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ABSTRACT. In this paper, we bound the extremal eigenvalues of a positive definite real sym-
metric matrix by considering a part of the characteristic equation in the region of the smallest
and largest eigenvalues. An expansion around these values leads to a sequence of monotonic
functions, whose zeros coincide with the extremal zeros of associated polynomials. The latter is
shown to yield bounds that are fairly accurate.
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1. I NTRODUCTION

The knowledge of the distribution of the spectrumσ(A) of matrixA ∈ Cn×n is vital to many
applied mathematics and engineering problems. Their distribution in the complex plane deter-
mines the stability of the solution of a system of differential equations. For symmetric matrices
these values are real and their extremal values serve an important aspect in determining the
conditioning of an associated linear algebraic system. They are vital for the approximation of
normal operators [5]. Some crude bounds are obtained by application of Gerschgorin’s theorem
[3] and the ovals of Cassini [1]. Trace bounds [13, 4] give reasonably good results, however the
lower bound is not guaranteed to be positive as expected, for the class of positive definite real
symmetric matrices. Also an improvement using trace bounds [8] requires much more effort as
traces of powers of matrixA are required. The application of Rayleigh’s theorem [3] provides
good inner bounds, however the outer bounds are not so easily approximated. The solution of
the characteristic equation of a matrixA is a difficult task for large dimensions, therefore many
methods have been proposed for approximating the extremal eigenvalues. For positive definite
symmetric matrices Dembo bounds [2] arise by examining the characteristic equation ofA and
relies on bounds of a principal submatrix. Ma and Zarowski [6] improved on Dembo’s lower
bound by ensuring that it was always positive. This idea was also used to further improve the
lower bounds of the minimal eigenvalue [12] and to Toeplitz matrices by Melman [7] for both
upper and lower bounds. All techniques are to be considered in their proper context to isolate
the extremal eigenvalues. Recently there has been a resurgence in research into the bounding of
the spectrum of real positive definite symmetric matrices [9, 10, 11].

2. THEORY

Let A ∈ Rn×n be a symmetric positive definite matrix, with spectrumσ(A) = {λi}n
i=1

arranged in ascending order
λ1 ≤ λ2 · · · ≤ λn.

PartitionA as follows

A =

[
c bt

b B

]
whereB ∈ R(n−1)×(n−1) andb 6= 0 ∈ Rn−1, with c > 0 (follows from positive definiteness).

Let σ(B) = {βi}n−1
i=1 be arranged in ascending order

(2.1) β1 ≤ β2 · · · ≤ βn−1

and note that by the interlacing theorem [3]

λ1 < β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 < λn

where we have assumed strict separation of the extremal eigenvalues ofA andB. We examine
the characteristic polynomialdet (λI−A) in order to ascertain the eigenvalues.

(2.2) det (λI−A) = det (λI−B)[λ− c− bt(λI−B)−1b]

Note that the resolvent(λI −B)−1 exists forλ /∈ σ(B), hence (2.2) is valid forλ ∈ (0, β1) ∪
(βn−1, ∞). It follows thatλn must be a zero of the function.

(2.3) f(λ) = λ− c− bt(λI−B)−1b
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3. M AXIMUM EIGENVALUE BOUNDS

Lemma 3.1. Let B ∈ R(n−1)×(n−1) be a positive definite symmetric matrix withσ(B) =
{βi}n−1

i=1 arranged in ascending order(2.1) with βl ≤ β1 and βn−1 ≤ βu known lower and
upper bounds for the extremal eigenvalues ofB. Then forλ > σ(B) and non zerob ∈ Rn−1

we have
βl〈Bpb, b〉
λp(λ− βl)

≤
∑〈Bkb, b〉

λk
≤ βu〈Bpb, b〉

λp(λ− βu)

Proof. Let {v1, v2, · · · , vn−1} be an orthogonal set of eigenvectors ofB, thenB has the spec-
tral decomposition

B =
n−1∑
i=1

βiviv
t
i

=
n−1∑
i=1

βiGi,

whereGi = viv
t
i are orthogonal projectors onto the nullspaceN(βiI−B)

