖ ≥ λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖, y ∈ K.

Proof. By the assumption, we have for y ∈ K that

Qy(t) = P
(
b(t)f((A−1y)(t− τ(t)))

)
≥ T

(
b(t)f((A−1y)(t− τ(t)))

)
= λ

∫ t+ω

t

G(t, s)b(s)f((A−1y)(s− τ(s)))ds

≥ λlη

∫ ω

0

b(s)(A−1y)(s− τ(s))ds

≥ λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖.

Hence

‖Qy‖ ≥ λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖, y ∈ K.

Lemma 3.6. If there exists ε > 0 such that

f((A−1y)(t− τ(t))) ≤ (A−1y)(t− τ(t))ε, for t ∈ [0, ω] and y ∈ K,
then

‖Qy‖ ≤ λε
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖, y ∈ K.
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Proof. By Lemma 2.2, Lemma 3.2 and Lemma 3.3, we have

‖Qy(t)‖ ≤ λ
M (1−

∑n
i=1 |ci|)

m− (M +m)
∑n

i=1 |ci|
L

∫ ω

0

b(s)f((A−1y)(s− τ(s)))ds

≤ λ
M (1−

∑n
i=1 |ci|)

m− (M +m)
∑n

i=1 |ci|
Lε

∫ ω

0

b(s)(A−1y)(s− τ(s))ds

≤ λε
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖.

Lemma 3.7. If y ∈ ∂Kr, then

‖Qy‖ ≥ λlf1(r)

∫ ω

0

b(s)ds.

Proof. By Lemma 2.2, we obtain
α− |

∑n
i=1 ci|

1− (
∑n

i=1 ci)
2 r ≤ (A−1y)(t− τ(t)) ≤ r

1−
∑n

i=1 |ci|

for y ∈ ∂Kr, which yields f((A−1y)(t− τ(t))) ≥ f1(r). The lemma now follows by imitating
the proof of Lemma 3.5.

Lemma 3.8. If y ∈ ∂Kr, then

‖Qy‖ ≤ λ
LM (1−

∑n
i=1 |ci|)F (r)

m− (M +m)
∑n

i=1 |ci|

∫ ω

0

b(s)ds.

Proof. By Lemma 2.2, we have

0 ≤ (A−1y)(t− τ(t)) ≤ r

1−
∑n

i=1 |ci|
for y ∈ ∂Kr, which yields f((A−1y)(t − τ(t))) ≤ F (r). Using a process similar to the proof
of Lemma 3.6, we obtain the conclusion.

We now quote the fixed point theorem which our results will be based on.

Lemma 3.9 ([2]). Let X be a Banach space and K a cone in X . For r > 0, define Kr = {u ∈
K : ‖u‖ < r}. Assume that T : Kr → K is completely continuous such that Tx 6= x for
x ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then i(T,Kr, K) = 0;
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then i(T,Kr, K) = 1.

Now we give our main results on positive periodic solutions for (1.1).

Theorem 3.10.
(a) If i0 = 1 or 2, then (1.1) has i0 positive ω-periodic solution(s) for

λ >
1

f1(1)l
∫ ω

0
b(s)ds

> 0;

(b) If i∞ = 1 or 2, then (1.1) has i∞ positive ω-periodic solution(s) for

0 < λ <
m− (M +m)

∑n
i=1 |ci|

LM (1−
∑n

i=1 |ci|)F (1)
∫ ω

0
b(s)ds

;

(c) If i∞ = 0 or i0 = 0, then (1.1) has no positive ω-periodic solution(s) for sufficiently
small or sufficiently large λ > 0, respectively.
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Proof. (a). Choose r1 = 1. Take

λ0 =
1

f1(r1)l
∫ ω

0
b(s)ds

,

then for all λ > λ0, we have from Lemma 3.7 that

(3.14) ‖Qy‖ > ‖y‖, for y ∈ ∂Kr1 .

Case 1. If f0 = 0, we can choose 0 < r̄2 < r1, so that f(u) ≤ εu for 0 ≤ u ≤ r̄2, where the

constant ε > 0 satisfies

(3.15) λε
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
< 1.

Let r2 = (1−
∑n

i=1 |ci|) r̄2. By Lemma 2.2, we have

0 ≤ (A−1y)(t− τ(t)) ≤ ‖y‖
1−

∑n
i=1 |ci|

≤ r̄2

for y ∈ ∂Kr2 , which yields

f((A−1y)(t− τ(t))) ≤ ε(A−1y)(t− τ(t)).

