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2 B. BURGSTALLER

1. INTRODUCTION

In [23], Meyer and Nest found an alternative description of the Baum—Connes map
lim KK(Cy(Y),A) — K(Ax, G)
YCEG

with coefficients|[1], wheré&s denotes a locally compact, second countable group/ad--
algebra. (It was even achieved for groupoids of the farm.X'.) Fundamental for this approach
is a work by Chabert and Echterhoff [10], and the nontrivial “observation” that Kasparov’s
categoryK K“ may be viewed as a triangulated category. By using Brown’s representability
theorem for triangulated categoriés [[25], a weakly isomorphic, so-called Dirac elément
KK%(B, A) is constructed such thd is a G-algebra in the localizing subcategory &fK ¢
generated byG-algebras of the form Irfg(F) (induction in the sense of Green [12]) for a
compact subgroug/ C G and H-algebraF'. If G is compact then one will choosB =
Ind3(A) = A andD = id, and for non-compac’ one hopes that the compactly induced
algebras approximate sufficiently enough viaD, like one approximates functions vanishing
at infinity by compactly supported functions. The Baum—Connes map turns out to be equivalent
to the mapK (B %, G) — K(A x, G) induced by;j¢(D) € KK(B %, G, A x, G) for the
descent homomorphisyi¥'. Clearly, if for example the morphisi® was an isomorphism then
the functor image,. (D) would be an isomorphism as well and the Baum—Connes map bijective.
Let us observe the usefulness of this approach. Assume for the momenit thkes the
particular simple formB = Ind%(F). Then the left hand side of the new formulated Baum—
Connes map is potentially computable via

(1.1) K(B %, G)=K(Ind%(F) %, G) = K(F x, H) = KK"(C, F)

by Green’s imprimitivity theorem[[12] and the Green—Julg isomorphism [15]. Arbitfary
might then be treated by homological means in triangulated categories.

In this paper we try to adapt the above method to unital, countable inverse semigtoups
The compact subgroups are then the finite subinverse semigfoups=. In a former paper,

[9], we proved a Green imprimitivity theorem I§dF) %G = F'x H (Sieben’s crossed product
[28]) for suchH's. Together with the Green—Julg isomorphism for inverse semigroups we get an
analog identity tol). The next fundamental step is to show that Kasparov’s cafegdry

is a triangulated category. Most of this goes literally through as in Meyer and Nest's paper
[23], and we collect the definitions and facts in Secfipn 6. However, there is one exception. To
achieve that every morphism &f K¢ fits into an exact triangle, one needs a Cuntz-picture of

K K¢ by representing morphisms ashomomorphisms. This was done in group equivariant

K K-theory by Meyerl[[22], and we adapt his proof in Sec{ipn 5. One problem is that we need
a model of a compatiblé*(G)-space, and to construct it we need to impose a transparent (see
Lemmd5.11), but properly restricting condition 6hwhich we call E-continuity.

The next step is to define an induction functorfnd K K — K K¢ for finite subinverse
semigroups? C G. We do this in Sectiop|4. In Sectiph 2 we recall the definitiong(df “-
theory and fix other notions we shall need. In Sec@on 3 we discuss Bott periodicikyAoT.

In Sectio@ we believed that we had defined a Dirac elerfeat K K“( P, C) by an adaption
of the corresponding proof in [23]. Unfortunately, however, when finishing this paper closely
in this form, we have realized that we had a flaw in the proof of the fundamental identity

(1.2) KK%(Ind% A,B) =~ KK"(A Reé B),
which holds for discrete groups, see line (20)[in/[23]. It is even wrong, see Rémark 4.1. On a
sufficiently big subcategory there exists a right adjoint functor t§;lbgl theoretical results of

Neeman, see Definitidn 8.5, but it is not the restriction functor. We have no concrete realization
of it and consequently we cannot analyse it like the restriction functor.
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Nevertheless, in the last Sect{gn 9 we shall work with the correct right adjoint functor instead
of the restriction functor and prove the existence of a Dirac morphism under assumptions on
the inverse semigroup which evidently hold for discrete groups at least, see Proposjtion 9.2. We
remark that the existence of the Dirac morphism is the main obstacle. After having it, one could
easily construct a Baum—Connes map as in [23], see Rémark 9.1.

In the meanwhile, we have computed a right adjoint functor for the induction functor for a
special subclass @f-algebras called fibere@-algebras in[2] and established a Baum—Connes
map for them. This is however not the complete solution to the Baum—Connes map, as fibered
G-algebras are nak K “-equivalent to such important exampleséflgebras likeCy(X).

Also, in the meanwhile we have verified th&@tcontinuous inverse semigroups are exactly
those whose associated groupoid is Hausdorff, [See [4]. This strengthens that the technical as-
sumptions of Proposition 9.2 might be fulfilled féf-continuous inverse semigroups as we
would expect the existence of such a Baum—Connes map in that case.

On the way of our attempt of proving the existence of a Dirac morphism we also showed
a number of lemmas in connection with restriction and induction functors which might be of
independent interest and are collected in Secfipns Tjand 8.

2. G-EQUIVARIANT K K-THEORY

Let G denote a countable unital inverse semigroup. We wxité&) (or simply E) for the
set of projections of7. We shall denote the involution o both byg — ¢* andg — ¢!
(determined byjg—'g = g). A semigroup homomorphism is said to lgital if it preserves the
identity 1 € G and the zero elemeiit € G providedG has such elements, respectively. We
considerG-equivariantK K -theory as defined in_[6] (in its final form in Section 7 of [6]) but
make a slight adaption by making this theegmpatiblan the following sense. We require that
all G-Hilbert A, B-bimodulesE of Kasparov cycles satisfy(a)é = ae(§) andée(b) = e(£)b
foralle € E.a € A,b € Band¢ € £. Since the only constructions of Hilbert moduleslin [6]
out of given ones are done by forming tensor products, direct sums, or taking the Hilbert mod-
ule C, and these constructions respect these modifications, we readily can accept this modified,
compatibleK K “-theory to hold true with all its properties like the existence of the Kasparov
product as in[[6]. Since the additional properties of inverse semigroups as compared to semi-
multiplicative sets in([6] slightly simplify the formal definitions of equivaridtif{-theory (see
for instance([7, Corollary 4.6]), we are going to recall the polished definitions for convenience
of the reader.

Definition 2.1. A G-algebra (A, «) is aZ/2-gradedC*-algebraA with a unital semigroup
homomorphismx : G — End(A) such thaty, respects the grading angd,-: (z)y = zay,-1(y)
forall z,y € Aandg € G.

Definition 2.2. A G-Hilbert B-modulef is aZ/2-graded Hilbert module over &-algebra
(B, ) endowed with a unital semigroup homomorphigim— Lin(&) (linear maps ort)
such thatl/, respects the grading anit, (&), Uy(n)) = 5,((&, 7)), Uy(€b) = U(€)B,(b), and
Ugg1(§)b = E€B,-1(b) forallg € G,&,n € € andb € B.

In the last definition//,,-: is automatically a self-adjoint projection in the centert),
and the actiorG — End(L(E)), 9(T') = U,TU,-1 turns L(E) to aG-algebra § € G and
T € L(€)). A G-algebra(A, «) is a G-Hilbert module over itself under the inner product
(a,by = a*bandU := § := «in the last definition. A~-homomorphism betweefi-algebras
is calledG-equivariantif it intertwines theG-action. Usually the~-action on aG-algebra is
denoted byy(a) := «o4(a). The complex number€ are endowed with the trivialz-action
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g(l) = 1forall g € G. A G-Hilbert A, B-bimoduleover G-algebrasA and B is a G-Hilbert
B-module€ equipped with a7 -equivariant~-homomorphismd — L(E).

Definition 2.3. Let A and B be G-algebras. We define a Kasparov cy(fe T'), where€ is a
G-Hilbert A, B-bimodule, to be an ordinary Kasparov cycle (withéisaction) (seel[16, 17])
satisfyingU,TU; — TUy,-1+ € {S € L(E)|aS,Sa € K(€) foralla € A} forall g € G. The
Kasparov grougl K% (A, B) is defined to be the collectidR“ (A, B) of these cycles divided
by homotopy induced b (A, B[0, 1]).