∞∑
k=p+1

〈Bkb, b〉
λk

=
∞∑

k=1

〈Bp+kb, b〉
λp+k

=
∞∑

k=1

〈
∑n−1

i=1 βp+k
i Gib, b〉

λp+k

=

〈∑n−1
k=1 βp

i Gib, b
〉

λp

∞∑
k=1

(
βi

λ

)k

=
〈Bpb, b〉

λp

∞∑
k=1

(
βi

λ

)k

(3.1)

But
∞∑

k=1

(
βi

λ

)k

≤
∞∑

k=1

(
βu

λ

)k

=
βu

λ− βu

(3.2)

and
∞∑

k=1

(
βi

λ

)k

≥
∞∑

k=1

(
βl

λ

)k

(3.3)

=
βl

λ− βl

The result then follows from (3.1), (3.2) and (3.3)
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Since the spectral radiusρ
(

B
λ

)
= ρ(B)

λ
=

βn−1

λ
< 1 we may writef(λ) as

fn(λ) = λ− c− bt

λ

(
I− B

λ

)−1

b

= λ− c− bt

λ

(
∞∑

k=0

Bk

λk

)
b

= λ− c− 1

λ

p∑
k=0

〈Bkb, b〉
λk

− 1

λ

∞∑
k=p+1

〈Bkb, b〉
λk

(3.4)

Apply 3.1 to (3.4) to obtain

fn(λ) ≤ lnp (λ) = λ− c− 1

λ

p∑
k=0

〈Bkb, b〉
λk

− βl〈Bpb, b〉
λp+1(λ− βl)

= λ− c−
p−1∑
k=0

〈Bkb, b〉
λk+1

− 〈Bpb, b〉
λp(λ− βl)

fn(λ) ≥ un
p (λ) = λ− c− 1

λ

p∑
k=0

〈Bkb, b〉
λk

− βu〈Bpb, b〉
λp+1(λ− βu)

= λ− c−
p−1∑
k=0

〈Bkb, b〉
λk+1

− 〈Bpb, b〉
λp(λ− βu)

Also

(3.5) lnp+1(λ)− lnp (λ) =
βl〈Bpb, b〉 − 〈Bp+1b, b〉

λp+1(λ− βl)

and

βl〈Bpb, b〉 − 〈Bp+1b, b〉

=

〈
n−1∑
i=1

βlβ
p
i Gib, b

〉
− 〈Bp+1b, b〉

≤

〈
n−1∑
i=1

βp+1
i Gib, b

〉
− 〈Bp+1b, b〉

= 〈Bp+1b, b〉 − 〈Bp+1b, b〉

= 0

Hencelnp+1 ≤ lnp (λ).
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Similarly we may show that

un
p+1(λ)− un

p (λ) =
βu〈Bpb, b〉 − 〈Bp+1b, b〉

λp+1(λ− βu)

≥ 0

so thatun
p+1(λ) ≥ un

p (λ).

Hence we have the sequence of functions boundingfn(λ) given by

un
0 (λ) ≤ un

1 (λ) ≤ · · · ≤ un
p (λ) ≤ un

p+1(λ) ≤ · · · ≤ fn(λ)

≤ · · · lnp+1(λ) ≤ lnp (λ) ≤ ln1 (λ) ≤ ln0 (λ)

Note thatdf
n

dλ
> 0 and d2fn

dλ2 < 0 implies thatfn(λ) is increasing and concave down. Alsofn(λ)
is asymptotic toλ− c.

We havelnp (λn) ≥ fn(λn) = 0 and lim
λ→∞

lnp (λ) = −∞, hencelnp (λ) has a zero in(−∞, λn].

Sinceun
p (λn) ≤ fn(λn) = 0 and lim

λ→∞
un

p (λ) = ∞ it follows thatun
p (λ) has a zero in[λn, ∞).

Hence the maximal zero oflnp (λ) is a lower bound forλn and the maximal zero ofun
p (λ) is an

upper bound forλn.

4. M INIMUM EIGENVALUE BOUNDS

It folows thatλ1 is also a zero of (2.3).

