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2 B. BURGSTALLER

1. I NTRODUCTION

In [23], Meyer and Nest found an alternative description of the Baum–Connes map

lim
Y⊆EG

KK(C0(Y ), A) → K(Aor G)

with coefficients [1], whereG denotes a locally compact, second countable group andA aG-
algebra. (It was even achieved for groupoids of the formGnX.) Fundamental for this approach
is a work by Chabert and Echterhoff [10], and the nontrivial “observation" that Kasparov’s
categoryKKG may be viewed as a triangulated category. By using Brown’s representability
theorem for triangulated categories [25], a weakly isomorphic, so-called Dirac elementD ∈
KKG(B,A) is constructed such thatB is aG-algebra in the localizing subcategory ofKKG

generated byG-algebras of the form IndGH(F ) (induction in the sense of Green [12]) for a
compact subgroupH ⊆ G andH-algebraF . If G is compact then one will chooseB =
IndG

G(A) = A andD = id, and for non-compactG one hopes that the compactly induced
algebras approximateA sufficiently enough viaD, like one approximates functions vanishing
at infinity by compactly supported functions. The Baum–Connes map turns out to be equivalent
to the mapK(B or G) → K(A or G) induced byjG

r (D) ∈ KK(B or G,A or G) for the
descent homomorphismjG

r . Clearly, if for example the morphismD was an isomorphism then
the functor imagejr(D) would be an isomorphism as well and the Baum–Connes map bijective.

Let us observe the usefulness of this approach. Assume for the moment thatB takes the
particular simple formB = IndG

H(F ). Then the left hand side of the new formulated Baum–
Connes map is potentially computable via

(1.1) K(B or G) = K
(
IndG

H(F ) or G
) ∼= K(F or H) ∼= KKH(C, F )

by Green’s imprimitivity theorem [12] and the Green–Julg isomorphism [15]. ArbitraryB
might then be treated by homological means in triangulated categories.

In this paper we try to adapt the above method to unital, countable inverse semigroupsG.
The compact subgroups are then the finite subinverse semigroupsH ⊆ G. In a former paper,
[9], we proved a Green imprimitivity theorem IndG

H(F )ôG ∼= F ôH (Sieben’s crossed product
[28]) for suchHs. Together with the Green–Julg isomorphism for inverse semigroups we get an
analog identity to (1.1). The next fundamental step is to show that Kasparov’s categoryKKG

is a triangulated category. Most of this goes literally through as in Meyer and Nest’s paper
[23], and we collect the definitions and facts in Section 6. However, there is one exception. To
achieve that every morphism ofKKG fits into an exact triangle, one needs a Cuntz-picture of
KKG by representing morphisms as∗-homomorphisms. This was done in group equivariant
KK-theory by Meyer [22], and we adapt his proof in Section 5. One problem is that we need
a model of a compatiblè2(G)-space, and to construct it we need to impose a transparent (see
Lemma 5.1), but properly restricting condition onG which we callE-continuity.

The next step is to define an induction functor IndG
H : KKH → KKG for finite subinverse

semigroupsH ⊆ G. We do this in Section 4. In Section 2 we recall the definitions ofKKG-
theory and fix other notions we shall need. In Section 3 we discuss Bott periodicity forKKG.
In Section 9 we believed that we had defined a Dirac elementD ∈ KKG(P,C) by an adaption
of the corresponding proof in [23]. Unfortunately, however, when finishing this paper closely
in this form, we have realized that we had a flaw in the proof of the fundamental identity

KKG(IndG
H A,B) ∼= KKH(A,ResHG B),(1.2)

which holds for discrete groups, see line (20) in [23]. It is even wrong, see Remark 4.1. On a
sufficiently big subcategory there exists a right adjoint functor to IndG

H by theoretical results of
Neeman, see Definition 8.5, but it is not the restriction functor. We have no concrete realization
of it and consequently we cannot analyse it like the restriction functor.

AJMAA, Vol. 17 (2020), No. 2, Art. 1, 22 pp. AJMAA

https://ajmaa.org


ATTEMPTS TO DEFINE ABAUM –CONNES MAP 3

Nevertheless, in the last Section 9 we shall work with the correct right adjoint functor instead
of the restriction functor and prove the existence of a Dirac morphism under assumptions on
the inverse semigroup which evidently hold for discrete groups at least, see Proposition 9.2. We
remark that the existence of the Dirac morphism is the main obstacle. After having it, one could
easily construct a Baum–Connes map as in [23], see Remark 9.1.

In the meanwhile, we have computed a right adjoint functor for the induction functor for a
special subclass ofG-algebras called fiberedG-algebras in [2] and established a Baum–Connes
map for them. This is however not the complete solution to the Baum–Connes map, as fibered
G-algebras are notKKG-equivalent to such important examples ofG-algebras likeC0(X).

Also, in the meanwhile we have verified thatE-continuous inverse semigroups are exactly
those whose associated groupoid is Hausdorff, see [4]. This strengthens that the technical as-
sumptions of Proposition 9.2 might be fulfilled forE-continuous inverse semigroups as we
would expect the existence of such a Baum–Connes map in that case.

On the way of our attempt of proving the existence of a Dirac morphism we also showed
a number of lemmas in connection with restriction and induction functors which might be of
independent interest and are collected in Sections 7 and 8.

2. G-EQUIVARIANT KK-THEORY

Let G denote a countable unital inverse semigroup. We writeE(G) (or simplyE) for the
set of projections ofG. We shall denote the involution onG both byg 7→ g∗ andg 7→ g−1

(determined bygg−1g = g). A semigroup homomorphism is said to beunital if it preserves the
identity 1 ∈ G and the zero element0 ∈ G providedG has such elements, respectively. We
considerG-equivariantKK-theory as defined in [6] (in its final form in Section 7 of [6]) but
make a slight adaption by making this theorycompatiblein the following sense. We require that
all G-Hilbert A,B-bimodulesE of Kasparov cycles satisfye(a)ξ = ae(ξ) andξe(b) = e(ξ)b
for all e ∈ E, a ∈ A, b ∈ B andξ ∈ E . Since the only constructions of Hilbert modules in [6]
out of given ones are done by forming tensor products, direct sums, or taking the Hilbert mod-
uleC, and these constructions respect these modifications, we readily can accept this modified,
compatibleKKG-theory to hold true with all its properties like the existence of the Kasparov
product as in [6]. Since the additional properties of inverse semigroups as compared to semi-
multiplicative sets in [6] slightly simplify the formal definitions of equivariantKK-theory (see
for instance [7, Corollary 4.6]), we are going to recall the polished definitions for convenience
of the reader.

Definition 2.1. A G-algebra (A,α) is a Z/2-gradedC∗-algebraA with a unital semigroup
homomorphismα : G→ End(A) such thatαg respects the grading andαgg−1(x)y = xαgg−1(y)
for all x, y ∈ A andg ∈ G.

Definition 2.2. A G-Hilbert B-moduleE is a Z/2-graded Hilbert module over aG-algebra
(B, β) endowed with a unital semigroup homomorphismG → Lin(E) (linear maps onE)
such thatUg respects the grading and〈Ug(ξ), Ug(η)〉 = βg(〈ξ, η〉), Ug(ξb) = Ug(ξ)βg(b), and
Ugg−1(ξ)b = ξβgg−1(b) for all g ∈ G, ξ, η ∈ E andb ∈ B.

In the last definition,Ugg−1 is automatically a self-adjoint projection in the center ofL(E),
and the actionG → End(L(E)), g(T ) = UgTUg−1 turnsL(E) to aG-algebra (g ∈ G and
T ∈ L(E)). A G-algebra(A,α) is aG-Hilbert module over itself under the inner product
〈a, b〉 = a∗b andU := β := α in the last definition. A∗-homomorphism betweenG-algebras
is calledG-equivariantif it intertwines theG-action. Usually theG-action on aG-algebra is
denoted byg(a) := αg(a). The complex numbersC are endowed with the trivialG-action
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4 B. BURGSTALLER

g(1) = 1 for all g ∈ G. A G-Hilbert A,B-bimoduleoverG-algebrasA andB is aG-Hilbert
B-moduleE equipped with aG-equivariant∗-homomorphismA→ L(E).

Definition 2.3. Let A andB beG-algebras. We define a Kasparov cycle(E , T ), whereE is a
G-Hilbert A,B-bimodule, to be an ordinary Kasparov cycle (withoutG-action) (see [16, 17])
satisfyingUgTU

∗
g − TUgg−1 ∈ {S ∈ L(E)| aS, Sa ∈ K(E) for all a ∈ A} for all g ∈ G. The

Kasparov groupKKG(A,B) is defined to be the collectionEG(A,B) of these cycles divided
by homotopy induced byEG(A,B[0, 1]).

We writeC∗G for the category of ungraded, separableG-algebras as objects andG-equivariant
∗-homomorphisms as morphisms, andKKG for the additive category consisting of ungraded,
separableG-algebras as objects andKKG(A,B) as the morphism set from objectA to object
B, together with the Kasparov productKKG(A,B)×KKG(B,C) → KKG(A,C) as compo-
sition of morphisms. DefineCG : C∗G → KKG to be the well known functor which is identical
on objects and satisfiesCG(f) := f∗(1A) ∈ KKG(A,B) for morphismsf : A → B, where
1A := [(A, 0)] ∈ KKG(A,A) denotes the unit.

Definition 2.4 (See Definition 25 of [6]). For a σ-unital G-algebraD we denote byτD :
KKG(A,B) → KKG(A⊗D,B ⊗D) the map induced by(E , T ) 7→ (E ⊗D,T ⊗ 1).