We write C¢, for the category of ungraded, separaBil@lgebras as objects anequivariant
x-homomorphisms as morphisms, aRd< ¢ for the additive category consisting of ungraded,
separabler-algebras as objects addK “ (A, B) as the morphism set from objedtto object
B, together with the Kasparov produstk (A, B) x KK%(B,(C) — KK%(A, C) as compo-
sition of morphisms. Defin€ : C}, — K K¢ to be the well known functor which is identical
on objects and satisfigs;(f) := f.(14) € KK%(A, B) for morphismsf : A — B, where
14 :=[(A,0)] € KKY(A, A) denotes the unit.

Definition 2.4 (See Definition 25 of([6]) For a o-unital G-algebraD we denote byrp :
KK%A,B) - KK%(A® D, B® D) the map induced by&,T) — (£ ® D, T ® 1).

Occasionally we shall still refer tmcompatible/X K“-theory as defined in [6] and denote
it by IK“. The class of underlying:-Hilbert modules is richer, but thé-algebras are the
same.K K¢ and their Hilbert modules are sometimes accompanied by the eoongatible to
stress the difference thix“. It is often useful to comparekK ¢ and K K¢ by the isomorphism
IK%(A,B) 2 KK%(Ax E, Bx E) from [8, Theorem 5.3] fofinite . Also remark that there
exists a canonical functdd K¢ — I K¢ defined by the identity map on cycles.

Given aG-algebraA, we denote byd x G the universal crossed product[19], and by G
Sieben’s crossed product [28]. We identify as a subset of x G, and denote by C
C x G the inverse semigroup generated @Gyand all projectiong € C x G of the form
p=-eo(l—e1)...(1—¢,)fore; € Eandn > 0. Note that every element @f is of the form
gp With g € G andp as before.

Every G-actiona on aG-algebra (orG-Hilbert module) extends to &-action by linearity,
that is, o, = agoe (a1 — ae,) ... (1 — a.,), Wherep is as before (seel[9, Lemma 2.1]). We
sometimes exten@-actions toG-actions in this way implicitly without saying. We shall also
consider discrete groupoidé C G, and we may regard them as inverse semigrddips{0} C
G with zero element in order to consistently redefine the known notidi-efjuivariantx K -
theory K K via the inverse semigroufi U {0}, where0 is understood to act always as zero.
Provided is here however that thealgebras are defined in the groupoid sense, that is, that they
are alsaC(H)-algebras, se€ [17, Definition 1.5]. (Cf. also [3].)

Let G C L C G be a subinverse semigroup. Then we have

(2.1) KKC(A,B) = KK"(A,B) = KK%(A, B)

via the identity map on cycles when using the above mentioned extens@raofions for all
G-algebrasd andB. (A G-Hilbert B-module inherits the linearly extendétaction fromB by
compatibility.) Denote byX or X the totally disconnected, locally compact Hausdorff space
such thatCy(X) is the universal commutative*-algebraC*(E) generated by the commuting
projectionsE. (Actually X is compact sincé’ is unital.) Cy(X) is endowed with thé&7-action
g(1.) = 1,4 fore € E'andg € G. EveryG-algebrad may be regarded as@, (X )-algebra
(see KasparoV [17, Section 1.5]) by Cy(X) — Z(M(A)) with 7(1.)(a) = e(a) SinceE has

a unit. Write A @ B for the balanced tensor product ¢ B divided by all elements of the
forme(a) ® b — a ® e(b) wheree € E), see Le Gall[21] or[17, Section 1.6].
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Definition 2.5. The groupoid H C G associated to a given finite subinverse semi-
group H' C G is defined to be the finite groupoi# = {hp € G|h € H'p €
E(H') is a minimal projectionh*h > p}.

Observe thalk K" (A, B) = KK (A, B) for all H'-algebras of{-algebrasd andB by the
equivalence o3, andC3;, and K K" and K K7, respectively, seé [3]. (Our notioki £’

coincides withi K’ of [3].) All subinverse semigroups @ are assumed to contain thait
of G! By regardingG as a discrete inverse semigroup, we often say compact instead of finite
subinverse semigroup.

3. BOTT PERIODICITY
This section works both ii K¢ and K K€ .

Definition 3.1. Define K KY(A, B) := KKY%(A ® C,.,, B), whereC,, ,,, denotes the Clifford
algebras of Kasparov [16, Sections 2.11 and 2.13}for. > 0. (The G-action onC,, is
trivial.)

Theorem 3.1(Bott periodicity) Let theG-action onCy(RR™) be trivial. Then

KK&,(A® Cy(R"),B) 2 KK (A,B) 2 KK (A, B® Co(R"))

Proof. The proof is a slight adaption of Kasparov's [16, 85, Theorem 7]. Note that Kasparov
discusses in his proof the “real" case to be definite, and sRb@ppears a&?? in his proof;

so we “identify" these two. In line (4) on page 547 of [16] he states that there exists elements
ﬁV € KKSpm(V)((C, C()(Rn) & Cv) andOév € KKSpm(V)(CQ(Rn) ® Cv, (C) such that

(3.1) a) By @cymmyecy v =c1;  b) By @c ay = Tgymn)ecy (¢1),

wherec, = (id,C,0) € KK""V)(C,C) is the unit element, and the Kasparov products in
(3.7) are the Kasparov's cup-cap product. As Kasparov remarks, a direct applicafiorj of (3.1) to
[16, 84, Theorem 6, 2)] yields the desired Bott periodicity [16, 85, Theorem 5].

We now regard?,, anday as elements id/-equivariantk’ K -theory K K¢ by putting them
into the canonical mags K»"V)(C, D) — KK¢%(C, D) (YC, D) by regardingSpin(V)-
Kasparov cycles a&'-Kasparov cycles via the trivial semigroup homomorphistiv : G —
Spin(V) : g — 1 (¥Yg € G). We can then also applly (3.1) (0 [16, §4, Theorem 6, 2)], but now
in the G-equivariant settings

Corollary 3.2. We haveK K%(A ® C(R?),B) = KK%(A,B) =2 KK%(A, B® C(R?)) for
all G-algebrasA and B.

Proof. The Clifford algebraCy is C, so thatK K¢ is simply K K. The result follows then
from Theorem 3]1 and the formal Bott periodicity [16, Theorem 5.5] (which works literally in
our setting as thé&'-actions on the vector spacEsappearing there are trivial), which states that
KK, is periodic inn with period2. 1

4. INDUCTION AND RESTRICTION FUNCTORS

Given a compact subinverse semigratdp C G, in [9] we defined an induced algebra and
showed Green imprimitivity theorems. This was done by switching at first frno its asso-
ciated finite subgroupoid C G, proving everything for/, and at the end switching back to
H’ in notation. Thatd was induced by an inverse semigroup was extraneous. Hence we may,
and shall, start here somewhat more generally with a finite groupoid like in Definition 4.1 below
and still can use the results from [9].
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Before we need however fix some notions. For an asse#iare let[.A] be the real number
0if Ais false, and if A is true. LetH C G be a finite subgroupoid. Set

Gu:={gpeCGlgeG peHY, gog>p}.

We endowG ; with an equivalence relatiory = h if and only if there exist$ € H such that
gt = h (g,h € Gg). We denote by /H the discrete, set-theoretical quotient®@f; by =.
The delta functior, in Cy(G ) andCy(Gy/H) is denoted by (g € G). The commutative
C*-algebras’y(Gy) andCy(Gy/H) are endowed with thé&-actiong(h) := [gh € Gg] gh,
whereg € G andh € Gy (of coursegh € Gy is equivalent tg;*g > hh*).

Definition 4.1. Let H C G be a finite subgroupoid anf a H-algebra. Define, similar as in
[18, 85 Def. 2],

Ind$(D) = {f:Gy — D|Vg€ Gy, tc Hwithgt € Gy : f(gt) =t (f(9)),
1/ (9)|l = 0forgH — coin Gy /H }.

