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ABSTRACT. In this work, the problem of a potential and two-dimensional flow with a free sur-
face of an incompressible, irrotational and inviscid fluid of a jet in front an inclined wall is
considered, where γ is the inclination angle with the horizontal. The shape of the free surface
is presented by curves which are found numerically by the series truncation method. This tech-
nique is based on the conformal transformations, resulting with the surface tension effect T with
the boundary conditions on the free surfaces given by Bernoulli’s equation. The found results
are dependant on parameters which are: the Weber’s number α and the angle γ. For each We-
ber’s number value, only one solution is specified and some shapes of free surfaces of the jet are
illustrated.

Key words and phrases: Free surface; Potential flow; Surface tension; Weber number; Series truncation method.

2010 Mathematics Subject Classification. Primary 76A02, 76B07, 76B10. Secondary 30C30, 30C35, 65D25.

ISSN (electronic): 1449-5910
© 2023 Austral Internet Publishing. All rights reserved.

https://ajmaa.org/
mailto: <houria.serguine@univ-msila.dz>
mailto: <fairouz.chegaar@univ-setif.dz>
mailto: <abdelkader.gasmi@univ-msila.dz>
https://www.ams.org/msc/


2 H. SERGUINE AND F. GUECHI AND A. GASMI

1. INTRODUCTION

One considers the study of a two-dimensional and potential flow of a jet in front of an inclined
wall by γ, where γ is the inclination angle with the horizontal. The fluid is assumed to be
as incompressible, irrotational and inviscid. The application of the hodograph transformation
method to the jet theory can be found by Birkoff and Zarantonello [4], some generalizations of
the Schwartz Christoffel formula are given by this method [6] and [8] which transforms a half
of a field occupied by a flow into a field with a border which combines a polygon and smooth
curve. A various flow studies were presented by many authors [10], [5], [7] and [9]. Jets
impinging on the walls were studied by many authors [13]. Weidong Peng and David F.Parker
assumed a jet of fluid jet hitting an irregular wall [13]. The authors assumed different smooth
wall geometries in their paper, neglecting the effects of the surface tension and the gravity,
the problem can be transformed to an integral equation on the free boundary that they solved
numerically. In this paper, we consider the same problem as it is proposed, but we take into
account the tension surface effect with neglecting the effect of gravity and the shape of the free

surface constituted by the flow is studied. Far upstream the flow velocity is a constant
∼
U and

the fluid depth is 2
∼
H . This problem is characterized by the nonlinear boundary condition given

by Bernoulli’s equation on free surfaces which are not of known shape. In this case, a series
truncation procedure is used to calculate the numerical solutions of the flow in front of a wall.
This method has been used with success by Birkoff, Zarantonello [4] and many authors like
[1, 2, 3] and [11, 12] to obtain the calculation of the nonlinear free surface flow and bow flow.
we take note that the flow is characterized by two parameters; the first is the angle γ between
the horizontal bottom and the inclined wall and the second is the Weber number α; This number
is defined by

(1.1) α =

∼
ρ
∼
U

2 ∼
H

∼
T

.

Here,
∼
T is the surface tension, and

∼
ρ is the density of the fluid. The problem is given and

formulated in section 2, the numerical procedure is presented in section 3 and the results that
are obtained, are discussed in section 4.

2. MATHEMATICAL FORMULATION

One proposes a potential and two-dimensional flow of a jet of an incompressible and inviscid
fluid. On the free surface in front of a wall inclined by an angle γ made up with the horizontal
one, the gravity’s effect is neglected and only the surface tension effect can be taken into con-

sideration. And like locates coordinates, one takes wall EO on the axis
∼
xo

∼
x

′

and wall COC
′ on

the line of the equation
∼
y = − tan(γ). It is supposed that when

∼
x → −∞, the flow is uniform

with the velocity
∼
U and the depth 2

∼
H . The flow is limited in an upper by the streamline AB and

in a lower position by the streamline A
′
B

′ , and the speed has a proportional relationship with
∼
x,

because when
∼
x→ 0, the speed tends towards zero, (see Figure 1).