Occasionally we shall still refer toincompatibleKKG-theory as defined in [6] and denote
it by IKG. The class of underlyingG-Hilbert modules is richer, but theG-algebras are the
same.KKG and their Hilbert modules are sometimes accompanied by the wordcompatible, to
stress the difference toIKG. It is often useful to compareIKG andKKG by the isomorphism
IKG(A,B) ∼= KKG(AoE,BoE) from [8, Theorem 5.3] forfiniteG. Also remark that there
exists a canonical functorKKG → IKG defined by the identity map on cycles.

Given aG-algebraA, we denote byAoG the universal crossed product [19], and byAôG
Sieben’s crossed product [28]. We identifyG as a subset ofC o G, and denote bỹG ⊆
C o G the inverse semigroup generated byG and all projectionsp ∈ C o G of the form
p = e0(1− e1) . . . (1− en) for ei ∈ E andn ≥ 0. Note that every element of̃G is of the form
gp with g ∈ G andp as before.

EveryG-actionα on aG-algebra (orG-Hilbert module) extends to ãG-action by linearity,
that is,αgp = αgαe0(α1 − αe1) . . . (α1 − αen), wherep is as before (see [9, Lemma 2.1]). We
sometimes extendG-actions toG̃-actions in this way implicitly without saying. We shall also
consider discrete groupoidsH ⊆ G̃, and we may regard them as inverse semigroupsH ∪{0} ⊆
G̃ with zero element in order to consistently redefine the known notion ofH-equivariantKK-
theoryKKH via the inverse semigroupH ∪ {0}, where0 is understood to act always as zero.
Provided is here however that theH-algebras are defined in the groupoid sense, that is, that they
are alsoC0(H

(0))-algebras, see [17, Definition 1.5]. (Cf. also [3].)
LetG ⊆ L ⊆ G̃ be a subinverse semigroup. Then we have

(2.1) KKG(A,B) = KKL(A,B) = KKG̃(A,B)

via the identity map on cycles when using the above mentioned extension ofG-actions for all
G-algebrasA andB. (A G̃-HilbertB-module inherits the linearly extended̃G-action fromB by
compatibility.) Denote byX orXG the totally disconnected, locally compact Hausdorff space
such thatC0(X) is the universal commutativeC∗-algebraC∗(E) generated by the commuting
projectionsE. (ActuallyX is compact sinceE is unital.)C0(X) is endowed with theG-action
g(1e) = 1geg∗ for e ∈ E andg ∈ G. EveryG-algebraA may be regarded as aC0(X)-algebra
(see Kasparov [17, Section 1.5]) byπ : C0(X) → Z(M(A)) with π(1e)(a) = e(a) sinceE has
a unit. WriteA ⊗X B for the balanced tensor product (A ⊗ B divided by all elements of the
form e(a)⊗ b− a⊗ e(b) wheree ∈ E), see Le Gall [21] or [17, Section 1.6].
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Definition 2.5. The groupoid H ⊆ G̃ associated to a given finite subinverse semi-
group H ′ ⊆ G is defined to be the finite groupoidH = {hp ∈ G̃ |h ∈ H ′, p ∈
E(H̃ ′) is a minimal projection, h∗h ≥ p}.

Observe thatKKH′
(A,B) = KKH(A,B) for allH ′-algebras orH-algebrasA andB by the

equivalence ofC∗H′ andC∗H , andKKH′
andKKH , respectively, see [3]. (Our notionKKH′

coincides withK̂KH′ of [3].) All subinverse semigroups ofG are assumed to contain theunit
of G! By regardingG as a discrete inverse semigroup, we often say compact instead of finite
subinverse semigroup.

3. BOTT PERIODICITY

This section works both inIKG andKKG.

Definition 3.1. DefineKKG
n (A,B) := KKG(A ⊗ Cn,0, B), whereCn,m denotes the Clifford

algebras of Kasparov [16, Sections 2.11 and 2.13] forn,m ≥ 0. (TheG-action onCn,0 is
trivial.)

Theorem 3.1(Bott periodicity). Let theG-action onC0(Rn) be trivial. Then

KKG
i+n(A⊗ C0(Rn), B) ∼= KKG

i (A,B) ∼= KKG
i−n(A,B ⊗ C0(Rn))

Proof. The proof is a slight adaption of Kasparov’s [16, §5, Theorem 7]. Note that Kasparov
discusses in his proof the “real" case to be definite, and so ourRn appears asRp,q in his proof;
so we “identify" these two. In line (4) on page 547 of [16] he states that there exists elements
βV ∈ KKSpin(V )(C, C0(Rn)⊗ CV ) andαV ∈ KKSpin(V )(C0(Rn)⊗ CV ,C) such that

(3.1) a) βV ⊗C0(Rn)⊗CV
αV = c1; b) βV ⊗C αV = τC0(Rn)⊗CV

(c1),

wherec1 := (id,C, 0) ∈ KKSpin(V )(C,C) is the unit element, and the Kasparov products in
(3.1) are the Kasparov’s cup-cap product. As Kasparov remarks, a direct application of (3.1) to
[16, §4, Theorem 6, 2)] yields the desired Bott periodicity [16, §5, Theorem 5].

We now regardβV andαV as elements inG-equivariantKK-theoryKKG by putting them
into the canonical mapKKSpin(V )(C,D) → KKG(C,D) (∀C,D) by regardingSpin(V )-
Kasparov cycles asG-Kasparov cycles via the trivial semigroup homomorphismtriv : G →
Spin(V ) : g 7→ 1 (∀g ∈ G). We can then also apply (3.1) to [16, §4, Theorem 6, 2)], but now
in theG-equivariant setting.

Corollary 3.2. We haveKKG(A ⊗ C(R2), B) ∼= KKG(A,B) ∼= KKG(A,B ⊗ C(R2)) for
all G-algebrasA andB.

Proof. The Clifford algebraC0,0 is C, so thatKKG
0 is simplyKKG. The result follows then

from Theorem 3.1 and the formal Bott periodicity [16, Theorem 5.5] (which works literally in
our setting as theG-actions on the vector spacesV appearing there are trivial), which states that
KKn is periodic inn with period2.

4. I NDUCTION AND RESTRICTION FUNCTORS

Given a compact subinverse semigroupH ′ ⊆ G, in [9] we defined an induced algebra and
showed Green imprimitivity theorems. This was done by switching at first fromH ′ to its asso-
ciated finite subgroupoidH ⊆ G̃, proving everything forH, and at the end switching back to
H ′ in notation. ThatH was induced by an inverse semigroup was extraneous. Hence we may,
and shall, start here somewhat more generally with a finite groupoid like in Definition 4.1 below
and still can use the results from [9].
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6 B. BURGSTALLER

Before we need however fix some notions. For an assertionA we let [A] be the real number
0 if A is false, and1 if A is true. LetH ⊆ G̃ be a finite subgroupoid. Set

GH := {gp ∈ G̃ | g ∈ G, p ∈ H(0), g∗g ≥ p}.
We endowGH with an equivalence relation:g ≡ h if and only if there existst ∈ H such that
gt = h (g, h ∈ GH). We denote byGH/H the discrete, set-theoretical quotient ofGH by ≡.
The delta functionδg in C0(GH) andC0(GH/H) is denoted byg (g ∈ GH). The commutative
C∗-algebrasC0(GH) andC0(GH/H) are endowed with theG-actiong(h) := [gh ∈ GH ] gh,
whereg ∈ G andh ∈ GH (of course,gh ∈ GH is equivalent tog∗g ≥ hh∗).

Definition 4.1. Let H ⊆ G̃ be a finite subgroupoid andD aH-algebra. Define, similar as in
[18, §5 Def. 2],

IndG
H(D) := {f : GH → D | ∀g ∈ GH , t ∈ H with gt ∈ GH : f(gt) = t−1(f(g)),

‖f(g)‖ → 0 for gH →∞ in GH/H }.
It is a C∗-algebra under the pointwise operations and the supremum’s norm and becomes a
G-algebra under theG-action (gf)(h) := [g−1h ∈ GH ] f(g−1h) for g ∈ G, h ∈ GH and
f ∈ IndG

H(D).

Definition 4.2. Let H ⊆ G̃ be a finite subgroupoid. Define a functorIG
H : C∗H → C∗G by

IG
H(A) = IndG

H(A) for objectsA in C∗H andIG
H(f) : IndG

H(A) → IndG
H(B) by IG

H(f)(x) =
f(x(g)) for morphismsf : A→ B in C∗H , wherex ∈ IndG

H(A) andg ∈ GH .

Lemma 4.1. The functor IG
H is exact, and canonically intertwines direct sums (i.e.

IndG
H(

⊕
iAi) ∼=

⊕
i IndG

H(Ai)), tensoring with a nuclearC∗-algebraB such thate(A ⊗ B) =
e(A) ⊗ B for all e ∈ E (i.e. more precisely,IG

H((A ⊗ B, τ)) ∼= (IG
H(A) ⊗ B, θ), whereτ is

a givenH-action andθ is a suitable chosenG-action), and the mapping cone (see (6.1)) (i.e.
IndG

H(cone(f)) ∼= cone(IndG
H(f))).