In view of Lemma 3.6 and (3.15), we have for y ∈ ∂Kr2 that

‖Qy‖ ≤ λε
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖ < ‖y‖.

It follows from Lemma 3.9 and (3.14) that

i(Q,Kr2 , K) = 1, i(Q,Kr1 , K) = 0,

thus i(Q,Kr1\K̄r2 , K) = −1 andQ has a fixed point y inKr1\K̄r2 , which means that (A−1y)(t)
is a positive ω-positive solution of (1.1) for λ > λ0.

Case 2. If f∞ = 0, there exists a constant H̃ > 0 such that f(u) ≤ εu for u ≥ H̃ , where the
constant ε > 0 satisfies

(3.16) λε
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
< 1.

Let

r3 = max

2r1,
H̃
[
1− (

∑n
i=1 ci)

2
]

α−
∑n

i=1 |ci|

 .

Since

(A−1y)(t− τ(t)) ≥ α− |
∑n

i=1 ci|
1− (

∑n
i=1 ci)

2‖y‖ ≥ H̃

for y ∈ ∂Kr3 , we obtain

f((A−1y)(t− τ(t))) ≤ ε(A−1y)(t− τ(t)).

Thus by Lemma 3.6 and (3.16), we have for y ∈ ∂Kr3 that

‖Qy‖ ≤ λε
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖ < ‖y‖.

Recalling from Lemma 3.9 and (3.14) that

i(Q,Kr3 , K) = 1, i(Q,Kr1 , K) = 0,
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then i(Q,Kr3\K̄r1 , K) = 1 and Q has a fixed point y in Kr3\K̄r1 , which means that (A−1y)(t)
is a positive ω-positive solution of (1.1) for λ > λ0.

Case 3. If f0 = f∞ = 0, from the above arguments, there exist 0 < r2 < r1 < r3 such thatQ has
a fixed point y1(t) in Kr1\K̄r2 and a fixed point y2(t) in Kr3\K̄r1 . Consequently, (A−1y1)(t)
and (A−1y2)(t) are two positive ω-periodic solutions of (1.1) for λ > λ0.

(b). Let r1 = 1. Take

λ0 =
m− (M +m)

∑n
i=1 |ci|

LM (1−
∑n

i=1 |ci|)F (r1)
∫ ω

0
b(s)ds

,

then by Lemma 3.8, we know that if λ < λ0 then

(3.17) ‖Qy‖ < ‖y‖, y ∈ ∂Kr1 .

Case 1. If f0 = ∞, we can choose 0 < r̄2 < r1 so that f(u) ≥ ηu for 0 ≤ u ≤ r̄2, where the
constant η > 0 satisfies

(3.18) λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds > 1.

Let r2 = (1−
∑n

i=1 |ci|) r̄2. Since

0 ≤ (A−1y)(t− τ(t)) ≤ ‖y‖
1−

∑n
i=1 |ci|

≤ r̄2

for y ∈ ∂Kr2 , we obtain

f((A−1y)(t− τ(t))) ≥ η(A−1y)(t− τ(t)).

Thus by Lemma 3.5 and (3.18),

‖Qy‖ ≥ λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖ > ‖y‖, y ∈ ∂Kr2 .

It follows from Lemma 3.9 and (3.17) that

i(Q,Kr2 , K) = 0, i(Q,Kr1 , K) = 1,

which implies that i(Q,Kr1\K̄r2 , K) = 1 and Q has a fixed point y in Kr1\Ω̄r2 . Therefore
(A−1y)(t) is a positive ω-periodic solution of (1.1) for 0 < λ < λ0.

Case 2. If f∞ = ∞, there exists a constant H̃ > 0 such that f(u) ≥ ηu for u ≥ H̃ , where the
constant η > 0 satisfies

(3.19) λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds > 1.

Let

r3 = max

2r1,
H̃
[
1− (

∑n
i=1 ci)

2
]

α−
∑n

i=1 |ci|

 .

By Lemma 2.2, we have

(A−1y)(t− τ(t)) ≥ α−
∑n

i=1 |ci|
1− (

∑n
i=1 ci)

2‖y‖ ≥ H̃

for y ∈ ∂Kr3 and then

f((A−1y)(t− τ(t))) ≥ η(A−1y)(t− τ(t)).