It is a C*-algebra under the pointwise operations and the supremum’s norm and becomes a
G-algebra under thé&'-action (¢f)(h) := [¢7'h € Gu| f(g~'h) for g € G, h € Gy and
f € Ind% (D).
Definition 4.2. Let H C G be a finite subgroupoid. Define a functdf; : C% — C¢ by
TG (A) = Ind%(A) for objectsA in O3 andZ§(f) : Ind%(A) — Ind$(B) by ZG(f)(z) =
f(z(g)) for morphismsf : A — B in C%, wherez € Ind%(A) andg € Gy.
Lemma 4.1. The functor Z§ is exact, and canonically intertwines direct sums (i.e.
Ind%; (D, Ai) = €, Ind%;(A,)), tensoring with a nuclea€'*-algebra B such that:(A @ B) =
e(A) @ Bforall e € E (i.e. more preciselyI5((A ® B, 7)) = (Z5(A) ® B, ), wherer is
a given H-action andd is a suitable chosefy-action), and the mapping cone (s¢e {6.1)) (i.e.
IndS; (cone( f)) = cone(Ind$ (f))).

Proof. The proof is straightforward, only the tensor product needs discussion. Ignoring any
G-action onZ; (D), we have as-isomorphismg : @, g*9(D) — I{(D) by ¢(d)(gh) =
h=Y(d(g)) forallg € X C Gy, h € H such thayh € Gy, and whereX is a fixed complete
system of representatives 6f;/H. HenceZI5(A @ B) = TG (A) @ B without G-action. We
choose now such that this isomorphism becom@s=quivariant.u

DefineCy(Gy/H, B) to be theG-invariant ideal ofC,(Gy/H) ® B which is the closure of
the linear span of all elements of the foin® gg*(b) (9 € Gy,b € B). Similarly, denote by
p € Z(L(Ind%(A) @ B)) (center) the central projectigng ® a ® b) := g ® a ® gg*(b) for
g € Gg,a € g*g(A) andb € B. We have a direct sum decomposition

(4.1) Ind%(A)® B = p(Ind%(4) ® B) & (1 —p)(Indf(4) ® B),
and we denote the first summand (and ideal) by, i) ® B.

Lemma 4.2 (Cf. line (17) in [23]) Let B be aG-algebra andH C G a finite subgroupoid.
Then there is &-equivariantx-isomorphism

O : Ind%Regl (B) — Co(Gy/H,B), O(f) = Z g®9(f(g))

9€Gu/H

for all f € Ind%Reg!(B) C Cy(Gy) ® B. (The sum is understood that we choose for every
equivalence class itvy / H exactly one arbitrary representativec Gy.)

Proof. The proof is straightforwarcds
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Lemma 4.3(CH. line (16) in [23]) Let H C G be a finite subgroupoid4 a H-algebra andB
a G-algebra. Then there is &-equivariantx-isomorphism

O : Ind%; (A @7 Regl(B)) — Ind%(A) @ B, O(g®a®b) =g a® g(bh)
forall g € Gy,a € g*g(A) andb € g*g(B).

Proof. The tensor productt ®*# Reg! (B) denotes the balanced groupoid tensor product and
is endowed with the diagondl-action. In other words, we may regartiand Re§ (B) as
H U {0}-inverse semigroup algebras and take the usual diagonal inverse semigroup action for
the tensor product @ Xm0 Reg: % (B).

Note that we havet ®t*(a®b) = gt@t*(a) @t*(b) in Indf; (A@X" Reg:(B)) C Co(Gy)®
A® Bforallg € Gy,t € H,a € Aandb € B with gt € GGy, SO we can achieve the required
format in the argument o® when setting := ¢*g. Surjectivity of © is obvious. Tha® is
isometric is also clear as the transitigiyB — ¢B by © is ax-isomorphism g

From now on we restrict ourselves to trivially gradgealgebras.

Lemma 4.4. The functorF = Cg o Z§ from the category’;; to the additive categork K¢ is

a stable, split exact and homotopy invariant functor. (Stability meansAligt: A — A ® K)

is an isomorphism for every corner embeddjhgvhereA ® K is allowed to be equipped with
any H-action.)

Proof. By Higson [13, Section 4.4], we need to show that the fundtar C};, — Ab deter-
mined byL(B) = KK%(A,Z5(B)) for objectsB andL(f) = ZG(f). : KK"(A,IG(B))) —
KKM"(A, TG (B,)) for morphismsf : B, — B, is a stable, split exact and homotopy invariant
functor for all objects4 in K K¢ in the sense of [5]. This follows from Lemnha .1 and [5,
Proposition 1.1], which says that the functer— K K¢ (A, B) is stable, split exact and homo-
topy invariant. With respect to stability, the conditiofd ® K) = ¢(A) ® K of Lemmg 4.1 is
met by the fact that the image efis an ideal inA ® K ande is in the center of the multiplier
algebra ofA @ IC. n

Becauserl' is stable, split exact and homotopy invariant, it factors throdgk” by [5,
Theorem 1.3] and this gives us a new functor defined next. We remark that [5, Theorem 1.3]
works also for countable discrete groupoidsas pointed out in[5], by regarding U {0} as
an inverse semigroup with zero element.

Definition 4.3. Let H C G be a finite subgroupoid. We define theluction functorind$,
KK" — KK¢ as the unique functor satisfying; o Z§ = Ind% o Cy, seel[5, Theorem 1.3]
and Lemma4l4.

If H' C G is afinite subinverse semigroup then we consider its associated finite subgroupoid
H C G and define induction by Ifg := Ind; usually we regard it, however, as a functor
Ind$, : KK — KKC.

Definition 4.4. Let H C G be a subinverse semigroup Br C G a finite subgroupoid. The
restriction functorRed! : KK¢ — KK is defined by restricting-actions (orG-action for
the groupoidH) to H-actions inGG-algebras and--Hilbert modules of cycles. Additionally,
every restricted-algebra is cut-down to the form RégA) = 1;(A) in case thatH is a
groupoid (5 := >, x) or H should not contain the identity @f.

Remark 4.1. Identity ) is wrong inK K¢. Take for example a finite, unital inverse semi-
groupG where no other projection thanis connected with. SetH = {1}, andA = B =C
endowed with the trivia-action. ThenkK K¢(Ind% C, C) = 0, because a cycle, T) satisfies
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a&l(b) = aép(b) = p(a)éb = 0 for all a € Ind%(C),b € C,¢ € £ and any projectiop < 1in
E.ButKK*"(C,Redl C) = Z.

Identity ) is also wrong iNK“. Let G = E be finite and consist only of projec-
tions. Setd = {e}, wheree denotes the minimal projection gf. Then Ind;C = C
and thus/ K”(Ind% C,C) = K(C x E) = Z™ by the Green—Julg isomorphism in [8]. But
IK"(C,Red! C) = KK(C,C) = Z.

5. REALIZING MORPHISMS IN K K€ BY x-HOMOMORPHISMS

Generalizing the Cuntz picture ok K-theory, [11], to equivariants K-theory, Meyer
showed in[[22, Theorem 6.5] that for every locally compact second countable Ggfarml
for every morphismz € KKY(A, B) there existG-algebrasA’ and B’, isomorphisms
y € KK¢(A,A") andz € KK%(B,B'), and ax-homomorphismf : A’ — B’ (also inter-
preted as an morphism i ) such thatr = z o f oy~!. That is, we may rewrite morphisms
in K K¢ asx-homomorphisms. We will adapt Meyer’s proof to the case of an inverse semigroup
G (see Theorerh 5.6). To this end, we need a model fa? &H)-space, since it plays a central
role in Meyer’s work[[22]. However, a direct translation from a gra@uo an inverse semigroup
G does not work, even not if taking thf&(G) from Khoshkam and Skandalis [19], since itis a
usefulincompatibleC-module, however, we neeccampatiblemodel for/?(G), that is, a com-
patible G-Hilbert Cy(X)-modul. This is necessary as to achieve that the agtion (¢ € G)
is in the center of£(€) in all derived space§ from ¢*(G) and consequently th@-action on
L(€) is multiplicative and so & -action. Hence constructions likeA := ¢(K(GN)A) in [22]
or Definitiong 5.6 anfl 5|7 become inde@ehlgebras as required.

In the next few paragraphs (until Definitipn b.3) we shall identify elements £ with
its characteristic function, in Cy(X). Write Alg*(F) for the densex-subalgebra o’ (X)
generated by the characteristic functidngor all e € E. Moreover, write\/, f; € C* for the
pointwise supremum of a family of functiorfs: X — C. We shall use the order relation 6h
defined byy < h iff ¢ = eh for somee € E.