Proof. The proof is straightforward, only the tensor product needs discussion. Ignoring any
G-action onIG

H(D), we have a∗-isomorphismφ :
⊕

g∈X g
∗g(D) → IG

H(D) by φ(d)(gh) =

h−1(d(g)) for all g ∈ X ⊆ GH , h ∈ H such thatgh ∈ GH , and whereX is a fixed complete
system of representatives ofGH/H. Hence,IG

H(A ⊗ B) ∼= IG
H(A) ⊗ B withoutG-action. We

choose nowθ such that this isomorphism becomesG-equivariant.

DefineC0(GH/H,B) to be theG-invariant ideal ofC0(GH/H)⊗ B which is the closure of
the linear span of all elements of the formg ⊗ gg∗(b) (g ∈ GH , b ∈ B). Similarly, denote by
p ∈ Z(L(IndG

H(A) ⊗ B)) (center) the central projectionp(g ⊗ a ⊗ b) := g ⊗ a ⊗ gg∗(b) for
g ∈ GH , a ∈ g∗g(A) andb ∈ B. We have a direct sum decomposition

IndG
H(A)⊗B ∼= p

(
IndG

H(A)⊗B
)
⊕ (1− p)

(
IndG

H(A)⊗B
)
,(4.1)

and we denote the first summand (and ideal) by IndG
H(A)

→
⊗ B.

Lemma 4.2 (Cf. line (17) in [23]). LetB be aG-algebra andH ⊆ G̃ a finite subgroupoid.
Then there is aG-equivariant∗-isomorphism

Θ : IndG
HResHG (B) −→ C0(GH/H,B), Θ(f) =

∑
g∈GH/H

g ⊗ g(f(g))

for all f ∈ IndG
HResHG (B) ⊆ C0(GH) ⊗ B. (The sum is understood that we choose for every

equivalence class inGH/H exactly one arbitrary representativeg ∈ GH .)

Proof. The proof is straightforward.
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Lemma 4.3(Cf. line (16) in [23]). LetH ⊆ G̃ be a finite subgroupoid,A aH-algebra andB
aG-algebra. Then there is aG-equivariant∗-isomorphism

Θ : IndG
H

(
A⊗XH ResHG (B)

)
−→ IndG

H(A)
→
⊗ B, Θ(g ⊗ a⊗ b) = g ⊗ a⊗ g(b)

for all g ∈ GH , a ∈ g∗g(A) andb ∈ g∗g(B).

Proof. The tensor productA ⊗XH ResHG (B) denotes the balanced groupoid tensor product and
is endowed with the diagonalH-action. In other words, we may regardA and ResHG (B) as
H ∪ {0}-inverse semigroup algebras and take the usual diagonal inverse semigroup action for
the tensor productA⊗XH∪{0} ResH∪{0}

G̃
(B).

Note that we havegt⊗t∗(a⊗b) = gt⊗t∗(a)⊗t∗(b) in IndG
H

(
A⊗XH ResHG (B)

)
⊆ C0(GH)⊗

A⊗ B for all g ∈ GH , t ∈ H, a ∈ A andb ∈ B with gt ∈ GH , so we can achieve the required
format in the argument ofΘ when settingt := g∗g. Surjectivity ofΘ is obvious. ThatΘ is
isometric is also clear as the transitiong∗gB → gB by Θ is a∗-isomorphism.

From now on we restrict ourselves to trivially gradedG-algebras.

Lemma 4.4. The functorF = CG ◦ IG
H from the categoryC∗H to the additive categoryKKG is

a stable, split exact and homotopy invariant functor. (Stability means thatF (f : A → A ⊗ K)
is an isomorphism for every corner embeddingf , whereA⊗K is allowed to be equipped with
anyH-action.)

Proof. By Higson [13, Section 4.4], we need to show that the functorL : C∗H → Ab deter-
mined byL(B) = KKG(A, IG

H(B)) for objectsB andL(f) = IG
H(f)∗ : KKH(A, IG

H(B1)) →
KKH(A, IG

H(B2)) for morphismsf : B1 → B2 is a stable, split exact and homotopy invariant
functor for all objectsA in KKG in the sense of [5]. This follows from Lemma 4.1 and [5,
Proposition 1.1], which says that the functorB 7→ KKG(A,B) is stable, split exact and homo-
topy invariant. With respect to stability, the conditione(A ⊗ K) = e(A) ⊗ K of Lemma 4.1 is
met by the fact that the image ofe is an ideal inA ⊗ K ande is in the center of the multiplier
algebra ofA⊗K.

BecauseF is stable, split exact and homotopy invariant, it factors throughKKH by [5,
Theorem 1.3] and this gives us a new functor defined next. We remark that [5, Theorem 1.3]
works also for countable discrete groupoidsH, as pointed out in [5], by regardingH ∪ {0} as
an inverse semigroup with zero element.

Definition 4.3. Let H ⊆ G̃ be a finite subgroupoid. We define theinduction functorIndG
H :

KKH → KKG as the unique functor satisfyingCG ◦ IG
H = IndG

H ◦ CH , see [5, Theorem 1.3]
and Lemma 4.4.

If H ′ ⊆ G is a finite subinverse semigroup then we consider its associated finite subgroupoid
H ⊆ G̃ and define induction by IndGH′ := IndG

H ; usually we regard it, however, as a functor
IndG

H′ : KKH′ → KKG.

Definition 4.4. Let H ⊆ G be a subinverse semigroup orH ⊆ G̃ a finite subgroupoid. The
restriction functorResHG : KKG → KKH is defined by restrictingG-actions (orG̃-action for
the groupoidH) to H-actions inG-algebras andG-Hilbert modules of cycles. Additionally,
every restrictedH-algebra is cut-down to the form ResH

G (A) = 1H(A) in case thatH is a
groupoid (1H :=

∑
x∈H(0) x) orH should not contain the identity ofG.

Remark 4.1. Identity (1.2) is wrong inKKG. Take for example a finite, unital inverse semi-
groupG where no other projection than1 is connected with1. SetH = {1}, andA = B = C
endowed with the trivialG-action. ThenKKG(IndG

H C,C) = 0, because a cycle(E , T ) satisfies
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aξ1(b) = aξp(b) = p(a)ξb = 0 for all a ∈ IndG
H(C), b ∈ C, ξ ∈ E and any projectionp < 1 in

E. ButKKH(C,ResHG C) = Z.
Identity (1.2) is also wrong inIKG. Let G = E be finite and consist only of projec-

tions. SetH = {e}, wheree denotes the minimal projection ofE. Then IndEH C ∼= C
and thusIKE(IndE

H C,C) ∼= K(C o E) ∼= Zm by the Green–Julg isomorphism in [8]. But
IKH(C,ResHG C) ∼= KK(C,C) ∼= Z.

5. REALIZING MORPHISMS IN KKG BY ∗-HOMOMORPHISMS

Generalizing the Cuntz picture ofKK-theory, [11], to equivariantKK-theory, Meyer
showed in [22, Theorem 6.5] that for every locally compact second countable groupG and
for every morphismx ∈ KKG(A,B) there existG-algebrasA′ and B′, isomorphisms
y ∈ KKG(A,A′) andz ∈ KKG(B,B′), and a∗-homomorphismf : A′ → B′ (also inter-
preted as an morphism inKKG) such thatx = z ◦ f ◦ y−1. That is, we may rewrite morphisms
inKKG as∗-homomorphisms. We will adapt Meyer’s proof to the case of an inverse semigroup
G (see Theorem 5.6). To this end, we need a model for an`2(G)-space, since it plays a central
role in Meyer’s work [22]. However, a direct translation from a groupG to an inverse semigroup
G does not work, even not if taking the`2(G) from Khoshkam and Skandalis [19], since it is a
usefulincompatibleC-module, however, we need acompatiblemodel for`2(G), that is, a com-
patibleG-Hilbert C0(X)-modul. This is necessary as to achieve that the actiongg−1 (g ∈ G)
is in the center ofL(E) in all derived spacesE from `2(G) and consequently theG-action on
L(E) is multiplicative and so aG-action. Hence constructions likeqsA := q(K(GN)A) in [22]
or Definitions 5.6 and 5.7 become indeedG-algebras as required.

In the next few paragraphs (until Definition 5.3) we shall identify elementse ∈ E with
its characteristic function1e in C0(X). Write Alg∗(E) for the dense∗-subalgebra ofC0(X)
generated by the characteristic functions1e for all e ∈ E. Moreover, write

∨
i fi ∈ CX for the

pointwise supremum of a family of functionsfi : X → C. We shall use the order relation onG
defined byg ≤ h iff g = eh for somee ∈ E.

Definition 5.1. An inverse semigroupG is calledE-continuousif the function
∨
{e ∈ E| e ≤

g} ∈ CX is acontinuousfunction inC0(X) for all g ∈ G.

Lemma 5.1. An inverse semigroupG isE-continuous if and only if for everyg ∈ G there exists
a finite subsetF ⊆ E such that

∨
{e ∈ E| e ≤ g} =

∨
{e ∈ F | e ≤ g}.

Proof. If
∨
{e ∈ E| e ≤ g} = 1K ∈ C0(X) for a clopen subsetK ⊆ X thenK must be

compact. HenceK =
⋃
{ carrier(1e) ⊆ X | e ∈ E, e ≤ g} allows a finite subcovering, where

carrier denotes the usual carrier of a function on a locally compact space.