AJMAA, Vol. 6, No. 1, Art. 5, pp. 1-16, 2009 AJMAA

http://ajmaa.org


12 WING-SUM CHEUNG AND JINGLI REN AND WEIWEI HAN1

Thus by Lemma 3.5 and (3.19), we have for y ∈ ∂Kr3 that

‖Qy‖ ≥ λlη
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖ > ‖y‖.

It follows from Lemma 3.9 and (3.17) that

i(Q,Kr3 , K) = 0, i(Q,Kr1 , K) = 1,

i.e., i(Q,Kr3\K̄r1 , K) = −1 and Q has a fixed point y in Kr3\K̄r1 . This means that (A−1y)(t)
is a positive ω-periodic solution of (1.1) for 0 < λ < λ0.

Case 3. If f0 = f∞ = 0, from the above arguments, Q has a fixed point y1 in Kr1\K̄r2

and a fixed point y2 in Kr3\K̄r1 . Consequently, (A−1y1)(t) and (A−1y2)(t) are two positive
ω-periodic solutions of (1.1) for 0 < λ < λ0.

(c). By Lemma 2.2, if y ∈ K, then

(A−1y)(t− τ(t)) ≥ α−
∑n

i=1 |ci|
1− (

∑n
i=1 ci)

2‖y‖ > 0

for t ∈ [0, ω].

Case 1. If i0 = 0, we have f0 > 0 and f∞ > 0. Let b1 = min
{
f(u)
u

;u > 0
}
> 0. Then we

obtain
f(u) ≥ b1u, u ∈ [0,+∞).

Assume that y(t) is a positive ω-periodic solution of (1.1) for λ > λ0, where

λ0 =
1− (

∑n
i=1 ci)

2

lb1 (α−
∑n

i=1 |ci|)
∫ ω

0
b(s)ds

.

Since Qy(t) = y(t) for t ∈ [0, ω], then by Lemma 3.5, if λ > λ0, we have

‖y‖ = ‖Qy‖ ≥ λlb1
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖ > ‖y‖,

which is a contradiction.

Case 2. If i∞ = 0, we have f0 <∞ and f∞ <∞. Let b2 = max
{
f(u)
u

;u > 0
}
> 0. Then we

obtain
f(u) ≤ b2u, u ∈ [0,∞).

Assume that y(t) is a positive ω-periodic solution of (1.1) for 0 < λ < λ0, where

λ0 =
m− (M +m)

∑n
i=1 |ci|

b2LM
∫ ω

0
b(s)ds

.

Since Qy(t) = y(t) for t ∈ [0, ω], it follows from Lemma 3.6 that

‖y‖ = ‖Qy‖ ≤ λb2
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖ < ‖y‖,

which is a contradiction.

Theorem 3.11.
(a) If there exists a constant b1 > 0 such that f(u) ≥ b1u for u ∈ [0,+∞), then (1.1) has

no positive ω-periodic solution for

λ >
1− (

∑n
i=1 ci)

2

lb1 (α−
∑n

i=1 |ci|)
∫ ω

0
b(s)ds

.
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(b) If there exists a constant b2 > 0 such that f(u) ≤ b2u for u ∈ [0,+∞), then (1.1) has
no positive ω-periodic solution for

0 < λ <
m− (M +m)

∑n
i=1 |ci|

b2LM
∫ ω

0
b(s)ds

.

Proof. From the proof of (c) in Theorem 3.10, we immediately obtain this theorem.

Theorem 3.12. If

1− (
∑n

i=1 ci)
2

l (α−
∑n

i=1 |ci|)
∫ ω

0
b(s)dsmax{f0, f∞}

< λ <
m− (M +m)

∑n
i=1 |ci|

LM
∫ ω

0
b(s)dsmin{f0, f∞}

,

then (1.1) has one positive ω-periodic solution.

Proof. Case 1. If f0 ≤ f∞, then

1− (
∑n

i=1 ci)
2

f∞l (α−
∑n

i=1 |ci|)
∫ ω

0
b(s)ds

< λ <
m− (M +m)

∑n
i=1 |ci|

f0LM
∫ ω

0
b(s)ds

.

It is easy to see that there exists an 0 < ε < f∞ such that

1− (
∑n

i=1 ci)
2

(f∞ − ε)l (α−
∑n

i=1 |ci|)
∫ ω

0
b(s)ds

< λ <
m− (M +m)

∑n
i=1 |ci|

(f0 + ε)LM
∫ ω

0
b(s)ds

.