Definition 5.1. An inverse semigroufyr is called E-continuousf the function\/{e € E|e <
g} € C¥ is acontinuoudunction inCy(X) forall g € G.

Lemma 5.1. An inverse semigrou¥ is E-continuous if and only if for every € G there exists
a finite subsef’ C E such that\/{e € E|e < g} = \/{e € F|e < g}.

Proof. If \/{e € E|le < g} = 1x € Cy(X) for a clopen subsek’ C X then K must be
compact. Hencél( = | J{ carrie(1l.) C X |e € E, e < g} allows a finite subcovering, where
carrier denotes the usual carrier of a function on a locally compact space.

Definition 5.2 (CompatibleL?(G)-space) Let G be anE-continuous inverse semigroup. Write
c for the linear span of all functiong, : G — C (in the linear spac€&®) defined by

py(t) = [t<g]
for all g,t € G. Endowc with the G-actiong(y,,) = ¢, forall g,h € G. Turncto an

Alg*(FE)-module by settinge := e(¢) forall £ € cande € E. Define an Alg(E)-valued inner
product onc by

(5.1) (g n) = \[{e€ Eleg=eh, e<gg'hh'}.
The norm completion of is aG-Hilbert Cy (X )-module denoted b@(G).

We discuss the last definition. At first notice tHat,, v;,) = gg~' \/{e € E|e = ehg™'}
(observe that = ehg~" impliese < hg~'gh™'), so that byE-continuity (¢,, ¢;,) is in Co(X)
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and actually even in Al E') by Lemm&5.]1, and € E in (5.1) can be replaced by € F
for some finite subsef’ C E. The identities(g,, v,) = (g1, ¢,), (2 0nf) = (05f 0n) =
<9097 en) f ](<<Pga§0h>) = <J(<Pg),](%0h)> forallg,h,j € Gandf € FE are easy to check. We
note that) is positive definite. Indeed, assymer) = 0 forz = )" | Aip,. with nonzero

\; € Candg; € G mutually different. Choose; such that no othey; satisfies;g; " < gig; .
Hence (¢, , ¢,.) = 9;9;  but{p,., ¢, ) # g;9;  for all combinations where # k. By linear
independence of the projectioisin Alg*(E) A\; must be zero; contradiction. The last proof
also shows the following lemma.

Lemma 5.2. The vectorgyp, ),cq € EAQ(G) are linearly independent.

Definition 5.3. Let £ be aG-Hilbert B-module. Ther2(G, £) := 2(G) @~ € is aG-Hilbert
B-module, wherexX denotes the’;( X )-balanced exterior tensor product as defined by Le
Gall [21, Definition 4.2] (or in this case equivalently, the internal tensor progugty)).

Everywhere in[[22] we have to repladé(G) (see[22, Section 2]) b@(G) andL*(G, &)
(seel[22, Section 2.1.1]) @(G, £). These definitions have to go further.
Definition 5.4. Every separablé’-Hilbert space in Meyer [22] has to be replaced by a count-
ably generated--Hilbert Cy( X )-module’H. Every occurrence of the Hilbert spa€ein [22]
has to be substituted by tli&Hilbert Cy (X )-moduleCy(X). For everyG-Hilbert B-module or
G-algebrag, (?(H) ® £ in [22] has to be replaced by the compatible tensor proth(et) X £,
and likewiseK (H) @ € in [22] by K(H) @X £.

In the beginning of Section 3 of [22] we have the following adaption.

Definition 5.5. Let A and B be o-unital G,-C*-algebras and let{ be a countably generated
Go-Hilbert Cy(X)-module. A Kasparov triplé€, ¢, F') is calledH-specialiff

() Fis aG-equivariant symmetry(g-equivariancemeans that the functiof’ : £ — &
commutes with th&-actionU, : £ — £ forall g € GG), and

(i) H®YEC Hp.
Lemma 5.3. Lemma 3.1 0J22] holds true also for an inverse semigroGp

Proof. Let (£, ¢, F') be an essential Kasparov triple fdr, B. Rather than the definitioa” :
Ce(G.E) = CG,E) (F'f)(9) = 9(F)(f(9). g € G, | € C(G, E)) in Meyer [22] we have
to use the following one. Defing’ : EAQ(G) RXE — @(G) @~ € by
Fllog®&) = 9,®g(F)(&)
forg € G, ¢ € £. We show thaf” is G-equivariant (see Definitign §.5). Fare G we have
h(F'(p, &) = hp, ©hgFg~ h™"h(€)

= g ® hg(F)((E))

= F'(h(e, ®¢)),
becausé~'h € L(€) is in the center.

We have to check that’ is anF'-connection (see [22, Section 2.5]) when writiéﬁgG, &)=
EA?(G,A) ®4 € (becausep is essential). Writer for the grading automorphisms oft and
EAQ(G,A). Let§ ==, ®a € Z?(G, A) for g € G anda € A with gg~!(a) = a without loss of
generality. Sel := T F — F'Te, : £ — EAQ(G,E) (seel22, Section 2.5]) fdfe(n) = £ @
andn € £. Then we have

Kn = ¢,@¢(a)Fn—¢,®g(F)or(a)n = ¢, @ K4(n)
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in the space?(G) @~ & for all n € £, where
K, = ¢(a)gg ' (F) — g(F)¢r(a) = [¢(a), F] + (997 (F) — g(F))é(a),

because: = gg~'(a) andgg! € L(€) is in the center and so(a)F = ¢(a)gg ' (F). Since
(€, ¢, F)isaKasparov tripleX, € K£(£). Assuming for the moment thaf, was an elementary
compact operatdf, ; for o, 8 € £, we would havek' = ¢, @045 = 0, a5 € K(E, 2(G, &)
as required. This is also true for genelg) by approximationg

Definition 5.6. Instead ofK(G)A := K(L*(G)) ® A in Proposition 3.2 (and Section 2.1.1) of
Meyer's paper[22] we have to udgG)A = K(2(G)) X A.

Note K(G)A is aG-algebra. We have also an isomorphisntealgebras
(5.2) U K(G)AXK(Z(G) ©F K(A) 2 K(2(G) @F A) = K(2(G, A))

as used in[[22, Proposition 3.2]. This proposition goes essentially through unchanged but uses
also this lemma by Mingo and Phillips [24].

Lemma 5.4 (Cf. Lemma 2.3 of [24A].) If & and & are G-Hilbert A-modules which are iso-

morphic as HilbertA-modules ther?(G, &) and (2(G, &) are isomorphic ag>-Hilbert A-
modules.

Proof. Letu € L(&;,&;) be a unitary operator. Then it can be checked thatﬁ(G,Sl) —
@(G,EQ) given by V(p, ® &) = ¢, ® gug* (&) defines an isomorphism af-Hilbert A-
modules. Note that’” is defined likeF” in Lemm& 5.8, so we can take the equivariance proof
from there. For the inner product note that,, ¢,) = > ;. f for a finite set?” C E with
fg= fhandf < gg*hh* by Lemmg5.]L, so that

(Vip, @&, Vigren) = Y[ (fgug”f(&), fhuh®f(n))

feEF
= (p,®& 0, @)
|

The last lemma implies also the validity of an literally identical version of [24, Theorem 2.4]
(L*(G, &)™ = L*(G, A)*> G-equivariantly) in our setting by the same proof.

In [22, Lemma 4.3] some homotopy results wifit® are recalled. The canonical proofs,
using L*([0,1]) (see [14, Lemma 1.3.7]) work also inverse semigroup equivariantlyl _In [22,
Lemma 4.4] we note that we have to repldg¢F) — F)¢(a) by (9(F) — g9~ (F))d(a). We
recall thatgg— is in the center ofZ(€) so thate’ := J - £ is G-invariant because(/J - £) =
g(J) - g(&) C &'. Everything goes through unchanged.

Section 5.1 in[[22] can be ignored since we do not need itl_Ih [22, Section 5.2] we have to
replaceQ A := A x A by the compatible free produ@A := A x* A by identifyinge(a) * b and
axe(b)in Ax Aforalla,b € Aande € E. Because of this identification, the diagonal action
glay * -+ xa,) == g(ay) * ... % g(a,) tusQA to aG-algebra. The kernel of the canonical
G-equivariant--homomorphismd X A — A is denoted by;(A).

