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ABSTRACT. In this paper, we bound the extremal eigenvalues of a positive definite real sym-
metric matrix by considering a part of the characteristic equation in the region of the smallest
and largest eigenvalues. An expansion around these values leads to a sequence of monotonic
functions, whose zeros coincide with the extremal zeros of associated polynomials. The latter is
shown to yield bounds that are fairly accurate.
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2 P. SNGH AND S. SNGH AND V. SINGH

1. INTRODUCTION

The knowledge of the distribution of the spectraiA ) of matrix A € C"*" is vital to many
applied mathematics and engineering problems. Their distribution in the complex plane deter-
mines the stability of the solution of a system of differential equations. For symmetric matrices
these values are real and their extremal values serve an important aspect in determining the
conditioning of an associated linear algebraic system. They are vital for the approximation of
normal operators [5]. Some crude bounds are obtained by application of Gerschgorin’s theorem
[3] and the ovals of Cassirii[[1]. Trace bounds![13, 4] give reasonably good results, however the
lower bound is not guaranteed to be positive as expected, for the class of positive definite real
symmetric matrices. Also an improvement using trace bounds [8] requires much more effort as
traces of powers of matriA are required. The application of Rayleigh’s theoréim [3] provides
good inner bounds, however the outer bounds are not so easily approximated. The solution of
the characteristic equation of a matAxis a difficult task for large dimensions, therefore many
methods have been proposed for approximating the extremal eigenvalues. For positive definite
symmetric matrices Dembo bounds [2] arise by examining the characteristic equaficemnaf
relies on bounds of a principal submatrix. Ma and Zarowski [6] improved on Dembo’s lower
bound by ensuring that it was always positive. This idea was also used to further improve the
lower bounds of the minimal eigenvalue [12] and to Toeplitz matrices by Melman [7] for both
upper and lower bounds. All techniques are to be considered in their proper context to isolate
the extremal eigenvalues. Recently there has been a resurgence in research into the bounding of
the spectrum of real positive definite symmetric matricés [9, 10, 11].

2. THEORY

Let A € R™™ be a symmetric positive definite matrix, with spectrafd) = {\;},
arranged in ascending order

AL < Ages < A

¢ bl
A=l5 5]

whereB € R("~Dx(»=1) gndb # 0 € R*!, with ¢ > 0 (follows from positive definiteness).

Partition A as follows

Leto(B) = {8,}/~] be arranged in ascending order
(2.1) Br < By < B
and note that by the interlacing theorem [3]
M<B S <6, <N\

where we have assumed strict separation of the extremal eigenvaldesrmafB. We examine
the characteristic polynomidkt (A\I — A) in order to ascertain the eigenvalues.

(2.2) det (\I — A) = det (AL — B)[A — ¢ — b*(A\I — B)"'b]
Note that the resolverf\I — B)~! exists for\ ¢ o(B), hence[(ZR) is valid fon € (0, 5,) U

(6,1, o0). It follows that),, must be a zero of the function.

(2.3) FA) =A—c—b'(AI-B)'b
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3. MAXIMUM EIGENVALUE BOUNDS

Lemma 3.1. Let B € R Ux(~1 pe a positive definite symmetric matrix withiB) =
{B;}1= arranged in ascending orde@2.1) with 3, < 3, and 3, _, < 3, known lower and
upper bounds for the extremal eigenvalue8BofThen for\ > o(B ) and non zerd € R"!
we have

ﬁl<pr> b> <Bkb7 b> 6u<pr7 b>
Vo) S N S Nood)

Proof. Let{v,, vo, --- , v,,_1 } be an orthogonal set of eigenvectordfthenB has the spec-
tral decomposition

n—1

B = ZﬁszVf
i=1
n—1

= Z ﬁiGi,
i=1

whereG; = v;v! are orthogonal projectors onto the nullspa¢g’,.I — B)

i (B’“b b) _i (BPFb, b)
- T yptk
k=p+1 =1 >\p+

i (Ximi 877 Gib, b)
=1

)\p—i-k
S 5”be
GRS (4
(3.1) pr b) «— < >
k=1
But
SN AN A
> (5) =2 (%)
k=1 k=1
B
(3.2) =375
and
00 k 00 k
HORE)
k=1 k=1
B
- B

The result then follows fronj (3.1), (3.2) arid (38)
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Since the spectral radiys(2) = @ = 6,3_1 < 1 we may writef()\) as