Now considerλ ∈ (0, λ1), sinceρ(λB−1) = λρ(B−1) = λ
λ1

< 1 we may write (2.3) as

f 1(λ) = λ− c + btB−1(I− λB−1)−1b

= λ− c + btB−1

∞∑
k=0

λkB−kb

= λ− c +
∞∑

k=0

λk〈B−k−1b, b〉

= λ− c +

p∑
k=0

λk〈B−k−1b, b〉+
∞∑

k=p+1

λk〈B−k−1b, b〉(4.1)

Lemma 4.1. For 0 < λ < λ1 ≤ βl, we have

λp+1

βu − λ
〈B−p−1b, b〉 ≤

∞∑
k=p+1

λk〈B−k−1b,b〉 ≤ λp+1

βl − λ
〈B−p−1b, b〉
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Proof. Note thatσ(B−1) = (σ(B))−1 and thatB andB−1 have the same eigenbasis. Hence
∞∑

k=p+1

λk〈B−k−1b, b〉

=
∞∑

k=1

λp+k〈B−p−k−1b, b〉

=
∞∑

k=1

λp+k

〈
n−1∑
i=1

β−p−k−1
i Gib, b

〉

= λp〈B−p−1b, b〉
∞∑

k=1

(
λ

βi

)k

(4.2)

But
∞∑

k=1

(
λ

βi

)k

≤
∞∑

k=1

(
λ

βl

)k

=
λ

βl − λ
(4.3)

and
∞∑

k=1

(
λ

βi

)k

≥
∞∑

k=1

(
λ

βu

)k

=
λ

βu − λ
(4.4)

The result follows by substituting (4.3) and (4.4) into (4.1).

Applying Lemma 4.1 to (4.1) we have

f 1(λ) ≤ l1p(λ) = λ− c +

p∑
k=0

λk〈B−k−1b, b〉+
λp+1

βl − λ
〈B−p−1b, b〉

= λ− c +

p−1∑
k=0

λk〈B−k−1b, b〉+
βlλ

p

βl − λ
〈B−p−1b, b〉

and

f 1(λ) ≥ u1
p(λ) = λ− c +

p∑
k=0

λk〈B−k−1b, b〉+
λp+1

(βu − λ)
〈B−p−1b, b〉

= λ− c +

p−1∑
k=0

λk〈B−k−1b, b〉+
βuλ

p

(βu − λ)
〈B−p−1b, b〉
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As in the case for boundingλn, we may show that the sequence of functions boundingf 1(λ)
are given by

u1
0(λ) ≤ u1

1(λ) ≤ · · · ≤ u1
p(λ) ≤ u1

p+1(λ) ≤ · · · ≤ f 1(λ)

≤ · · · l1p+1(λ) ≤ l1p(λ) ≤ l11(λ) ≤ l10(λ)

The zeros of the functionslnp (λ), un
p (λ), l1p(λ) andu1

p(λ) are equivalent to the zeros of the cor-
responding polynomialsLn

p (λ), Un
p (λ), L1

p(λ) andU1
p (λ). It can be readily shown that the fol-

lowing recurrence relations are satisfied.

Ln
p+1(λ) = λLn

p (λ) + βl〈Bpb, b〉 − 〈Bp+1b, b〉(4.5)

Ln
0 (λ) = λ2 − λ(βl + c) + βlc− 〈b, b〉(4.6)

Un
p+1(λ) = λUn

p (λ) + βu〈Bpb, b〉 − 〈Bp+1b, b〉(4.7)

Un
0 (λ) = λ2 − λ(βu + c) + βuc− 〈b, b〉(4.8)

L1
p+1(λ) = λL1

p(λ) + λp+1(βl〈B−p−2b, b〉 − 〈B−p−1b, b〉)(4.9)

L1
0(λ) = (λ− c)(βl − λ) + βl〈B−1b, b〉(4.10)

U1
p+1(λ) = λU1

p (λ) + λp+1(βu〈B−p−2b, b〉 − 〈B−p−1b, b〉)(4.11)

U1
0 (λ) = (λ− c)(βu − λ) + βu〈B−1b, b〉(4.12)

We shall label the maximal zeros of (4.5)–(4.8) byλl, p
n andλu, p

n and the minimal zeros of
(4.9)–(4.12) byλl, p

1 andλu, p
1 .