Definition 5.7. For aG-algebraA we define
K(GN)A = K(A(N)@ (2(G)@¥ A)) = K((LX(G, A)>)
(by £ := (*(N) ® € in [22, Section 2.1.1]). (Confer also (5.2).)
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In accordance to the rules of Definiti.4 we may also WIfE'N) A = K(Cp(X)>® @
(2(G) @™ A)).

In the last paragraph of the proof of [22, Proposition 5.4] one rewrites a special Kasparov
triple (€, ¢, F) as the Kasparov triple€™ & £, ¢ @ ¢, P) by using the grading of and
identifying £~ with £ via F'; P is then the flip operator. Here we need Definition| 5.5 that
commutes with the&~-action such tha¥’ restricts to az-equivariant Hilbert module isomor-
phism betweeg~ and&™, and thusp™ : A — L(ET) is G-equivariant.

Definition 5.8. For G-algebrasA and B set[A, B]; := [K(GN)A, K(GN)B], where[A, B]
denotes the homotopy group ethomomorphisms from! to B. Denote by[C(|s the category
of separablé7-algebras as objects and morphism $dtsB], between objectsl and B.

Definition 5.9. A functor F : Cf — C into a categoryC is called stable iff the map
FK(H)A) — F(K(H @ H')A) induced by the inclusiof C H & H’ is an isomorphism
for all countably generate@-Hilbert Cy(X)-modulesH, H’ and all separablé&’-algebrasA.

Note that in[22, Proposition 6.1J & L?*(GN) has to be replaced by, (X) & L*(GN).

Proposition 5.5 (Cf. Proposition 6.3 of([22]) The canonical functo€?, — K K¢ is a split
exact stable homotopy functor.

Proof. We only remark stability and may prove this likein [29, Lemma 3.1]. ConsitlandH’

as in Definitior} 5.p, and prove that the two cyclesK(H®H'),0) € K K¢(K(H), K(H&H'))

(¢ induced by the inclusiott C H®H') and(id, K(H®H')p,0) € KKE(K(H®H'), K(H))
are inverses to each other, where £(H @ H') is the canonical projection onto the first factor
H, becaus&K(H & H')p @xmy K(H @& H') = K(H @ H') viaa ® b — ab. We apply then
the compatible versiof4 of Definition[2.4 to these isomorphisms, wheves replaced by the
compatible tensor product®, to get isomorphisms wittp~* A. g

Theorem 5.6(Adaption of Theorem 6.5 of [22])Assume thatr is E-continuous. Le!l and B
separable (ungraded)-algebras. Defing,A := ¢(K(GN)A). The canonical functo€}, —
K K¢ factors through a functof : [C}], — KK¢. There is a morphism?, € [¢,A, A, (see
[22]), such thati(7%,) € K K%(q,A, A) is invertible. Then the map

A:[q,A,qsB)s — KK9(A,B),  A(f) = () o 4(f) o t(ms) ™

is a natural isomorphism. Hence the Kasparov productoR “ corresponds to the composi-
tion of homomorphisms.

By composing the functo\ with the canonical functolx K¢ — IK“ we see that we
can rewrite morphisms il K “ (A, B) which are represented by compatible cycles alse-as
homomorphisms i K -theory.

— G
6. KK 1S A TRIANGULATED CATEGORY

In this Section we recall the facts which show tlﬁé/KG is a triangulated category. Every-
thing from groups~ to inverse semigroupsS goes literally and canonically through and needs
no adaption, the only exception from this being axiom (TR1) which is essentially Th¢orem 5.6.

. . . — G
Actually we shall work with a slightly different category, the categéfy< , rather than the
categoryK K¢ as we might expect. However, both categories are equivalent.

Definition 6.1. Define [/(T(G (see 23, Section 2.1]) to be the category where the objects are
pairs (A, n) for all separablez-algebrasA andn € Z, and the morphism set between two
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objects(A, n) and(B,m) is defined to be

[/(\[/{G((Aﬂl)?(Bam)) = thKG(E"'HDA’Em'HDB).

peN

The maps in the direct limit are the maps, z) and of course we require + p,m + p > 0.
The composition of the morphisms is canonically via the Kasparov product.

By Bott periodicityT¢,r) is an isomorphism, and so we may omit the direct limit. However,
it is needed at least to make desuspension, defined next.
_— , . —~—a. —a
Definition 6.2. Define a suspension functarfrom KK to KK by X(A,n) := (A,n+1)
andX(z) = 7oy () € KKO(SmH1 4 5mirt1 B) € KK ((A,n+1), (B,m+1)) for all
v € KKG(SmP A SmB) C KK ' ((A,n), (B,m)).

— G
The desuspension functdr ' on K K is defined to precisely reverse the funciyrand we
haveX oYX ' =¥Y"1oX% = id~c, SOX is an isomorphism of categories. The canonical map

KK% — KK sendingAto (4, 0) is an equivalence of categories. Indeed, by Bott periodicity,

KKC(XA, B) @ KKY(A, B), every elementA, n) is isomorphic to soméB, 0) in KK®.
(We have(A,2n) = (A,0) and(A,2n+1) = (XA, 0).) Most of the time it is sufficient to think

—G .
of KK justaskK K¢,

: : e . — G
Having now a suspension functal, we further need distinguished triangles to tufi
into a triangulated category.

Definition 6.3. Let A and B GG-algebras. Then to an equivarianhomomorphisnyf : A — B
we associate thmapping conécf. [23, Section 2.1]), which is th€-algebra

(6.1) condf) = {(a,b) € Ax Co((0,1],B) | f(a) =b(1)}.
and themapping cone trianglewhich is the sequence of equivariaahomomorphisms

(6.2) ZB%cone(f)%A$B,
where. is the canonical inclusion (setting the coordinat® zero) and is the canonical pro-
jection ontoA.
—G
Definition 6.4. A diagramXB’ — ' — A’ — B’in KK is called arexact triangle(see[[23,

Section 2.1]) if it is isomorphic to a mapping cone tnan(6.2}df( , that is, there exists
an equivariant-homomorphisny : A — B and a commutative diagram

SB—condf) —>A-—'>p
[ L
B cr A

wherecq, 3 and~ are isomorphisms and the suspensighof 3 is of course also an isomor-
phism.

For convenience of the reader we recall the definition of extension triangles, which are exact

triangles in the sense of Def|n|t|.4, and which are technically used in the prodf fkiat
is a triangulated category.
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Definition 6.5 (Definition 2.3 in [23]) Let& : 0 — A % B % ¢ — 0 be an extension of
(G-algebras and associate to it the commuting diagram (without the indicated)map

% p

(6.3) no—— A B C

R

»C —>condp) —= B — ('

where coné) C B x Cy((0,1],C), t(c) := (0,¢), €(b,c) := b anda(a) := (i(a), )for
all ¢ € Cyp((0, 1) C b € Banda € A. The extensiort is calledadmissibleif « is an

isomorphism mKK . In this case we have an obvious morphigm= a~! o i which makes

—G
the diagram@B) to an isomorphism of exact triangle&’iR"  in the sense of Definitio@A
(since the second line is obviously a mapping cone triangle), and in this case we call the first
line of (6.3), which is an exact triangle, also tiension trianglef £.

We shall not need the following lemma but state it as an interesting observation in its own. It
is proved like in the last paragraph of [23, Section 2.3].

Lemma 6.1 (Section 2.3 in[[23]) Every exact triangle is isomorphic to an extension triangle
——G

in KK .

Proposition 6.2 (Proposition 2.1 and Appendix A of [23]5uppose thatr is E-continuous.

— G : : . .
The categoryK K endowed with the translation functat—! (the suspension functor in a
triangulated category) and exact triangles from Definition 6.4 is a triangulated category.