We define the complex variable
∼
z =

∼
x+ i

∼
y. The complex conjugate velocity is given by

∼
ξ =

∼
u− i

∼
v, where

∼
u and

∼
v are respectively the components of the fluid velocity and by

∼
f =

∼
ϕ+ i

∼
ψ

the potential function complexes, where
∼
ϕ and

∼
ψ respectively indicate the potential function

and the function of current. One chooses
∼
ϕ = 0 at the point

(
∼
x,

∼
y
)

= (0, 0) and
∼
ψ = 0 on

the streamline EOC (EOC
′), it follows that

∼
ψ =

∼
U

∼
H ,

∼
ψ = −

∼
U

∼
H on the streamline ADB and
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Figure 1: Flow in the z-plane

A
′
D

′
B

′ . Under these conditions the equation of Bernoulli on the free surfaces is given by

(2.1)
1

2

∼
q
2
+

∼
P
∼
ρ

= C, on ADB and A
′
D

′
B

′

Where
∼
P is the pressure of the fluid,

∼
ρ is the density of the fluid and

∼
q =

√
∼
u
2
+

∼
v
2

indicates
the module speed. Just above the free surface, we consider

∼
P 0

is considered to be constant. Since far upstream the free surface is horizontal, we have
∼
P =

∼
P 0.

Thus, the constant C in the equation is evaluated far upstream and is given by

(2.2)
1

2

∼
U

2

+

∼
P 0
∼
ρ

= C.

Laplace’s formula gives the relation between
∼
P and

∼
P 0 as

(2.3)
∼
P −

∼
P 0 = −

∼
T

∼
K.

Where
∼
K is the curvature of the free surface and

∼
T is the surface tension. And by substitution

(2.3) into (2.2) we obtain

(2.4)
1

2

∼
q
2
−

∼
T
∼
ρ

∼
K =

1

2

∼
U

2

.

We introduce the dimensionless variables by taking
∼
H as the unit length and

∼
U as the unit

velocity. The dimensionless variables are given by

(2.5) x =

∼
x
∼
H
, y =

∼
y
∼
H
, q =

∼
q
∼
U
, K =

∼
H.

∼
R, C =

∼
yc
∼
H
.
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Figure 2: Potential flow in the potential f-plane

The dimensionless parameter C has a particular property; it gives the value of the ratio of the
depth of the nearest point on the free surface at the stagnation point O to the depth of the fluid
at infinity, this ratio defines the coefficient of contraction. The dimensionless complex potential
function and the dimensionless complex velocity are given by

f = ϕ+ iψ and ξ =
df

dz
= u− iv.

Hence

u =
∂ϕ

∂x
=
∂ψ

∂y
and v =

∂ϕ

∂y
= −∂ψ

∂x
.

ϕ is the dimensionless potential function, ψ is the dimensionless stream (see Figure 2).
In the dimensionless form, the Bernoulli equation (2.4) becomes

(2.6) q2 − 2

α
K = 1.

Here α is the Weber number defined in (1.1).
The physical flow problem as described above can be formulated as a boundary value problem

in the potential function ϕ(x, y)

(2.7)


∆ϕ = 0, in the flow domain.
∂ϕ

∂θ
= 0, on the rigid boundary.

|∆ϕ|2 − 2

α
K = 1, on the free surface.

ϕ(0, 0) = 0.

Solving the problem in this form is very difficult specially that the nonlinear boundary con-
dition is specified on an unknown boundary ( the free surface). Instead of solving the problem
in its partial differential equation form in ϕ, we take advantage of the property that for the bidi-
mensional potential flow ( as is in our problem) and if the plane in which the flow is embedded
is identified to the complex plane, the complex velocity ξ = u − iv and the complex potential
function f = ϕ+ iψ are analytic functions of the complex variable z = x+ iy. Hence, we use
all the necessary properties of analytic functions of a complex variable: integral formulation,
conform transformation. Because (u− iv) is analytical, one defines the function (τ − iθ) by the
relation