By )
b! [~ B*
k=0
1 & (Bfb,b) 1 & (Bfb, b)
(3.4) =A-e=3) 5 X
k=0 k=p+1
Apply[3.7 to [3.4) to obtain

n n — Y\ l - <Bkb7 b> . 6l<pr’ b>
f"N) <A =A—c \ Z AR NN — )

(B*b, b)  (Bb, b)
s G N\ —3)

", (B*b,b)  j3,(B’b, b)

N N (- 8,)

2~ (B*b,b)  (B’b, b)

=A—c— k1

Also

3,(B¥b, b) — (B**'b, b)
M=)

(3.5 LA =1 (\) =
and

5,(BPb, b) — (BP*'b, b)

n—1
= <Z B,3/Gib, b> ~ (B**1b, b)
=1

n—1
< <Z BGyb, b> — (BP*1b, b)

= (B”"'b, b) — (B”*'b, b)

=0

Hencel},, < [(\).
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Similarly we may show that

8,(BPb, b) — (BP™'b, b)
Ap+l(A'_'ﬁu)

UZH(/\) - UZ()‘) =

so thatuy,, (A) > uy(N).

Hence we have the sequence of functions bounditig) given by

() S U < - i) S wly (V) < - < 1

=P = “pt+l
n

<L) S BO) S BO) < B

Note that%_ > (0 and d;{; < 0 implies thatf"(\) is increasing and concave down. Al§®(\)
IS asymptotic to\ — c.

We havel (\,) > f*(A\,) =0 andAhm [ (A\) = —oo, hencel]}()\) has a zero if—oo, A,].
Sinceuy (M) < f"(A\) =0 and)\li_)rilo uy(A) = oo it follows thatuy; (A) has a zero if\,, 00).

Hence the maximal zero @f()) is a lower bound for,, and the maximal zero afy()\) is an
upper bound fon,,.

4. MINIMUM EIGENVALUE BOUNDS

It folows that)\; is also a zero of (2]3).
Now consider\ € (0, \;), sincep(AB™1) = A\p(B™!) = A—Al < 1 we may write [[2.B) as
L) =A—c+bBI-AB )b

=\A—c+b'B! Z \B*p

k=0

=A—c+ > MB* b, b)

k=0
p 0
(4.1) =A—c+ Y MBF b b)+ Y M(B b, b)
k=0 k=p+1
Lemma4.1.For0 < A < \; < 3, we have
)\p+1 1 G k k—1 )‘erl 1
B?7'b, b) < MN(B " 'bby< ——(B " 'b, b
ﬁu —'A< ’ > — 2{: < ? >-— 5l__A< Y >

k=p+1
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Proof. Note thato(B~!) = (¢(B))~! and thatB andB~! have the same eigenbasis. Hence

> AB b, b)

k=p+1

k=1
00 n—1
=> Ntk <Z B7PFGyb, b>
k=1 =1
00 k
(4.2) _ B b)Y (i>
—~ \ B
But
00 i)k _ 00 (i)k
kz:; (ﬁi T = \G
A
4.3) = 5= x
and
()56
A
(4.4) = R

The result follows by substituting (4.3) arjd (4.4) ifto (4 4.).
Applying Lemmd 4.]L to[(4]1) we have

p p+1
Fr) S B =A—c+ > MNB*'b, b)+ A 5 (B'b, b)
k=0
p—1 /8 )\p
=XA—c+> MNBF'b b)+ (B 7 'b, b)
e Bi—A
and
p 3 /\p+1
1 > 1 — o Bfkfl prfl
) > ub () = A c+k2;)\< b,b>+—(6u_)\>< b, b)
p—l 5 )\p
=A—c+ Y MBF b, b)+ ﬁ(BﬂHb, b)
k=0 w
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As in the case for bounding,, we may show that the sequence of functions boundiit{g)
are given by

up(N) S up(A) < () S (V) << Y
<l (V) S L) SHK) <Y

andu,,(\) are equivalent to the zeros of the cor-

The zeros of the function§(\), w2 (X), [)(A)
A)andU} (). It can be readily shown that the fol-

responding polynomial&”(\), U7 (X), Lj(
lowing recurrence relations are satisfied.