Proof. One of the axioms of an triangulated category, the axiom (TR1) of [26], requires that

every morphismf : A — Bin KKG fits into an exact triangl&B — C — A LB fis
actually ax-homomorphism then we may take the mapping cone triangle as an exact triangle
(see Definition§ 6|3 arld 6.4). Given a general morphfse K K¢(A, B) we rewrite it as the
image of the map\ of Theoren@ thatig = xogoy, whereg : ¢,A — ¢,B is an equivariant
x-homomorphism, and € K K%(¢q,A, A) andy € KK“(B, ¢,B) are isomorphisms if £,
and take the mapping cone trlangle for

The rest of the axioms are proved in Appendix A[of![23] directly by using canonical equi-
variantsx-homomorphisms including homotopies, and extension triangles as in Defjnitjon 6.5.
This canonical proof goes literally through also in our setting.

Like in [23], in the remainder of this paper we sloppily do not distinguish between the equiv-
—G
alent categorie& K¢ and K K and shall work practically exclusively with K¢,

7. SOME LEMMAS WITH RESTRICTION AND INDUCTION

In this section we present a mix of lemmas which deal with restriction and induction functors
and which might be of independent interest and are reminiscent to some similar computations in
the group equivariant Mackey machinery. They may be particularly interesting as they handle
equivalence relations on inverse semigroups, which are less often considered, and projections
which do not appear in groups at all. We shall often leave out notating the restriction functor
Reg; where it is obviously there for better readability.

The following Lemma 7 ]1 prepares Lemma]7.2. They deal with expressions where induction
and restriction functors come together.
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Lemma 7.1. Let U’ C G a finite subinverse semigroup 6fand U C G its associated finite
groupoid. Letl, C G be a subinverse semigroup@f Let D be G-algebra. Lety € Gy (that
iS, ¢ = gouo for somey, € G andu, € U).

Define’ as the subinverse semigroup@fgenerated by, U g, - E(U’) - g5 C G and set
M := (gg*Lgg* N gUg*)\{0} C G. Then we have an isomorphismioflgebras

0 : Indy,Re$! (D) — {f € Ind$Re$,(D) | f has carrier inLgU N Gy}
viaf(f)(lgu) = u*g*(f(lgg*)) for all f € Ind,(D),l € Landu € U.

Proof. We may writeg = gouo for someg, € G anduy, € U, and note that; gy > uo and
g*g = ug. Note thatM C L sincegg® = goupg; can be expressed i, Of course, every
element ofM has source and range projectigng*gu*g* = gg* € G,soM is a subgroupoid
(or even subgroup) of/. If there isl € L such that*l > gg* then the indicated image &f

is nonempty, if and only il*lg* = gg* € M, if and only M is nonempty, the case we are
considering now, because otherwises, correctly, the empty function. Every eleméht L’
may be written in the form

(7.1) ' = (90“198)51(90“293)12(90%98) e ln(goungé) =Ip

for someu; € E(U'), l;,l € L andp € E(L'). Then an element is i), C G if and only
if it is of the form 'gg* with I’ € L’ andl™l" > gg*. We may writel'gg* = Ip(gg*) = lgg* by
(7.7), and because the source projectiofi@f* is gg*, we also havé*l > gg*. Hence we have
obtained

(7.2) (L' ={lgg" € G|l e L, I"l > gg°}.

To show that is well defined, consider an ambiguously represented eleiyent I'gu’ €
LgU NGy forI,I' € L andu,« € U. Notice thatl*l, "I’ > gg* (because of7;), and that
source and range projectionswandu’ are the same. Thugw'*g* = [*I'gg* isin M. Hence

0(f)(l'gu') = u"g*(f(l'gg")) = u"g"(f(lguu"g"))
= u"g" (guu”g*)*(f(lg)) = ug*(f(lg)) = O(f)(lgu).

Injectivity of 0 follows from gu(0(f)(lgu)) = gg*(f(lgg*)) = f(lgg*gg*) (becausgg* €
M) and identity [(7.R). To check surjectivity & write a given; € Ind$(D) with carrier in
LgU N Gy asj = 0(f) for the f € Ind%, (D) determined byf(lgg*) := ¢(j(lg)) foralll € L
(confer also[(7]2)). In verifyind.-invariance o, we compute

0(n(f))(guo) = g*(h(f)gg")) = g"(f(h*lgg")) [hh* > lgg™T"]
= 0(f)(h"lg) [hh* > 1ggl"] = h(O(f))(lguo)
forall h,l € L.
Lemma 7.2. Let H’ a finite subinverse semigroup @Gfand H its associated finite subgroupoid

of G. Let L be a subinverse semigroup 6f Let D be aG-algebra. Then there is aii-
equivariantx-isomorphism

RegIndiRe¢! (D) = (P Reg, Ind,? Reg/*(D),
ged
whereJ C G is a subset and/, is the set\/ of Lemma 7]1 fot/’ := H'.
Proof. Say that two elementg, ¢ € Gy are L-equivalent iflg = ¢ for somel € L with

I*l > gg*. This relation is reflexive a$ € L, symmetric becaus&lg = g = [*¢’ and
l* > lgg*l* = ¢'¢’*, and transitive because = ¢’ = ["¢” impliesg = [I*I"¢"” and!"*[I*]" >
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"lgg*l*l" = 1I"1"qgg*1"*1" = gg*. Similarly, two elements iy, ¢’ € G are said to bd., H-
equivalent ifigh = ¢ for somel € L with [*] > gg¢* and somé&, € H, and this is also an
equivalence relation. Its equivalence classes are exactly of the igithn Gy C Gy (the
intersection taken i) for all g € G

For everyg € G apply Lemma 7]1 fof/’ := H’, and denot@ of Lemmg 7.1 more precisely
by 0,, the image oft, by F,, M by M, and L' by L;. Note thatF} is a L-invariant C*-
subalgebra of Ind(D). Choose from every., H-equivalence class exactly one representative
g € G and denote their collection by C G. (We remove those for which £, is empty.) Of
course, we have a canonicalsomorphism ofL-algebras

Re¢IndiRed! (D) = PF, = (DRed Indy Res/”(D),

gedJ geJ
the last isomorphism being the one induced byé}se i

The idea of the next lemmais to get rid off the I%gesarm appearing in the last lemma, where
L andL; distinguish only by projections which could not appear in a group.

Lemma 7.3. Let L C G be a finite subinverse semigroup affdC G a subset of projections.
Let L’ C G denote the subinverse semigroup generated byP. Assume that’ is E-unitary.
Let A be a finite dimensional, commutatiéalgebra. LetB be aL-algebra. Then there exists
ann > 1 and aL’-action on a (quite canonical) subalgebfzl C B™ such that

KKY(Rest, A, B) = KK (A, B).
The assignmen® — B’ commutes canonically with all (infinite) direct sums.

Proof. Note that = {ip € L'|l € L, p € E(L)}. Similarly, writing W := L', W = {Ip €
Wil e L, pe E(W)}. Leta denote thel/-action onA andj the L-action onB. Note that
A is of the formC" = Cy({1,...,n}) and so thel’-action can only cancel or permute the
factorsC. Consider the finite set(Z(1W)) C L(A) of projections, which is already a refined
pi := Y ', pi; denotes the minimal projections of the smaller projectiom$ét(L)). Choose

a selection (lift)o : {p; ;} — W such thatx o o = id, and writeg; ; := o(p; ;) for simplicity.
Also, denote byy, . . ., ¢, € W the minimal projections of/(L).