Definition 5.2 (CompatibleL2(G)-space). LetG be anE-continuous inverse semigroup. Write
c for the linear span of all functionsϕg : G→ C (in the linear spaceCG) defined by

ϕg(t) := [t ≤ g]

for all g, t ∈ G. Endowc with theG-actiong(ϕh) := ϕgh for all g, h ∈ G. Turn c to an
Alg∗(E)-module by settingξe := e(ξ) for all ξ ∈ c ande ∈ E. Define an Alg∗(E)-valued inner
product onc by

〈ϕg, ϕh〉 :=
∨
{e ∈ E | eg = eh, e ≤ gg−1hh−1}.(5.1)

The norm completion ofc is aG-HilbertC0(X)-module denoted bỳ̂2(G).

We discuss the last definition. At first notice that〈ϕg, ϕh〉 = gg−1
∨
{e ∈ E| e = ehg−1}

(observe thate = ehg−1 impliese ≤ hg−1gh−1), so that byE-continuity〈ϕg, ϕh〉 is in C0(X)
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and actually even in Alg∗(E) by Lemma 5.1, ande ∈ E in (5.1) can be replaced bye ∈ F
for some finite subsetF ⊆ E. The identities〈ϕg, ϕh〉 = 〈ϕh, ϕg〉, 〈ϕg, ϕhf〉 = 〈ϕgf, ϕh〉 =
〈ϕg, ϕh〉f , j(〈ϕg, ϕh〉) = 〈j(ϕg), j(ϕh)〉 for all g, h, j ∈ G andf ∈ E are easy to check. We
note that (5.1) is positive definite. Indeed, assume〈x, x〉 = 0 for x =

∑n
i=1 λiϕgi

with nonzero
λi ∈ C andgi ∈ G mutually different. Choosegj such that no othergi satisfiesgjg

−1
j < gig

−1
i .

Hence,〈ϕgj
, ϕgj

〉 = gjg
−1
j but 〈ϕgi

, ϕgk
〉 6= gjg

−1
j for all combinations wherei 6= k. By linear

independence of the projectionsE in Alg∗(E) λj must be zero; contradiction. The last proof
also shows the following lemma.

Lemma 5.2. The vectors(ϕg)g∈G ⊆ ̂̀2(G) are linearly independent.

Definition 5.3. Let E be aG-HilbertB-module. Then̂̀ 2(G, E) := ̂̀2(G) ⊗X E is aG-Hilbert
B-module, where⊗X denotes theC0(X)-balanced exterior tensor product as defined by Le
Gall [21, Definition 4.2] (or in this case equivalently, the internal tensor product⊗C0(X)).

Everywhere in [22] we have to replaceL2(G) (see [22, Section 2]) bỳ̂2(G) andL2(G, E)

(see [22, Section 2.1.1]) bỳ̂2(G, E). These definitions have to go further.

Definition 5.4. Every separableG-Hilbert spaceH in Meyer [22] has to be replaced by a count-
ably generatedG-Hilbert C0(X)-moduleH. Every occurrence of the Hilbert spaceC in [22]
has to be substituted by theG-HilbertC0(X)-moduleC0(X). For everyG-HilbertB-module or
G-algebraE , `2(H)⊗E in [22] has to be replaced by the compatible tensor product`2(H)⊗X E ,
and likewiseK(H)⊗ E in [22] by K(H)⊗X E .

In the beginning of Section 3 of [22] we have the following adaption.

Definition 5.5. Let A andB beσ-unitalG2-C∗-algebras and letH be a countably generated
G2-HilbertC0(X)-module. A Kasparov triple(E , φ, F ) is calledH-specialiff

(i) F is aG-equivariant symmetry (G-equivariancemeans that the functionF : E → E
commutes with theG-actionUg : E → E for all g ∈ G), and

(ii) H⊗X E ⊆ ĤB.

Lemma 5.3. Lemma 3.1 of[22] holds true also for an inverse semigroupG.

Proof. Let (E , φ, F ) be an essential Kasparov triple forA,B. Rather than the definitionF ′ :
Cc(G, E) → Cc(G, E) ((F ′f)(g) = g(F )(f(g)), g ∈ G, f ∈ Cc(G, E)) in Meyer [22] we have
to use the following one. DefineF ′ : ̂̀2(G)⊗X E → ̂̀2(G)⊗X E by

F ′(ϕg ⊗ ξ) := ϕg ⊗ g(F )(ξ)

for g ∈ G, ξ ∈ E . We show thatF ′ isG-equivariant (see Definition 5.5). Forh ∈ G we have

h
(
F ′(ϕg ⊗ ξ)

)
= hϕg ⊗ hgFg−1h−1h(ξ)

= ϕhg ⊗ hg(F )(h(ξ))

= F ′
(
h(ϕg ⊗ ξ)

)
,

becauseh−1h ∈ L(E) is in the center.
We have to check thatF ′ is anF -connection (see [22, Section 2.5]) when writinĝ̀2(G, E) ∼=̂̀2(G,A) ⊗A E (becauseφ is essential). Writeτ for the grading automorphisms onA and̂̀2(G,A). Let ξ := ϕg ⊗ a ∈ ̂̀2(G,A) for g ∈ G anda ∈ A with gg−1(a) = a without loss of

generality. SetK := TξF − F ′Tξτ : E → ̂̀2(G, E) (see [22, Section 2.5]) forTξ(η) = ξ ⊗ η
andη ∈ E . Then we have

Kη = ϕg ⊗ φ(a)Fη − ϕg ⊗ g(F )φτ(a)η = ϕg ⊗Kg(η)
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in the spacề2(G)⊗X E for all η ∈ E , where

Kg := φ(a)gg−1(F )− g(F )φτ(a) = [φ(a), F ] +
(
gg−1(F )− g(F )

)
φτ(a),

becausea = gg−1(a) andgg−1 ∈ L(E) is in the center and soφ(a)F = φ(a)gg−1(F ). Since
(E , φ, F ) is a Kasparov triple,Kg ∈ K(E). Assuming for the moment thatKg was an elementary
compact operatorθα,β for α, β ∈ E , we would haveK = ϕg⊗θα,β = θϕg⊗α,β ∈ K(E , ̂̀2(G, E))
as required. This is also true for generalKg by approximation.

Definition 5.6. Instead ofK(G)A := K(L2(G)) ⊗ A in Proposition 3.2 (and Section 2.1.1) of
Meyer’s paper [22] we have to useK(G)A := K( ̂̀2(G))⊗X A.

NoteK(G)A is aG-algebra. We have also an isomorphism ofG-algebras

(5.2) ψ : K(G)A ∼= K
( ̂̀2(G)

)
⊗X K(A) ∼= K

( ̂̀2(G)⊗X A
)

= K
( ̂̀2(G,A)

)
as used in [22, Proposition 3.2]. This proposition goes essentially through unchanged but uses
also this lemma by Mingo and Phillips [24].

Lemma 5.4 (Cf. Lemma 2.3 of [24]). If E1 and E2 areG-Hilbert A-modules which are iso-
morphic as HilbertA-modules then̂̀2(G, E1) and ̂̀2(G, E2) are isomorphic asG-Hilbert A-
modules.

Proof. Let u ∈ L(E1, E2) be a unitary operator. Then it can be checked thatV : ̂̀2(G, E1) →̂̀2(G, E2) given byV (ϕg ⊗ ξ) := ϕg ⊗ gug−1(ξ) defines an isomorphism ofG-Hilbert A-
modules. Note thatV is defined likeF ′ in Lemma 5.3, so we can take the equivariance proof
from there. For the inner product note that〈ϕg, ϕh〉 =

∑
f∈F f for a finite setF ⊆ E with

fg = fh andf ≤ gg∗hh∗ by Lemma 5.1, so that

〈V (ϕg ⊗ ξ), V (ϕh ⊗ η)〉 =
∑
f∈F

f ⊗ 〈fgug∗f(ξ), fhuh∗f(η)〉

= 〈ϕg ⊗ ξ, ϕh ⊗ η〉.

The last lemma implies also the validity of an literally identical version of [24, Theorem 2.4]
(L2(G, E)∞ ∼= L2(G,A)∞ G-equivariantly) in our setting by the same proof.

In [22, Lemma 4.3] some homotopy results withF∞ are recalled. The canonical proofs,
usingL2([0, 1]) (see [14, Lemma 1.3.7]) work also inverse semigroup equivariantly. In [22,
Lemma 4.4] we note that we have to replace

(
g(F ) − F

)
φ(a) by

(
g(F ) − gg−1(F )

)
φ(a). We

recall thatgg−1 is in the center ofL(E) so thatE ′ := J · E is G-invariant becauseg(J · E) =
g(J) · g(E) ⊆ E ′. Everything goes through unchanged.

Section 5.1 in [22] can be ignored since we do not need it. In [22, Section 5.2] we have to
replaceQA := A ∗A by the compatible free productQA := A ∗X A by identifyinge(a) ∗ b and
a ∗ e(b) in A ∗ A for all a, b ∈ A ande ∈ E. Because of this identification, the diagonal action
g(a1 ∗ · · · ∗ an) := g(a1) ∗ . . . ∗ g(an) turnsQA to aG-algebra. The kernel of the canonical
G-equivariant∗-homomorphismA ∗X A→ A is denoted byq(A).

Definition 5.7. For aG-algebraA we define

K(GN)A := K
(
`2(N)⊗

( ̂̀2(G)⊗X A
)) ∼= K

(
(L2(G,A))∞

)
(by E∞ := `2(N)⊗ E in [22, Section 2.1.1]). (Confer also (5.2).)
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In accordance to the rules of Definition 5.4 we may also writeK(GN)A = K
(
C0(X)∞ ⊗X( ̂̀2(G)⊗X A

))
.