For the above ε, we choose r̄1 > 0 such that f(u) ≤ (f0 + ε)u for 0 ≤ u ≤ r̄1. Let r1 =
(1−

∑n
i=1 |ci|) r̄1. By Lemma 2.2, we have

0 ≤ (A−1y)(t− τ(t)) ≤ ‖y‖
1−

∑n
i=1 |ci|

≤ r̄1,

and then
f((A−1y)(t− τ(t))) ≤ (f0 + ε)(A−1y)(t− τ(t)).

Thus by Lemma 3.6 we have for y ∈ ∂Kr1 that

‖Qy‖ ≤ λ(f0 + ε)
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖ < ‖y‖.

On the other hand, there exists a constant H̃ > 0 such that f(u) ≥ (f∞− ε)u for u ≥ H̃ . Let

r2 = max

2r1,
H̃
[
1− (

∑n
i=1 ci)

2
]

α−
∑n

i=1 |ci|

 .

By Lemma 2.2, we have

(A−1y)(t− τ(t)) ≥ α− |
∑n

i=1 ci|
1− (

∑n
i=1 ci)

2‖y‖ ≥ H̃

for y ∈ ∂Kr2 and then

f((A−1y)(t− τ(t))) ≥ (f∞ − ε)(A−1y)(t− τ(t)).

Thus by Lemma 3.5, for y ∈ ∂Kr2

‖Qy‖ ≥ λl(f∞ − ε)
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖ > ‖y‖.

It follows from Lemma 3.9 that

i(Q,Kr1 , K) = 1, i(Q,Kr2 , K) = 0,
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thus i(Q,Kr2\K̄r1 , K) = −1 and Q has a fixed point y in Kr2\K̄r1 . So (A−1y)(t) is a positive
ω-periodic solution of (1.1).

Case 2. If f0 > f∞, in this case, we have

1− (
∑n

i=1 ci)
2

f0l(α−
∑n

i=1 |ci|)
∫ ω

0
b(s)ds

< λ <
m− (M +m)

∑n
i=1 |ci|

f∞LM
∫ ω

0
b(s)ds

.

It is easy to see that there exists an 0 < ε < f0 such that

1− (
∑n

i=1 ci)
2

(f0 − ε)l(α−
∑n

i=1 |ci|)
∫ ω

0
b(s)ds

< λ <
m− (M +m)

∑n
i=1 |ci|

(f∞ + ε)LM
∫ ω

0
b(s)ds

.

For the above ε, we choose r̄1 > 0 such that f(u) ≥ (f0 − ε)u for 0 ≤ u ≤ r̄1. Let r1 =
(1−

∑n
i=1 |ci|) r̄1. By Lemma 2.2 we have

0 ≤ (A−1y)(t− τ(t)) ≤ ‖y‖
1−

∑n
i=1 |ci|

≤ r̄1

for y ∈ ∂Kr1 and then

f((A−1y)(t− τ(t))) ≥ (f0 − ε)(A−1y)(t− τ(t)).

Thus we have by Lemma 3.5 that for y ∈ ∂Kr1

‖Qy‖ ≥ λl(f0 − ε)
α−

∑n
i=1 |ci|

1− (
∑n

i=1 ci)
2

∫ ω

0

b(s)ds‖y‖ > ‖y‖.

On the other hand, there exists a constant H̃ > 0 such that f(u) ≤ (f∞+ ε)u for u ≥ H̃ . Let

r2 = max

2r1,
H̃
[
1− (

∑n
i=1 ci)

2
]

α−
∑n

i=1 |ci|

 .

By Lemma 2.2 we have

(A−1y)(t− τ(t)) ≥ α−
∑n

i=1 |ci|
1− (

∑n
i=1 ci)

2‖y‖ ≥ H̃

for y ∈ ∂Kr2 and then

f((A−1y)(t− τ(t))) ≤ (f∞ + ε)(A−1y)(t− τ(t)).

Thus by Lemma 3.6, for y ∈ ∂Kr2 ,

‖Qy‖ ≤ λ(f∞ + ε)
LM

∫ ω
0
b(s)ds

m− (M +m)
∑n

i=1 |ci|
‖y‖.

It follows from Lemma 3.9 that

i(Q,Kr1 , K) = 0 i(Q,Kr2 , K) = 1.

Thus i(Q,Kr2\K̄r1 , K) = 1 and Q has a fixed point y in Kr2\K̄r1 . This means that (A−1y)(t)
is a positive ω-periodic solution of (1.1).