Let us be given a cyclér, £, T) in KK (A, B). We want to mirror thé¥ -structure of the
A-side to theB-side. By a well known cut-down of a cycle, we may assume without loss of
generality thatr(1) = 1.). Denote theL-action on& by . SetB; := ((¢;)B C B for
1 <7< m. Note thatB = B; & ... & B,,. (Also observe thaf has an analog, associated
decompositior = 7w(p1(1))€ & ... & w(pn(1))E by L-equivariance ofr.) Define B’ :=
@~ B" = @;~, D), Bi. Denote these summands B ;. We want to define a cycle
(7', T in KKY (A, B"). Let£ denote an identical copy &f as a graded vector space. We
define aB’-valued inner product o’ by

(& me = @i,j<7r<pi,j(1))€7W(pi,j(l))n>g € B'=®,;B;;

forall§,n € £, and thel3’-module multiplication o’ by §(®i ;b:5) := >, ;(7((pi;(1)))§)bi;
(the lasth; ; regarded inB;). Define aL’-actiony’ on&’ by +(Ip) := ~(I)w(a(p)(1)) forall I
Landp € E(L'). Becausd.' is E-unitary, the presentatiaip with p < [*/ is unique and thus
7" well-defined. Define &/-action’ on B’ by 3'(Ip)(®i,jbi ;) = ®ij1l1iziy 1ij=i181) (big )
if a(p) = piy.j, @nda(lp) has source projectign, ;, and range projectiop;, ;. We extend this
definition to al¥’-action by additivity, that isp’ (3>, . Aijlai;) = >2; ; \ij8'(lgiy) for i € L
and); ; € {0,1}.
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Noting that)_, . 7(p;;(1)) = 1), we may writeT" in matrix form (T4 j «.j)) i.5).(7.57) -
Since [T, w(p; ;(1))] € K(£), all off-diagonal elements of’ are compact operators and so
by a compact perturbation we may repldEeby its diagonal matriXI” (canceling the off-
diagonal terms of") without changing the cycle, that ifx,£,T)] = [(7,£,T")]. Note that
the identical mapC(£) N diagonal matrices— L£(&’) is an isomorphism, which restricts to a
bijectionC(€) Nndiagonal matrices- IC(E’) becauser(p; ;(1))€ = n(p; ;(1))E for all i, j. We
setr’ := m. The desired cycle ik K*' (A, B') is (7', &', T").

Let us reversely be given a cydle’, &', T") in K K" (A, B'). Definer := 7/, T := T" and&
an identical copy of’ as a graded vector space. (Note that &, ;7(p; ;(1))€ corresponding
to B’ by L'-equivariance ofr.) Set

(€ me = @ Z <7T(pi,j(1))€>W(pi,j(l))n>g/ € B=B1&...®© B,
i=1 j=1
for all §,n € &, the B-module product orf by {(;b;) == >_; >, m(pi;(1))&b; (the lastb;
regarded inB, ;), and theL-action on€ to be the restriction of thé’-action on&’. It is easy to
see that both constructed assignménts, 77) < (7', £, T") are reverses to each others. The
detailed, tedious verifications we left out in this proof are left to the reader.

The next lemma deals with the question how to removéRes

Lemma 7.4. Letp € G be a projection in the center. Theli K7%(Reé” A,Reé’ B) =
KK%(pA,pB) = KK(pA, B) = KK (A, pB).

Proof. The first isomorphism is just the identity on cycles; a cy@eT) in K K (pA,pB)
degenerates top&, pT); a pG-action extends to & action byg — pg. Also recall that
Red”(A) = pA. For the second isomorphism we decompsez pB @ (1 — p)B and note
that K K%(pA, (1 — p)B) = 0 sincep(a)§(1 — p)(b) = 0fora € A, ¢ € € andb € B, where
(&€, T)isacycle.n

The next lemma is similar to the fact that t#é-theory groupK K (C,B) = K(B) is
countable. It is immediately evidently true i -theory by the Green—Julg isomorphism
TK"(C,A) =~ K(Ax H)in[8].
Lemma 7.5. For all compact subinverse semigroups C G K K% (Reg! C, B) is countable
for all B € K K¢ and commutes with countable direct sums in the varidhle
Proof. Let f : C — Cy(Xy) be the mapf(1) = 1., wheree denotes the minimal projection
in E(H), sois also inXy. Reversely, lep : Cy(Xy) — C be the projectionp(1.) = 1. Both
f andp are G-equivariant«-homomorphisms, becaugél.) = 1,.,- = 1. sincegeg* is both
in Xz and inE(H), so must be: again. The mag* : KK (Cy(Xy), B) — KK (C,B) is
surjective ang* is injective becaus¢*p* = (pf)* = id. Hence, noting that th&'-theory of
a separabl€*-algebra is countabldy K“ (Reg! C, B) is countable since it is the image 6f
of the countable abelian group
(7.3) KK"(Co(Xn),Resi B) = K(Reg (B)xH),

where this is essentially the Green—Julg isomorphism for groupoids, see [Tu [30, Proposition
6.25], or directly apply/[3, Corollary 5.4]. Both diagrams

(7.4) P, KK"(Co(Xn), Bi) — KK"(Co(Xu), D, B;)
@ip*leai f p*[f*
@, KK (C, B)) KK"(C, 6, B))
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commute (one witlf* and another witlp*) and because the first line is an isomorphism because
of (7.3) (K-theory respects direct sums), the second line is alsopne.

8. SOME SPECIALIZED RESULTS
In this section we shall prove some specialized results with induction and restriction.
Definition 8.1. Set
CZ, == {Ind}, Reg:"...Ind% Reg:'(C) | H; C G compact subinverse,sz > 1}.
Considering for example an object@; for n = 3, we may write it as
(8.1) IndS, Reg?Ind( Ind§, C = Ind;, (D) Reg?Ind? Reg*Ind{;, C

geJ

by an application of Lemmja 71.2. Go back to Lemmg 7.1 and définé G to be the finite
subinverse semigroupU” g4, whereU” C U’ denotes the finite subinverse semigroup consist-
ing of those elements € U’ such that. commutes withu, andgug* € M U {0}. Note that
MCV since E(U’") C U” and sogyungg € V. Observe thagg* is in the center ol and
Vgg* = Vgg* = M U{0}. Write V,, for the V' of M. Continue) with

(8.2) = (P IndS;,Reg7Ind;? Reg”Reg?Indf, Reg;, C
geJ

(8.3) = P P Ind5; Reg’Ind;? Reg"Re ' Ind,7" Reg/"" C
g€J hedy .

by another application of Lemnja 7.2.

Note that every summand in (8.3) is of the form fpdi for some finite dimensional, com-
mutative H;-algebraA. (Becausdl’),, is finite by (7.2).) Similarly, by a successivefold
application of Lemm2 write I@ e Indg1 C as a countable direct sum 6f-algebras of
the form In(f," A for some finite dimensional, commutatiyg,-algebrasA.

Definition 8.2. Varying over alln > 1 andH,,..., H, C G, denote byCZ, the countable
collection of all G-algebras of the form Ir@iﬂ A as just described (where, recall,is some
finite dimensional, commutative ,-algebras).

Corollary 8.1. EveryG-algebra ofCZ; is a direct sum of7-algebras ofCZ,.

From here we shall assume tiatis E-continuous, fork K¢ to be a triangulated category
in the sense of Propositipn 6.2.

Definition 8.3. A subcategorys of a triangulated category is called atriangulated subcate-

gory (see [20, Section 4.5]) if it is nonempty, full, closed under suspension and desuspension,
and, whenever for a given exact sequeAce> B — C' — SC two objects off A, B, C'} are in

S then also the third ones is also calledhick (see[[20, Section 4.5]) if every retract (summand)

of an object inS is also inS, andlocalizing(seel[20, Section 6.2]) if it is thick and closed under
coproducts i/ .

Definition 8.4. For a clasgj of objects in7 we write (G) for the smallest localizing subcategory
of 7" containingg, cf. [23, Section 2.5].

Note that inK K¢ coproducts are direct sums, and we only allmuntabledirect sums. In
the next definition weassumehat the used results by A. Neeman hold true under this count-
ability restriction for coproducts.
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Definition 8.5. Suppose thatr is E-continuous. Fix a compact subinverse semigréup G.

Let Fy denote the set of all finite dimensional, commutativealgebras which are compact
objects of the categork K in the sense of [25, Definition 1.6]. (For instan€g,c Fy by
Lemma 7.5.) The sefFy U Fy is closed under suspension by Bott periodicity and consists
of compact objects. By [26, Proposition 8.4.1] it is a generating set#fan. Hence(Fy) is

a compactly generated triangulated category in the sense |of [25, Definition 1.7]. By Lemma
and[[25, Theorem 4.1], the restricted induction functof;ind F5) — K K* has a right
adjoint functor Righf : K K* — (Fy;) for every subinverse semigroupC G.

Note that ifG is a discrete group then Rigdhis just the ordinary restriction functor Rés

Corollary 8.2. Assume that an inverse semigradps such thatz is E-unitary, E-continuous
and the functors RigHt respect countable direct sums. (In the worst case scenari@, iff
a group, sed23].) Then for allA € CZ,, KK“(A, B) is countable for allB € KK® and
commutes with countable direct sums in the variable

Moreover, every algebra i6Z, is of the form Ind(A) for someA € Fy.