In the last paragraph of the proof of [22, Proposition 5.4] one rewrites a special Kasparov
triple (E , φ, F ) as the Kasparov triple(E+ ⊕ E+, φ+ ⊕ φ−, P ) by using the grading onE and
identifying E− with E+ via F ; P is then the flip operator. Here we need Definition 5.5 thatF
commutes with theG-action such thatF restricts to aG-equivariant Hilbert module isomor-
phism betweenE− andE+, and thusφ− : A→ L(E+) isG-equivariant.

Definition 5.8. For G-algebrasA andB set [A,B]s := [K(GN)A,K(GN)B], where[A,B]
denotes the homotopy group of∗-homomorphisms fromA toB. Denote by[C∗G]s the category
of separableG-algebras as objects and morphism sets[A,B]s between objectsA andB.

Definition 5.9. A functor F : C∗G → C into a categoryC is called stable iff the map
F (K(H)A) → F (K(H ⊕ H′)A) induced by the inclusionH ⊆ H ⊕ H′ is an isomorphism
for all countably generatedG-HilbertC0(X)-modulesH,H′ and all separableG-algebrasA.

Note that in [22, Proposition 6.1]C⊕ L2(GN) has to be replaced byC0(X)⊕ L2(GN).

Proposition 5.5 (Cf. Proposition 6.3 of [22]). The canonical functorC∗G → KKG is a split
exact stable homotopy functor.

Proof. We only remark stability and may prove this like in [29, Lemma 3.1]. ConsiderH andH′

as in Definition 5.9, and prove that the two cycles(ι,K(H⊕H′), 0) ∈ KKG(K(H),K(H⊕H′))
(ι induced by the inclusionH ⊆ H⊕H′) and(id,K(H⊕H′)p, 0) ∈ KKG(K(H⊕H′),K(H))
are inverses to each other, wherep ∈ L(H⊕H′) is the canonical projection onto the first factor
H, becauseK(H ⊕ H′)p ⊗K(H) K(H ⊕ H′) ∼= K(H ⊕ H′) via a ⊗ b 7→ ab. We apply then
the compatible versioñτA of Definition 2.4 to these isomorphisms, where⊗ is replaced by the
compatible tensor product⊗X , to get isomorphisms with⊗XA.

Theorem 5.6(Adaption of Theorem 6.5 of [22]). Assume thatG isE-continuous. LetA andB
separable (ungraded)G-algebras. DefineqsA := q(K(GN)A). The canonical functorC∗G →
KKG factors through a functor] : [C∗G]s → KKG. There is a morphismπs

A ∈ [qsA,A]s (see
[22]), such that](πs

A) ∈ KKG(qsA,A) is invertible. Then the map

∆ : [qsA, qsB]s → KKG(A,B), ∆(f) = ](πs
B) ◦ ](f) ◦ ](πs

A)−1

is a natural isomorphism. Hence the Kasparov product onKKG corresponds to the composi-
tion of homomorphisms.

By composing the functor∆ with the canonical functorKKG → IKG we see that we
can rewrite morphisms inIKG(A,B) which are represented by compatible cycles also as∗-
homomorphisms inIK-theory.

6. K̃K
G

IS A TRIANGULATED CATEGORY

In this Section we recall the facts which show that̃KK
G

is a triangulated category. Every-
thing from groupsG to inverse semigroupsG goes literally and canonically through and needs
no adaption, the only exception from this being axiom (TR1) which is essentially Theorem 5.6.

Actually we shall work with a slightly different category, the categorỹKK
G

, rather than the
categoryKKG as we might expect. However, both categories are equivalent.

Definition 6.1. DefineK̃K
G

(see [23, Section 2.1]) to be the category where the objects are
pairs (A, n) for all separableG-algebrasA andn ∈ Z, and the morphism set between two
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objects(A, n) and(B,m) is defined to be

K̃K
G(

(A, n), (B,m)
)

:= lim
p∈N

KKG(Σn+pA,Σm+pB).

The maps in the direct limit are the mapsτC0(R) and of course we requiren + p,m + p ≥ 0.
The composition of the morphisms is canonically via the Kasparov product.

By Bott periodicityτC0(R) is an isomorphism, and so we may omit the direct limit. However,
it is needed at least to make desuspension, defined next.

Definition 6.2. Define a suspension functorΣ from K̃K
G

to K̃K
G

by Σ(A, n) := (A, n + 1)

andΣ(x) := τC0(R)(x) ∈ KKG(Σn+p+1A,Σm+p+1B) ⊆ K̃K
G(

(A, n+ 1), (B,m+ 1)
)

for all

x ∈ KKG(Σn+pA,Σm+pB) ⊆ K̃K
G(

(A, n), (B,m)
)
.

The desuspension functorΣ−1 on K̃K
G

is defined to precisely reverse the functorΣ, and we
haveΣ ◦ Σ−1 = Σ−1 ◦ Σ = idgKK

G, soΣ is an isomorphism of categories. The canonical map

KKG → K̃K
G

sendingA to (A, 0) is an equivalence of categories. Indeed, by Bott periodicity,

KKG(Σ2nA,B) ∼= KKG(A,B), every element(A, n) is isomorphic to some(B, 0) in K̃K
G

.
(We have(A, 2n) ∼= (A, 0) and(A, 2n+1) ∼= (ΣA, 0).) Most of the time it is sufficient to think

of K̃K
G

just asKKG.

Having now a suspension functorΣ, we further need distinguished triangles to turñKK
G

into a triangulated category.

Definition 6.3. LetA andB G-algebras. Then to an equivariant∗-homomorphismf : A→ B
we associate themapping cone(cf. [23, Section 2.1]), which is theG-algebra

cone(f) := {(a, b) ∈ A× C0

(
(0, 1], B

)
| f(a) = b(1)},(6.1)

and themapping cone triangle, which is the sequence of equivariant∗-homomorphisms

(6.2) ΣB
ι // cone(f)

ε // A
f // B ,

whereι is the canonical inclusion (setting the coordinatea to zero) andε is the canonical pro-
jection ontoA.

Definition 6.4. A diagramΣB′ → C ′ → A′ → B′ in K̃K
G

is called anexact triangle(see [23,

Section 2.1]) if it is isomorphic to a mapping cone triangle (6.2) iñKK
G

, that is, there exists
an equivariant∗-homomorphismf : A→ B and a commutative diagram

ΣB
ι //

Σβ

��

cone(f)
ε //

γ

��

A
f //

α

��

B

β

��
ΣB′ // C ′ // A′ // B′

whereα, β andγ are isomorphisms and the suspensionΣβ of β is of course also an isomor-
phism.

For convenience of the reader we recall the definition of extension triangles, which are exact

triangles in the sense of Definition 6.4, and which are technically used in the proof thatK̃K
G

is a triangulated category.
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Definition 6.5 (Definition 2.3 in [23]). Let E : 0 → A
i→ B

p→ C → 0 be an extension of
G-algebras and associate to it the commuting diagram (without the indicated mapµ)

(6.3) ΣC
µ //

id

��

A
i //

α
��

B
p //

id

��

C

id

��
ΣC

ι // cone(p) ε // B
p // C

where cone(p) ⊆ B × C0((0, 1], C), ι(c) := (0, c), ε(b, c) := b andα(a) := (i(a), 0) for
all c ∈ C0((0, 1), C), b ∈ B anda ∈ A. The extensionE is calledadmissibleif α is an

isomorphism inK̃K
G

. In this case we have an obvious morphismµ := α−1 ◦ i which makes

the diagram (6.3) to an isomorphism of exact triangles iñKK
G

in the sense of Definition 6.4
(since the second line is obviously a mapping cone triangle), and in this case we call the first
line of (6.3), which is an exact triangle, also theextension triangleof E .

We shall not need the following lemma but state it as an interesting observation in its own. It
is proved like in the last paragraph of [23, Section 2.3].

Lemma 6.1 (Section 2.3 in [23]). Every exact triangle is isomorphic to an extension triangle

in K̃K
G

.

Proposition 6.2 (Proposition 2.1 and Appendix A of [23]). Suppose thatG is E-continuous.

The categoryK̃K
G

endowed with the translation functorΣ−1 (the suspension functor in a
triangulated category) and exact triangles from Definition 6.4 is a triangulated category.

Proof. One of the axioms of an triangulated category, the axiom (TR1) of [26], requires that

every morphismf : A → B in K̃K
G

fits into an exact triangleΣB → C → A
f→ B. If f is

actually a∗-homomorphism then we may take the mapping cone triangle as an exact triangle
(see Definitions 6.3 and 6.4). Given a general morphismf ∈ KKG(A,B) we rewrite it as the
image of the map∆ of Theorem 5.6, that isf = x◦g◦y, whereg : qsA→ qsB is an equivariant
∗-homomorphism, andx ∈ KKG(qsA,A) andy ∈ KKG(B, qsB) are isomorphisms inKKG,
and take the mapping cone triangle forg.

The rest of the axioms are proved in Appendix A of [23] directly by using canonical equi-
variant∗-homomorphisms including homotopies, and extension triangles as in Definition 6.5.
This canonical proof goes literally through also in our setting.

Like in [23], in the remainder of this paper we sloppily do not distinguish between the equiv-

alent categoriesKKG andK̃K
G

and shall work practically exclusively withKKG.

7. SOME LEMMAS WITH RESTRICTION AND INDUCTION

In this section we present a mix of lemmas which deal with restriction and induction functors
and which might be of independent interest and are reminiscent to some similar computations in
the group equivariant Mackey machinery. They may be particularly interesting as they handle
equivalence relations on inverse semigroups, which are less often considered, and projections
which do not appear in groups at all. We shall often leave out notating the restriction functor
ResGH where it is obviously there for better readability.