(4.5) L7 (A) = ALY(N) + 8,(B*b, b) — (B**'b, b)

(4.6) Ly(\) = X2 = X8, +¢) + Bic — (b, b)

(4.7) Upi(A) = AUS(A) + 8,(BPb, b) — (B*"'b, b)

(4.8) Uy (A) = X = A(B, +¢) + B,c— (b, b)

(4.9) L) () = AL, (A) + AW FH(B,(B™*b, b) — (B™""'b, b))
(4.10) Lo(A) = (A= ¢)(6,— A) + 5,(B"'b, b)

(4.11) Uy (A) = AU (N) + X8, (B ?b, b) — (B™""'b, b))
(4.12) Us(A) = (A= ¢c)(B, = A) + B,(B7'b, b)

We shall label the maximal zeros §f (4.5)—(4.8) Ky’ and \"“* and the minimal zeros of
@-{£12) byr;” and ;.

The maximal zero of§()\) yields the Dembo lower bound

Aﬁ“zﬁl;6+\/<—ﬁl;6)+<b,b>

whilst the maximal zero ol/{' () yields the Dembo upper bound

(4.13) A0 = % + \/ (%) + (b, b)
As

(b, b) = (b, b)
it follows from (4.10) and(4.72) that
(4.14) Lo(A) < Lg(A) = (A= )(8, = A) + (b, b)
(4.15) Uy(A\) = Us(A\) = (A= 0)(B, — A) + (b, b)
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where we have used the subscrdpio denote Dembo. It thus follows fromh (4]14) and (4.15)
that\:" is larger than the Dembo lower bound which is the minimal zerp of [4.14) given by

Ai’d—ﬁl;C—\/(—ﬁl;C>+<b,b>

and that\!"* is smaller than the Dembo lower bound which is the minimal zerp of(4.15) given

by
wa_ Pute [(B,—c

5. RESULTS

Consider the test matrix [13], which is symmetric positive definite.

4 0 2 3
050 1
A=19056 0
3107

with minimum eigenvalud.425687 and maximum eigenvalu®£375939 accurate to six deci-

mal places. We usg, = 4.585786 andj3,, = 7.414214, which are obtained from(B) accurate

to six digits in order to illustrate the efficacy of our method. While exact formula may be derived
for these zeros of order up to four, it is easier to use the Newton method or a function root finder
to locate these bounds. It is not necessary to evaluate powBr®oB ! or even to determine

B~ explicitly. For example the computation &f ()\) requires(B*b, b) fork =1, 2, --- , 4.

Let z; = Bb andz, = Bz, then <Bb, b> = <Z1, b>, <B2b, b> = <Z17 Z1>, <B3b7 b> =

(29, z1) and(B'b, b) = (z,, z,). The computation o/} (\) for example requireéB*b, b)

fork = 1,2, --- 5. Let By; = b, By, = y; andBy; = ys, whereyy, ys, y3 are
determined by a linear solver (or LU decomposition for higher order polynomials). Then
<B_1b7 b> = <Y17 b>7 <B_2b7 b> = <y17 y1>7 <B_3b7 b> = <y27 y1>7 <B_4b7 b> = <y2> y2>
and(B~°b, b) = (y3, y2). We present result for orders up to six in taplg 5.1. It is noted that
very good bounds are achieved for relatively low orders. Ffonj (3.5) it can be shown that

Bz—i—l . 5%3—1—1
o) =10\ < =2t
PN =) S GG 5y

5, \ P11
I (%) (b.b).
ﬁu - /Bl ’
So for 3, << f3, and for relatively small values of, the zeros of(\) andi?, ,()\) are close

together and not much is gained by using very high ordets(of) or L;(A). A similar pattern
is true in this case for the polynomidlg (1), L, (\) andU, ().

(b,b)

6. CONCLUSION

We have derived convenient recurrence relationships for the polynomials whose minimal
zeros bound the smallest eigenvalue of positive definite matrices. Also the lower bound on this
eigenvalue is guaranteed to be positive for relatively low orders of the polynomials as opposed
to trace methods. Similarly we present polynomials whose maximal zeros bound the largest
eigenvalue. These zeros are both easy and simple to compute using little computational effort.
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ALP AP AL AP
2.852066 3.492517 7.910321 9.696369
1.350105 1.463952 8.338852 9.571525
1.363644 1.456318 8.636966 9.496576
1.365617 1.454813 8.842526 9.450860
1.365907 1.454512 8.985627 9.422709
1.365950 1.454450 9.086765 9.405258
1.365957 1.454438 9.159378 9.394385

DU W N~ OT

Table 5.1: Extremal bounds for, and \,,
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