Remark 8.1. It appears natural that K’(A, B) is countable and commutes with countable
direct sums inB for all finite subinverse semigrougg C G and finite-dimensional, commuta-
tive H-algebrasA. (The Kunneth theorem comes into mind, but is difficult evendor Z /2,

see Rosenber@ [27].) But then the claim of Corolfary 8.2 would follow alone from Definition
[8.2 and the assumption that Right respects countable direct sums.

Proof of Corollary8.2.To demonstrate the proof of Corolldry B.2, assufnis one of the sum-
mands of) We go inductively from right to left in (8.3). The first algehya= Re%@’ "C
of (8.3) satlsfles the claim of Corollary 8.2 when replacihgy A, by Lemmég 7.5. The next al-

gebraA; := Ind on ' A, satisfies the clalm of Corolla 8.2 because now evidentlye 7y, ,

and we assume that R@‘Fﬂh respects countable direct sums, whergesatisfies the claim
by putting Ind to the other S|de as Right, cf. [25, Theorem 5.1]. Going back how we deduced
identity ) from Lemm2, a check shows that both expressmrﬂé; Res Re%‘g’h of )

are of the form Rés, where’ and L are the notions from Lemnja 7.1 and additiondllys
finite. But from Lemma 713 we know that

(8.4) KKY(Red, Ay, B) = KKY (A,, B)).
Since A, satisfies the assumption, %eé.g = Re{zhAg =: A; does it also because .4).

Recall thatyg* is in the center 0179 andf/;gg* = M; U {0}. (See befor2).) Consequently
we have

(8.5) KKMi(Reg” A3, Res” B) = KK" (A3, gg"B)
for everyV,-algebraB by Lemmg 7.4 and (2/1). Hence, sinde satisfies the assumption, the
algebrad, := Reé\f Az appearing |n3) doesiit also ' 5). Successively we proceed in the

same vein for the final three expressmnsf}pd?ei[ and Ianl in ) until the assumption

is verified for A. The proof for arbitraryd € CZ, is analog The last claim follows evidently
from this proof.x

9. OUTLOOK TOWARDS A POTENTIAL BAUM—CONNES MAP

In this section we shall switch from the restriction functors to the Right-functors of Definition
[8.5. We shall prove the existence of simplicial approximations and even a Dirac morphism and
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a Baum—-Connes map for all coefficient algebras under some theoretical technical assumptions
which are motivated by the last section. Because of Propositidn 6.2 it is assumed ighat
E-continuous.

Let Fy be the set of Definiti05 or any other countable set of compact objedtsgdf;
by Definition[8.5 there exists a right adjoint functor Rigtior IndS.

We are going to introduce analogous set€1p andCZ, of the last section by replacing the
Res-functors by the Right-functors. As a motivation for the next definition also recall Corollary
B.2.

Definition 9.1. Let us be given &--algebraZ. Set
CJy == {Ind% Right"...Ind% Rights'(Z) | H; C G comp. sub. s.n > 1}

andC.7, the countable set of objects of the form jpd, whereH is a finite subinverse semi-
group ofG andA € Fy.

The following corollary is a slight modification of Brown'’s representability theorem.

Corollary 9.1 (Cf. Lemma 6.3 of([28]) Assume that for ald € C.J, K K“(A, B) is countable
for all B € KK and commutes with countable direct sums in the varidhleThen for any
objectB in K K¢ there exist an objedB in (C.7,) and a morphisny € K K%(B, B) such that
fo : KKS(A,B) - KK%(A, B) (f.(z) := f oxforz € KK%(A, B)) is an isomorphism for
all objectsA in (CJp).

Definition 9.2 (Cf. Definition 4.1 of [23]) An objectA in K K¢ is calledcompactly induced
if there exists an objed® in K K“ and a compact subinverse semigradiigc G such that4 is
isomorphic to Iné(B) in K K. The full subcategory of K¢ of compactly induced objects
is denoted by’ 7.

Definition 9.3 (Cf. Definition 4.5 of [23]) Let Z be aG-algebra. AC 7-simplicial approxima-
tion for Z is an elemenf ¢ K K¢(B, Z) for some object3 in (C.7) such that Right(f) is
invertible in K K for all compact subinverse semigroufisof G. If Z = Cy(X) we particu-
larly call f aDirac morphism

As a motivation for the assumptions of the next proposition recall the analogous results Corol-
laries| 8.1 anfi 8]2 and Remark]8.1. Also note that the right adjoint furkfaof [2] commutes
with direct sums and satisfidg? (s(F)) € Fg for H finite.

Proposition 9.2(Cf. Proposition 4.6 of [23]) Assume thaf is an E-continuous inverse semi-
group andZ a G-algebra such that the following assumptions hold true (for example, they hold
true if G is a discrete group (where Righkt Res),Z = C and Fy = {C}):

(@) Assume thak’ K1 (A, B) is countable and commutes with countable direct sunds fior
all finite subinverse semigroug$ of G and A € Fy (see Def[ 8)5).

(b) Assume that the Right-functors commute with countable direct sums.

(c) Assume that Right Z) € Fy for all finite subsemigroup#l of G.

(d) Suppose that every object@f; can be expressed as a countable direct sum of objects of
CJ, up to K K%-equivalence.

ThenZ has aC.7-simplicial approximation.

Proof. Assume without loss of generality that for evetyc Fy, Ind2A € CJ, appears as
a summand of som& € CJ; if not so, simply restrictF; to a smaller set. Notice that our
assumptions imply the validity of the assumption of Corol[ary 9.1, see Rgmark 8.1.

Apply Corollary toB := Z and obtain an objec? € (C.7;) € KK“ and a morphism
D e KK%(P, Z) (whereP := B andD := f from Corollar) such that

(9.1) D,: KKC%(A,P)— KKC%(A,Z)
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is a group isomorphism for all € (C7,). We want to show that RigHt D) is an isomorphism
for every compact subinverse semigradf G (see Definitiofi 913); so fix any sudti. To this
end it is sufficient to show that both induced group homomorphisms

Right? (D), : K K (Right? P,Right? P) — K K" (Right? P, Right? 7)
and

Right? (D). : K K (Right? Z,Right? P) — KK (Right? Z Right: 7)
are isomorphisms. For verifying that the first stated Rigli). is an isomorphism it is suffi-
cient to show that

(9.2) Right} (D). : K K" (Right? A, Right? P) — K K" (Righti A, Rightd 2)

is an isomorphism for all € CJ, because’ € (CJo).
We consider first the case thdt € C7,. Applying on both ends of (9/2) the adjointness
relation between Ind and Righf, (9.2) turns to

(9.3) D, : KK¢(Ind$Right? A, P) — K K%(Ind%Right A, 7).

But since In§/Right? A is in C7;, and hence a countable direct sum of object€ i by
assumption, IngRight? A is also in(CJ,) by Definitions 8.8 anfl 8|4, and hen¢e {9.3) and so

(9.9) are isomorphisms bl (9.1).
We may writeA = P, B; K K%-equivalently by assumption, whef& € CJ,. The canon-

ical injection and projection RightB; Z Right? A EN Right?} B, to thejth coordinate satisfy
id = (fp)* = p*f*, and an analog diagram as n (7.4) shows that the isomorphism (9.2) is also
an isomorphism foA := B;. By varying over allA € C7, and all coordinate projections we
see that{(9]2) is an isomorphism for dlle C 7.

That the second homomorphism RIghD), is an isomorphism follows fronj (9.1) applied
to A := Ind§Right? Z € CJy. 1

The last proposition might offer a chance for defining a Baum—Connes map:

Remark 9.1. If the assumptions of Propositign 9.2 hold true for an inverse semigroup and
Z = Cy(X) then its application yields@7 -simplicial approximation and thus a Baum—Connes
map for all coefficient algebragd (by tensoring & .7-simplicial approximationD for Cy(X)

with A, that is, formingD @ (X) A): see [23] or([2, Section 10] for the concept. Thaum—
Connes mapith coefficient algebral is then defined to be the homomorphigfiBxG) —
K(AXG) (Sieben’s crossed product) induced by taking the Kasparov product with the element

—

j¢(D) € KK(BXG, AxG) (descent homomorphism) for ady7-simplicial approximation
D e KK(B,A)of A,
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