The following Lemma 7.1 prepares Lemma 7.2. They deal with expressions where induction
and restriction functors come together.
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Lemma 7.1. LetU ′ ⊆ G a finite subinverse semigroup ofG andU ⊆ G̃ its associated finite
groupoid. LetL ⊆ G be a subinverse semigroup ofG. LetD beG-algebra. Letg ∈ GU (that
is, g = g0u0 for someg0 ∈ G andu0 ∈ U (0)).

DefineL′ as the subinverse semigroup ofG generated byL ∪ g0 · E(U ′) · g∗0 ⊆ G and set
M := (gg∗Lgg∗ ∩ gUg∗)\{0} ⊆ G̃. Then we have an isomorphism ofL-algebras

θ : IndL′

MResMG (D) −→ {f ∈ IndG
UResUG(D) | f has carrier inLgU ∩GU}

via θ(f)(lgu) = u∗g∗(f(lgg∗)) for all f ∈ IndL′

M(D), l ∈ L andu ∈ U .

Proof. We may writeg = g0u0 for someg0 ∈ G andu0 ∈ U (0), and note thatg∗0g0 ≥ u0 and
g∗g = u0. Note thatM ⊆ L̃′ sincegg∗ = g0u0g

∗
0 can be expressed iñL′. Of course, every

element ofM has source and range projectiongug∗gu∗g∗ = gg∗ ∈ G̃, soM is a subgroupoid
(or even subgroup) of̃L′. If there isl ∈ L such thatl∗l ≥ gg∗ then the indicated image ofθ
is nonempty, if and only ifgl∗lg∗ = gg∗ ∈ M , if and onlyM is nonempty, the case we are
considering now, because otherwiseθ is, correctly, the empty function. Every elementl′ ∈ L′

may be written in the form

(7.1) l′ = (g0u1g
∗
0)l1(g0u2g

∗
0)l2(g0u3g

∗
0) . . . ln(g0ung

∗
0) = lp

for someui ∈ E(U ′), li, l ∈ L andp ∈ E(L′). Then an element is in(L′)M ⊆ G̃ if and only
if it is of the form l′gg∗ with l′ ∈ L′ andl′∗l′ ≥ gg∗. We may writel′gg∗ = lp(gg∗) = lgg∗ by
(7.1), and because the source projection ofl′gg∗ is gg∗, we also havel∗l ≥ gg∗. Hence we have
obtained

(7.2) (L′)M = {lgg∗ ∈ G̃| l ∈ L, l∗l ≥ gg∗}.
To show thatθ is well defined, consider an ambiguously represented elementlgu = l′gu′ ∈

LgU ∩ GU for l, l′ ∈ L andu, u′ ∈ U . Notice thatl∗l, l′∗l′ ≥ gg∗ (because ofGU ), and that
source and range projections ofu andu′ are the same. Thusguu′∗g∗ = l∗l′gg∗ is inM . Hence

θ(f)(l′gu′) = u′∗g∗
(
f(l′gg∗)

)
= u′∗g∗

(
f(lguu′∗g∗)

)
= u′∗g∗(guu′∗g∗)∗

(
f(lg)

)
= u∗g∗

(
f(lg)

)
= θ(f)(lgu).

Injectivity of θ follows from gu(θ(f)(lgu)) = gg∗(f(lgg∗)) = f(lgg∗gg∗) (becausegg∗ ∈
M ) and identity (7.2). To check surjectivity ofθ, write a givenj ∈ IndG

U (D) with carrier in
LgU ∩ GU asj = θ(f) for thef ∈ IndL′

M(D) determined byf(lgg∗) := g(j(lg)) for all l ∈ L
(confer also (7.2)). In verifyingL-invariance ofθ, we compute

θ
(
h(f)

)
(lgu0) = g∗

(
h(f)(lgg∗)

)
= g∗

(
f(h∗lgg∗)

)
[hh∗ ≥ lgg∗l∗]

= θ(f)(h∗lg) [hh∗ ≥ lgg∗l∗] = h
(
θ(f)

)
(lgu0)

for all h, l ∈ L.

Lemma 7.2. LetH ′ a finite subinverse semigroup ofG andH its associated finite subgroupoid
of G̃. Let L be a subinverse semigroup ofG. LetD be aG-algebra. Then there is anL-
equivariant∗-isomorphism

ResLGIndG
HResHG (D) ∼=

⊕
g∈J

ResLL′
g
Ind

L′
g

Mg
ResMg

G (D),

whereJ ⊆ G is a subset andMg is the setM of Lemma 7.1 forU ′ := H ′.

Proof. Say that two elementsg, g′ ∈ GH areL-equivalent iflg = g′ for somel ∈ L with
l∗l ≥ gg∗. This relation is reflexive as1 ∈ L, symmetric becausel∗lg = g = l∗g′ and
ll∗ ≥ lgg∗l∗ = g′g′∗, and transitive becauselg = g′ = l′′g′′ impliesg = l∗l′′g′′ andl′′∗ll∗l′′ ≥
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l′′∗lgg∗l∗l′′ = l′′∗l′′gg∗l′′∗l′′ = gg∗. Similarly, two elements ing, g′ ∈ GH are said to beL,H-
equivalent iflgh = g′ for somel ∈ L with l∗l ≥ gg∗ and someh ∈ H, and this is also an
equivalence relation. Its equivalence classes are exactly of the formLgH ∩ GH ⊆ GH (the
intersection taken iñG) for all g ∈ G

For everyg ∈ G apply Lemma 7.1 forU ′ := H ′, and denoteθ of Lemma 7.1 more precisely
by θg, the image ofθg by Fg, M by Mg andL′ by L′g. Note thatFg is a L-invariantC∗-
subalgebra of IndGH(D). Choose from everyL,H-equivalence class exactly one representative
g ∈ G and denote their collection byJ ⊆ G. (We remove thoseg for whichFg is empty.) Of
course, we have a canonical∗-isomorphism ofL-algebras

ResLGIndG
HResHG (D) ∼=

⊕
g∈J

Fg
∼=

⊕
g∈J

ResLL′
g
Ind

L′
g

Mg
ResMg

G (D),

the last isomorphism being the one induced by theθgs.

The idea of the next lemma is to get rid off the ResL
L′

g
-term appearing in the last lemma, where

L andL′g distinguish only by projections which could not appear in a group.

Lemma 7.3. LetL ⊆ G be a finite subinverse semigroup andP ⊆ G a subset of projections.
LetL′ ⊆ G denote the subinverse semigroup generated byL ∪ P . Assume thatL′ isE-unitary.
LetA be a finite dimensional, commutativeL′-algebra. LetB be aL-algebra. Then there exists
ann ≥ 1 and aL′-action on a (quite canonical) subalgebraB′ ⊆ Bn such that

KKL(ResL
L′ A,B) ∼= KKL′

(A,B′).

The assignmentB 7→ B′ commutes canonically with all (infinite) direct sums.

Proof. Note thatL′ = {lp ∈ L′| l ∈ L, p ∈ E(L′)}. Similarly, writingW := L̃′, W = {lp ∈
W | l ∈ L, p ∈ E(W )}. Let α denote theL′-action onA andβ theL-action onB. Note that
A is of the formCn = C0({1, . . . , n}) and so theL′-action can only cancel or permute the
factorsC. Consider the finite setα(E(W )) ⊆ L(A) of projections, which is already a refined
set of projections, and enumerate by(pi,j)1≤i≤m,1≤j≤ni

all their minimal projections, where
pi :=

∑ni

j=1 pi,j denotes the minimal projections of the smaller projection setα(E(L̃)). Choose
a selection (lift)σ : {pi,j} → W such thatα ◦ σ = id, and writeqi,j := σ(pi,j) for simplicity.
Also, denote byq1, . . . , qm ∈ W the minimal projections ofE(L̃).

Let us be given a cycle(π, E , T ) in KKL(A,B). We want to mirror theW -structure of the
A-side to theB-side. By a well known cut-down of a cycle, we may assume without loss of
generality thatπ(1) = 1L(E). Denote theL-action onE by γ. SetBi := β(qi)B ⊆ B for
1 ≤ i ≤ m. Note thatB ∼= B1 ⊕ . . . ⊕ Bm. (Also observe thatE has an analog, associated
decompositionE = π(p1(1))E ⊕ . . . ⊕ π(pm(1))E by L-equivariance ofπ.) DefineB′ :=⊕m

i=1B
ni
i =

⊕m
i=1

⊕ni

j=1Bi. Denote these summands byBi,j. We want to define a cycle
(π′, E ′, T ′) in KKL′

(A,B′). Let E ′ denote an identical copy ofE as a graded vector space. We
define aB′-valued inner product onE ′ by

〈ξ, η〉E ′ := ⊕i,j

〈
π
(
pi,j(1)

)
ξ, π

(
pi,j(1)

)
η
〉
E ∈ B′ = ⊕i,jBi,j

for all ξ, η ∈ E ′, and theB′-module multiplication onE ′ by ξ(⊕i,jbi,j) :=
∑

i,j(π((pi,j(1)))ξ)bi,j
(the lastbi,j regarded inBi). Define aL′-actionγ′ onE ′ by γ′(lp) := γ(l)π

(
α(p)(1)