The maximal zero ofLn
0 (λ) yields the Dembo lower bound

λl, 0
n =

βl + c

2
+

√(
βl − c

2

)
+ 〈b, b〉

whilst the maximal zero ofUn
0 (λ) yields the Dembo upper bound

(4.13) λu, 0
n =

βu + c

2
+

√(
βu − c

2

)
+ 〈b, b〉

As

〈b, b〉
βu

≤ 〈B−1b, b〉 ≤ 〈b, b〉
βl

it follows from (4.10) and(4.12) that

L1
0(λ) ≤ L1

d(λ) = (λ− c)(βl − λ) + 〈b, b〉(4.14)

U1
0 (λ) ≥ U1

d (λ) = (λ− c)(βu − λ) + 〈b, b〉(4.15)
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where we have used the subscriptd to denote Dembo. It thus follows from (4.14) and (4.15)
thatλl, 0

1 is larger than the Dembo lower bound which is the minimal zero of (4.14) given by

λl, d
1 =

βl + c

2
−

√(
βl − c

2

)
+ 〈b, b〉

and thatλu, 0
1 is smaller than the Dembo lower bound which is the minimal zero of (4.15) given

by

λu, d
1 =

βu + c

2
−

√(
βu − c

2

)
+ 〈b, b〉

5. RESULTS

Consider the test matrix [13], which is symmetric positive definite.

A =


4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7


with minimum eigenvalue1.425687 and maximum eigenvalue9.375939 accurate to six deci-
mal places. We useβ1 = 4.585786 andβu = 7.414214, which are obtained fromσ(B) accurate
to six digits in order to illustrate the efficacy of our method. While exact formula may be derived
for these zeros of order up to four, it is easier to use the Newton method or a function root finder
to locate these bounds. It is not necessary to evaluate powers ofB or B−1 or even to determine
B−1 explicitly. For example the computation ofLn

4 (λ) requires〈Bkb, b〉 for k = 1, 2, · · · , 4.
Let z1 = Bb andz2 = Bz1 then 〈Bb, b〉 = 〈z1, b〉, 〈B2b, b〉 = 〈z1, z1〉, 〈B3b, b〉 =
〈z2, z1〉 and〈B4b, b〉 = 〈z2, z2〉. The computation ofU1

4 (λ) for example requires〈B−kb, b〉
for k = 1, 2, · · · , 5. Let By1 = b, By2 = y1 and By3 = y2, wherey1, y2, y3 are
determined by a linear solver (or LU decomposition for higher order polynomials). Then
〈B−1b, b〉 = 〈y1, b〉, 〈B−2b, b〉 = 〈y1, y1〉, 〈B−3b, b〉 = 〈y2, y1〉, 〈B−4b, b〉 = 〈y2, y2〉
and〈B−5b, b〉 = 〈y3, y2〉. We present result for orders up to six in table 5.1. It is noted that
very good bounds are achieved for relatively low orders. From (3.5) it can be shown that

lnp (λ)− lnp+1(λ) ≤ βp+1
u − βp+1

l

βp+1
u (βu − βl)

〈b,b〉

=
1−

(
βl

βu

)p+1

βu − βl

〈b,b〉.

So forβl << βu and for relatively small values ofp, the zeros oflnp (λ) andlnp+1(λ) are close
together and not much is gained by using very high orders oflnp (λ) or Ln

p (λ). A similar pattern
is true in this case for the polynomialsUn

p (λ), L1
p(λ) andU1

p (λ).

6. CONCLUSION

We have derived convenient recurrence relationships for the polynomials whose minimal
zeros bound the smallest eigenvalue of positive definite matrices. Also the lower bound on this
eigenvalue is guaranteed to be positive for relatively low orders of the polynomials as opposed
to trace methods. Similarly we present polynomials whose maximal zeros bound the largest
eigenvalue. These zeros are both easy and simple to compute using little computational effort.
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p λl,p
1 λu,p

1 λl,p
n λu,p

n

0 2.852066 3.492517 7.910321 9.696369
1 1.350105 1.463952 8.338852 9.571525
2 1.363644 1.456318 8.636966 9.496576
3 1.365617 1.454813 8.842526 9.450860
4 1.365907 1.454512 8.985627 9.422709
5 1.365950 1.454450 9.086765 9.405258
6 1.365957 1.454438 9.159378 9.394385

Table 5.1: Extremal bounds forλ1 andλn
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