(2.8) ξ = u− iv = τ − iθ.
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Figure 3: Flow in the t-plane

θ is the angle between the flight path vector and the horizontal one.
Hence, equation (2.5) becomes

(2.9)
1

2
q2 − 1

α
q

∣∣∣∣∂θ∂ϕ
∣∣∣∣ = 1

2
, on ADB and A

′
D

′
B

′

It is known that θ (ϕ) is an increasing function when −∞ < ϕ < +∞ on the free surfaces.
The equation of Bernoulli in the f -plane is written

(2.10)
1

2
exp (2τ)− 1

α
exp (τ)

∣∣∣∣∂θ∂ϕ
∣∣∣∣ = 1

2
, on ADB and A′ D′B′

With the conditions

(2.11)


θ = 0, ψ = 0, ϕ < 0, on EO
θ = γ, ψ = 0, ϕ > 0, on OC
θ = π − γ, ψ = 0, ϕ > 0, on OC

′

This mathematical problem is to determine the function τ − iθ which is analytical in the band
−1 < ψ < 1 and which checks the conditions (2.10) and (2.11).

3. NUMERICAL PROCEDURE

We go to the step which we use the technique of truncation of the series. Using the Schwartz-
Christoffel transformation, we map the strip −1 < ψ < 1 in the f−plane into a disc unit in the
t−plane by the transformation

(3.1) f =
2

π
ln

(
1− t

1 + t

)
.

The points ( A, E, A
′); (B, C, B

′ ,C′); D; D
′ and O in the f−plane are respectively transformed

at t = 1, t = −1, t = −i, t = i and t = 0.
The free surface’s points in the t plane are given by
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(3.2) t = |t| exp(iσ) =
{

exp(iσ), −π < σ < 0 on ADB
exp(iσ), 0 < σ < π on A′D′B′

One as follows, writes the Bernoulli equation in the tplane

(3.3)


exp (2τ) +

π

α
sin (σ) exp (τ)

∂θ

∂σ
= 1, on AB

exp (2τ)− π

α
sin (σ) exp (τ)

∂θ

∂σ
= 1, on A

′
B

′

3.1. Local behavior of ξ at t = 0. At the point of stagnation O, when t = 0, we have a flow
characterized by the following potential functions

(3.4) f ∼

 a (z)

π

γ , on AB

a (z)

π

π − γ , on A′B′

The development limited of f in the vicinity of the point t = 0 is given by

(3.5) f ∼ t+O
(
t2
)
.

3.2. Formulation of the series. Lets us define the function Ω (t) as follows ξ (t) = g (t) Ω (t),
where g (t) contains the singularities and the zeros. The function Ω (t) is bounded and continu-
ous on the unit circle and analytic in the interior of the unit disc, hence Ω (t) can be expressed
as an exponential of the analytical function inside the disc unit |t| < 1. Therefore, we can write
ξ (t) as

(3.6) ξ (t) = g (t) exp

(
+∞∑
n=0

ant
n

)
.

By using the conditions and the relations (3.3) and (3.4), the equation (3.5) becomes

(3.7) ξ (t) = u− iv =


(t)

π − γ

π exp

(
+∞∑
k=0

akt
2k

)
, on AB

(t)

γ

π exp

(
+∞∑
k=0

akt
2k

)
, on A′B′

By choosing all the coefficients ak to be real.
The function (3.5) satisfies (2.10) and the coefficients ak have to be determined to satisfy

(2.10).
While using (3.2), (3.7) becomes

exp (τ − iθ) =

(3.8)


exp

[
+∞∑
k=0

ak cos (2kσ) + i

((
π − γ

π

)
σ +

+∞∑
k=0

ak sin (2kσ)

)]
, on AB

exp

[
+∞∑
k=0

ak cos (2kσ) + i

((γ
π

)
σ +

+∞∑
k=0

ak sin (2kσ)

)]
, on A′B′

From where
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(3.9) τ (σ) =
+∞∑
k=0

ak cos(2kσ), on AB and A′B
′

and

(3.10) θ(σ) =


−
((

π − γ

π

)
σ +

+∞∑
k=0

ak sin (2kσ)