)
for all l ∈

L andp ∈ E(L′). BecauseL′ isE-unitary, the presentationlp with p ≤ l∗l is unique and thus
γ′ well-defined. Define aW -actionβ′ onB′ by β′(lp)(⊕i,jbi,j) = ⊕i,j1{i=i1}1{j=j1}β(l)(bi0,j0)
if α(p) = pi0,j0 andα(lp) has source projectionpi0,j0 and range projectionpi1,j1 . We extend this
definition to aW -action by additivity, that is,β′(

∑
i,j λi,jlqi,j) :=

∑
i,j λi,jβ

′(lqi,j) for l ∈ L

andλi,j ∈ {0, 1}.
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Noting that
∑

i,j π(pi,j(1)) = 1L(E), we may writeT in matrix form (T(i,j),(i′,j′))(i,j),(i′,j′).
Since [T, π(pi,j(1))] ∈ K(E), all off-diagonal elements ofT are compact operators and so
by a compact perturbation we may replaceT by its diagonal matrixT ′ (canceling the off-
diagonal terms ofT ) without changing the cycle, that is,[(π, E , T )] = [(π, E , T ′)]. Note that
the identical mapL(E) ∩ diagonal matrices→ L(E ′) is an isomorphism, which restricts to a
bijectionK(E)∩diagonal matrices→ K(E ′) becauseπ(pi,j(1))E ∼= π(pi,j(1))E ′ for all i, j. We
setπ′ := π. The desired cycle inKKL′

(A,B′) is (π′, E ′, T ′).
Let us reversely be given a cycle(π′, E ′, T ′) in KKL′

(A,B′). Defineπ := π′, T := T ′ andE
an identical copy ofE ′ as a graded vector space. (Note thatE ∼= ⊕i,jπ(pi,j(1))E corresponding
toB′ byL′-equivariance ofπ.) Set

〈ξ, η〉E :=
m⊕

i=1

ni∑
j=1

〈
π
(
pi,j(1)

)
ξ, π

(
pi,j(1)

)
η
〉
E ′ ∈ B = B1 ⊕ . . .⊕Bm

for all ξ, η ∈ E , theB-module product onE by ξ(⊕ibi) :=
∑

i

∑
j π(pi,j(1))ξbi (the lastbi

regarded inBi,j), and theL-action onE to be the restriction of theL′-action onE ′. It is easy to
see that both constructed assignments(π, E , T ′) ↔ (π′, E ′, T ′) are reverses to each others. The
detailed, tedious verifications we left out in this proof are left to the reader.

The next lemma deals with the question how to remove RespG
G .

Lemma 7.4. Let p ∈ G be a projection in the center. ThenKKpG(RespG
G A,RespG

G B) ∼=
KKG(pA, pB) ∼= KKG(pA,B) ∼= KKG(A, pB).

Proof. The first isomorphism is just the identity on cycles; a cycle(E , T ) in KKG(pA, pB)
degenerates to(pE , pT ); a pG-action extends to aG action byg 7→ pg. Also recall that
RespG

G (A) = pA. For the second isomorphism we decomposeB ∼= pB ⊕ (1 − p)B and note
thatKKG(pA, (1 − p)B) = 0 sincep(a)ξ(1 − p)(b) = 0 for a ∈ A, ξ ∈ E andb ∈ B, where
(E , T ) is a cycle.

The next lemma is similar to the fact that theK-theory groupKK(C, B) = K(B) is
countable. It is immediately evidently true inIK-theory by the Green–Julg isomorphism
IKH(C, A) ∼= K(AoH) in [8].

Lemma 7.5. For all compact subinverse semigroupsH ⊆ G KKH(ResHG C, B) is countable
for all B ∈ KKG and commutes with countable direct sums in the variableB.

Proof. Let f : C → C0(XH) be the mapf(1) = 1e, wheree denotes the minimal projection
in E(H), so is also inXH . Reversely, letp : C0(XH) → C be the projectionp(1e) = 1. Both
f andp areG-equivariant∗-homomorphisms, becauseg(1e) = 1geg∗ = 1e sincegeg∗ is both
in XH and inE(H), so must bee again. The mapf ∗ : KKH(C0(XH), B) → KKH(C, B) is
surjective andp∗ is injective becausef ∗p∗ = (pf)∗ = id. Hence, noting that theK-theory of
a separableC∗-algebra is countable,KKH(ResHG C, B) is countable since it is the image off ∗

of the countable abelian group

KKH(C0(XH),ResHG B) ∼= K
(
ResHG (B)ôH

)
,(7.3)

where this is essentially the Green–Julg isomorphism for groupoids, see Tu [30, Proposition
6.25], or directly apply [3, Corollary 5.4]. Both diagrams

(7.4)
⊕

iKK
H(C0(XH), Bi) //

L
i f∗

��

KKH
(
C0(XH),

⊕
iBi

)
f∗

��⊕
iKK

H(C, Bi)

⊕ip
∗

OO

// KKH
(
C,

⊕
iBi

)p∗

OO
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commute (one withf ∗ and another withp∗) and because the first line is an isomorphism because
of (7.3) (K-theory respects direct sums), the second line is also one.

8. SOME SPECIALIZED RESULTS

In this section we shall prove some specialized results with induction and restriction.

Definition 8.1. Set

CI1 := {IndG
Hn

ResHn
G . . . IndG

H1
ResH1

G (C) |Hi ⊆ G compact subinverse s., n ≥ 1}.

Considering for example an object inCI1 for n = 3, we may write it as

IndG
H3

ResH3
G IndG

H2
IndG

H1
C = IndG

H3

⊕
g∈J

ResH3

L′
g
Ind

L′
g

Mg
ResMg

G IndG
H1

C(8.1)

by an application of Lemma 7.2. Go back to Lemma 7.1 and defineV ⊆ G to be the finite
subinverse semigroupg0U

′′g∗0, whereU ′′ ⊆ U ′ denotes the finite subinverse semigroup consist-
ing of those elementsu ∈ U ′ such thatu commutes withu0 andgug∗ ∈ M ∪ {0}. Note that
M ⊆ Ṽ sinceE(U ′) ⊆ U ′′ and sog0u0g

∗
0 ∈ Ṽ . Observe thatgg∗ is in the center of̃V and

Ṽ gg∗ = V gg∗ = M ∪ {0}. WriteVg for theV of Mg. Continue (8.1) with

=
⊕
g∈J

IndG
H3

ResH3

L′
g
Ind

L′
g

Mg
ResMg

Vg
ResVg

G IndG
H1

ResGH1
C(8.2)

=
⊕
g∈J

⊕
h∈Jg

IndG
H3

ResH3

L′
g
Ind

L′
g

Mg
ResMg

Vg
ResVg

L′
g,h

Ind
L′

g,h

Mg,h
Res

Mg,h

G C(8.3)

by another application of Lemma 7.2.
Note that every summand in (8.3) is of the form IndG

H3
A for some finite dimensional, com-

mutativeH3-algebraA. (Because(L′)M is finite by (7.2).) Similarly, by a successiven-fold
application of Lemma 7.2 write IndGHn

. . . IndG
H1

C as a countable direct sum ofG-algebras of
the form IndGHn

A for some finite dimensional, commutativeHn-algebrasA.

Definition 8.2. Varying over alln ≥ 1 andH1, . . . , Hn ⊆ G, denote byCI0 the countable
collection of allG-algebras of the form IndGHn

A as just described (where, recall,A is some
finite dimensional, commutativeHn-algebras).

Corollary 8.1. EveryG-algebra ofCI1 is a direct sum ofG-algebras ofCI0.

From here we shall assume thatG is E-continuous, forKKG to be a triangulated category
in the sense of Proposition 6.2.

Definition 8.3. A subcategoryS of a triangulated categoryT is called atriangulated subcate-
gory (see [20, Section 4.5]) if it is nonempty, full, closed under suspension and desuspension,
and, whenever for a given exact sequenceA→ B → C → SC two objects of{A,B,C} are in
S then also the third one.S is also calledthick(see [20, Section 4.5]) if every retract (summand)
of an object inS is also inS, andlocalizing(see [20, Section 6.2]) if it is thick and closed under
coproducts inT .

Definition 8.4. For a classG of objects inT we write〈G〉 for the smallest localizing subcategory
of T containingG, cf. [23, Section 2.5].

Note that inKKG coproducts are direct sums, and we only allowcountabledirect sums. In
the next definition weassumethat the used results by A. Neeman hold true under this count-
ability restriction for coproducts.
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Definition 8.5. Suppose thatG isE-continuous. Fix a compact subinverse semigroupH ⊆ G.
Let FH denote the set of all finite dimensional, commutativeH-algebras which are compact
objects of the categoryKKH in the sense of [25, Definition 1.6]. (For instance,C ∈ FH by
Lemma 7.5.) The setΣFH ∪ FH is closed under suspension by Bott periodicity and consists
of compact objects. By [26, Proposition 8.4.1] it is a generating set for〈FH〉. Hence〈FH〉 is
a compactly generated triangulated category in the sense of [25, Definition 1.7]. By Lemma
4.1 and [25, Theorem 4.1], the restricted induction functor IndL

H : 〈FH〉 → KKL has a right
adjoint functor RightHL : KKL → 〈FH〉 for every subinverse semigroupL ⊆ G.

Note that ifG is a discrete group then RightH
L is just the ordinary restriction functor ResH

L .

Corollary 8.2. Assume that an inverse semigroupG is such thatG isE-unitary,E-continuous
and the functors RightH

L respect countable direct sums. (In the worst case scenario, ifG is
a group, see[23].) Then for allA ∈ CI0, KKG(A,B) is countable for allB ∈ KKG and
commutes with countable direct sums in the variableB.