Remark 3.2. When n = 1, (1.1) degenerates to

(x(t)− cx(t− δ))′′ + a(t)x(t) = λb(t)f(x(t− τ(t))),

and Theorems 3.10 – 3.12 still hold.
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3.2. Case II. ci > 0 for all i = 1, 2, . . . , n and
∑n

i=1 ci < min
{

m
M+m

, LM−lm
(L−l)M−lm

}
.

In this case, obviously we have α < 1. We denote

f2(r) = min

{
f(t) :

α

1−
∑n

i=1 ci
r ≤ t ≤ r

1−
∑n

i=1 ci

}
.

In a similar manner to Subsection 3.1, we obtain the following results.

Theorem 3.13.
(a) If i0 = 1 or 2, then (1.1) has i0 positive ω-periodic solution(s) for

λ >
1

f2(1)l
∫ ω

0
b(s)ds

> 0.

(b) If i∞ = 1 or 2, then (1.1) has i∞ positive ω-periodic solution(s) for

0 < λ <
m− (M +m)

∑n
i=1 ci

LM (1−
∑n

i=1 ci)F (1)
∫ ω

0
b(s)ds

.

(c) If i∞ = 0 or i0 = 0, then (1.1) has no positive ω-periodic solution for sufficiently small
or large λ > 0, respectively.

Theorem 3.14.
(a) If there exists a constant b1 > 0 such that f(u) ≥ b1u for u ∈ [0,+∞), then (1.1) has

no positive ω-periodic solution for

λ >
1−

∑n
i=1 ci

lαb1
∫ ω

0
b(s)ds

.

(b) If there exists a constant b2 > 0 such that f(u) ≤ b2u for u ∈ [0,+∞), then (1.1) has
no positive ω-periodic solution for

0 < λ <
m− (M +m)

∑n
i=1 ci

b2LM
∫ ω

0
b(s)ds

.

Theorem 3.15. If

1−
∑n

i=1 ci

lα
∫ ω

0
b(s)dsmax{f0, f∞}

< λ <
m− (M +m)

∑n
i=1 ci

LM
∫ ω

0
b(s)dsmin{f0, f∞}

,

then (1.1) has one positive ω-periodic solution.

Finally, we give an example to illustrate our results.

Example 3.1. Consider the following neutral functional differential equation:

(3.20)
[
u(t) +

1

12
u
(
t+

π

3

)
+

1

20
u
(
t− π

2

)
+

1

10
u
(
t− π

5

)]′′
+

1

16
u(t)

= λ(1− sin t)u(t− τ(t))au(t−τ(t)),

where λ and 0 < a < 1 are two positive parameters, τ(t + 2π) = τ(t). We see that δ1 = −π
3
,

δ2 = π
2
, δ3 = π

5
, c1 = − 1

12
, c2 = − 1

20
, c3 = − 1

10
, a(t) ≡ 1

16
, b(t) = 1 − sin t, ω = 2π,

f(u) = uau. Additionally, maxu∈[0,∞) f(u) = f
(
− 1

ln a

)
.

Clearly, M = 1
16
< ( π

2π
)2 = 1

4
, f0 = 0, f∞ = 0. Then we easily obtain:
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Conclusion 1. The eq. (3.20) has two positive ω-periodic solutions for λ > 1
4πr1

, where r1 =

min
{
f(0.27), f

(
30
23

)}
.

In fact, by simple computations, we have

M = m =
1

16
, β =

1

4
, L =

1

2β sin β2π
2

= 2
√

2, l =
cos β2π

2

2β sin β2π
2

= 2,

k =
2 +
√

2

8
, k1 =

√
2 + 1−

√
3

2
, α =

8

23

√
2,

3∑
i=1

|ci| =
7

30
< min

{
k1,

m

M +m

}
=

√
2 + 1−

√
3

2
,

3∑
i=1

|ci| =
7

30
<

8

23

√
2 = α,

and

M(1) = max

{
f(t) : 0 ≤ t ≤ 30

23

}
= max

{
f

(
30

23

)
, f

(
− 1

ln a

)}
= r0,

m(1) = min

{
f(t) : 0.27 ≈

8
23

√
2− 7

30

1−
(

7
30

)2 ≤ t ≤ 30

23

}

= min

{
f(0.27), f

(
30

23

)}
= r1,

1

m(1)l
∫ ω

0
b(s)ds

=
1

4πr1
.
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