Moreover, every algebra inCI0 is of the form IndGH(A) for someA ∈ FH .

Remark 8.1. It appears natural thatKKH(A,B) is countable and commutes with countable
direct sums inB for all finite subinverse semigroupsH ⊆ G and finite-dimensional, commuta-
tiveH-algebrasA. (The Künneth theorem comes into mind, but is difficult even forG = Z/2,
see Rosenberg [27].) But then the claim of Corollary 8.2 would follow alone from Definition
8.2 and the assumption that Right respects countable direct sums.

Proof of Corollary 8.2.To demonstrate the proof of Corollary 8.2, assumeA is one of the sum-
mands of (8.3). We go inductively from right to left in (8.3). The first algebraA1 := Res

Mg,h

G C
of (8.3) satisfies the claim of Corollary 8.2 when replacingA byA1 by Lemma 7.5. The next al-

gebraA2 := Ind
L′

g,h

Mg,h
A1 satisfies the claim of Corollary 8.2 because now evidentlyA1 ∈ FMg,h

and we assume that Right
Mg,h

L′
g,h

respects countable direct sums, whenceA2 satisfies the claim

by putting Ind to the other side as Right, cf. [25, Theorem 5.1]. Going back how we deduced
identity (8.3) from Lemma 7.2, a check shows that both expressions ResH3

L′
g

and ResVg

L′
g,h

of (8.3)

are of the form ResLL′, whereL′ andL are the notions from Lemma 7.1 and additionallyL is
finite. But from Lemma 7.3 we know that

(8.4) KKL(ResLL′ A2, B) ∼= KKL′
(A2, B

′).

SinceA2 satisfies the assumption, ResL
L′A2 = ResVg

L′
g,h
A2 =: A3 does it also because of (8.4).

Recall thatgg∗ is in the center of̃Vg andṼggg
∗ = Mg ∪ {0}. (See before (8.2).) Consequently

we have

(8.5) KKMg(ResMg

Vg
A3,ResMg

Vg
B) ∼= KKVg(A3, gg

∗B)

for everyVg-algebraB by Lemma 7.4 and (2.1). Hence, sinceA3 satisfies the assumption, the
algebraA4 := ResMg

Vg
A3 appearing in (8.3) does it also by (8.5). Successively we proceed in the

same vein for the final three expressions IndG
H3

, ResH3

L′
g

and Ind
L′

g

Mg
in (8.3) until the assumption

is verified forA. The proof for arbitraryA ∈ CI0 is analog. The last claim follows evidently
from this proof.

9. OUTLOOK TOWARDS A POTENTIAL BAUM –CONNES MAP

In this section we shall switch from the restriction functors to the Right-functors of Definition
8.5. We shall prove the existence of simplicial approximations and even a Dirac morphism and
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a Baum–Connes map for all coefficient algebras under some theoretical technical assumptions
which are motivated by the last section. Because of Proposition 6.2 it is assumed thatG is
E-continuous.

Let FH be the set of Definition 8.5 or any other countable set of compact objects ofKKH ;
by Definition 8.5 there exists a right adjoint functor RightH

G for IndG
H .

We are going to introduce analogous sets toCI1 andCI0 of the last section by replacing the
Res-functors by the Right-functors. As a motivation for the next definition also recall Corollary
8.2.

Definition 9.1. Let us be given aG-algebraZ. Set

CJ1 := {IndG
Hn

RightHn
G . . . IndG

H1
RightH1

G (Z) |Hi ⊆ G comp. sub. s., n ≥ 1}
andCJ0 the countable set of objects of the form IndG

HA, whereH is a finite subinverse semi-
group ofG andA ∈ FH .

The following corollary is a slight modification of Brown’s representability theorem.

Corollary 9.1 (Cf. Lemma 6.3 of [23]). Assume that for allA ∈ CJ0 KK
G(A,B) is countable

for all B ∈ KKG and commutes with countable direct sums in the variableB. Then for any
objectB in KKG there exist an object̃B in 〈CJ0〉 and a morphismf ∈ KKG(B̃, B) such that
f∗ : KKG(A, B̃) → KKG(A,B) (f∗(x) := f ◦ x for x ∈ KKG(A, B̃)) is an isomorphism for
all objectsA in 〈CJ0〉.
Definition 9.2 (Cf. Definition 4.1 of [23]). An objectA in KKG is calledcompactly induced
if there exists an objectB in KKG and a compact subinverse semigroupH ⊆ G such thatA is
isomorphic to IndGH(B) in KKG. The full subcategory ofKKG of compactly induced objects
is denoted byCJ .

Definition 9.3 (Cf. Definition 4.5 of [23]). LetZ be aG-algebra. ACJ -simplicial approxima-
tion for Z is an elementf ∈ KKG(B,Z) for some objectB in 〈CJ 〉 such that RightHG (f) is
invertible inKKH for all compact subinverse semigroupsH of G. If Z = C0(X) we particu-
larly call f aDirac morphism.

As a motivation for the assumptions of the next proposition recall the analogous results Corol-
laries 8.1 and 8.2 and Remark 8.1. Also note that the right adjoint functorRH

G of [2] commutes
with direct sums and satisfiesRH

G (ε(E)) ∈ FH for H finite.

Proposition 9.2(Cf. Proposition 4.6 of [23]). Assume thatG is anE-continuous inverse semi-
group andZ aG-algebra such that the following assumptions hold true (for example, they hold
true ifG is a discrete group (where Right= Res),Z = C andFH = {C}):

(a) Assume thatKKH(A,B) is countable and commutes with countable direct sums inB for
all finite subinverse semigroupsH ofG andA ∈ FH (see Def. 8.5).

(b) Assume that the Right-functors commute with countable direct sums.
(c) Assume that RightH

G (Z) ∈ FH for all finite subsemigroupsH ofG.
(d) Suppose that every object ofCJ1 can be expressed as a countable direct sum of objects of

CJ0 up toKKG-equivalence.
ThenZ has aCJ -simplicial approximation.

Proof. Assume without loss of generality that for everyA ∈ FH , IndG
HA ∈ CJ0 appears as

a summand of someB ∈ CJ1; if not so, simply restrictFH to a smaller set. Notice that our
assumptions imply the validity of the assumption of Corollary 9.1, see Remark 8.1.

Apply Corollary 9.1 toB := Z and obtain an objectP ∈ 〈CJ0〉 ⊆ KKG and a morphism
D ∈ KKG(P,Z) (whereP := B̃ andD := f from Corollary 9.1) such that

(9.1) D∗ : KKG(A,P ) → KKG(A,Z)
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is a group isomorphism for allA ∈ 〈CJ0〉. We want to show that RightH
G (D) is an isomorphism

for every compact subinverse semigroupH ofG (see Definition 9.3); so fix any suchH. To this
end it is sufficient to show that both induced group homomorphisms

RightHG (D)∗ : KKH(RightHG P,RightHG P ) → KKH(RightHG P,RightHG Z)

and
RightHG (D)∗ : KKH(RightHG Z,RightHG P ) → KKH(RightHG Z,RightHG Z)

are isomorphisms. For verifying that the first stated RightH
G (D)∗ is an isomorphism it is suffi-

cient to show that

(9.2) RightHG (D)∗ : KKH(RightHG A,RightHG P ) → KKH(RightHG A,RightHG Z)

is an isomorphism for allA ∈ CJ0 becauseP ∈ 〈CJ0〉.
We consider first the case thatA ∈ CJ1. Applying on both ends of (9.2) the adjointness

relation between Ind and Right, (9.2) turns to

(9.3) D∗ : KKG(IndG
HRightHG A,P ) → KKG(IndG

HRightHG A,Z).

But since IndGHRightHG A is in CJ1, and hence a countable direct sum of objects inCJ0 by
assumption, IndGHRightHG A is also in〈CJ0〉 by Definitions 8.3 and 8.4, and hence (9.3) and so
(9.2) are isomorphisms by (9.1).

We may writeA ∼=
⊕

j Bj KK
G-equivalently by assumption, whereBj ∈ CJ0. The canon-

ical injection and projection RightH
G Bj

p→ RightHG A
f→ RightHG Bj to thejth coordinate satisfy

id = (fp)∗ = p∗f ∗, and an analog diagram as in (7.4) shows that the isomorphism (9.2) is also
an isomorphism forA := Bj. By varying over allA ∈ CJ1 and all coordinate projectionsj, we
see that (9.2) is an isomorphism for allA ∈ CJ0.

That the second homomorphism RightH
G (D)∗ is an isomorphism follows from (9.1) applied

toA := IndG
HRightHG Z ∈ CJ0.

The last proposition might offer a chance for defining a Baum–Connes map:

Remark 9.1. If the assumptions of Proposition 9.2 hold true for an inverse semigroup and
Z = C0(X) then its application yields aCJ -simplicial approximation and thus a Baum–Connes
map for all coefficient algebrasA (by tensoring aCJ -simplicial approximationD for C0(X)
with A, that is, formingD ⊗C0(X) A); see [23] or [2, Section 10] for the concept. TheBaum–
Connes mapwith coefficient algebraA is then defined to be the homomorphismK(BôG) →
K(AôG) (Sieben’s crossed product) induced by taking the Kasparov product with the element

ĵG(D) ∈ KK(BôG,AôG) (descent homomorphism) for anyCJ -simplicial approximation
D ∈ KK(B,A) of A.
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