)
, on AB

−
((γ

π

)
σ +

+∞∑
k=0

ak sin (2kσ)

)
, on A′B′

The problem can be solved numerically by the truncation of the infinite series after N terms.
Introducing the N + 1 such points

(3.11) σ (I) =


− π

2 (N + 1)

(
I − 1

2

)
, on AB

π

2 (N + 1)

(
I − 1

2

)
, on A′B′

I = 1, 2, ..., N + 1

We find the N coefficients and by collocation using (3.11), we obtain [τ (σ)]σ=σ(I) and
[θ (σ)]σ=σ(I) in terms of coefficients ak.

Thus, we obtain N nonlinear algebraic equations of N unknowns (ak, k = 0, ..., N). Using
Newton’s method to solve the obtained system.

(3.12)



exp

(
2

N∑
k=0

ak cos (2kσ (I))

)
− π

α
exp

(
N∑
k=0

ak cos (2kσ (I))

)
× (sinσ (I))

((
π − γ

π

)
σ (I) +

N∑
k=0

ak sin (2kσ (I))

)
= 1, on AB

exp

(
2

N∑
k=0

ak cos (2kσ (I))

)
+
π

α
exp

(
N∑
k=0

ak cos (2kσ (I))

)
× (sinσ (I))

((γ
π

)
σ (I) +

N∑
k=0

ak sin (2kσ (I))

)
= 1, on A′B′

To plot the curve of the free surface, we use the following formula

(3.13)
∂x

∂ϕ
+ i

∂y

∂ψ
=

1

ξ
=

1

u− iv
= e−τ+iθ.

After simple calculations, we obtain the following systems of equations

(3.14)



∂x

∂σ
(σ (I)) =

2C

π sinσ (I)
exp

(
−

N∑
k=0

ak cos (2kσ (I))

)
×

cos

(
−
(
π − γ

π

)
σ −

N∑
k=0

ak sin (2kσ (I))

)
.

∂y

∂σ
(σ (I)) =

2C

π sinσ (I)
exp

(
−

N∑
k=0

ak cos (2kσ (I))

)
×

sin

(
−
(
π − γ

π

)
σ −

N∑
k=0

ak sin (2kσ (I))

)
.

on AB
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and

(3.15)



∂x

∂σ
(σ (I)) =

2C

π sinσ (I)
exp

(
−

N∑
k=0

ak cos (2kσ (I))

)
×

× cos

(
−γ
π
σ −

N∑
k=0

ak sin (2kσ (I))

)
.

∂y

∂σ
(σ (I)) =

2C

π sinσ (I)
exp

(
−

N∑
k=0

ak cos (2kσ (I))

)
×

× sin

(
−γ
π
σ −

N∑
k=0

ak sin (2kσ (I))

)
.

on A′B′

And like

(1) y (σ (N + 1)) = 1 at the point A and y (σ (1)) = −x (σ (1)) tan
(γ
2

)
=

1

C
at the point

D for free surface AB.
(2) y (σ (N + 1)) = −1 at the point A

′ and y (σ (1)) = x (σ (1)) tan
(γ
2

)
= − 1

C
at the

point D
′ for the free surface A′B ′, and h =

π

2(N + 1)
.

We can find the contraction coefficient on the free surfaces AB and A′B ′ by the following
formula

1

C
=



1− h
N∑
I=1

2

π sinσ (I)

× exp

(
−

N∑
k=0

ak cos (2kσ)

)
sin

(
−
(
π − γ

π

)
σ −

N∑
k=0

ak sin (2kσ)

)
.

1− h
N∑
I=1

2

π sinσ (I)

× exp

(
−

N∑
k=0

ak cos (2kσ)

)
sin

(
−γ
π
σ −

N∑
k=0

ak sin (2kσ)

)
.

The shape of the free surfaces is obtained by integrating the relations (3.14) and (3.15)nu-
merically.

4. DISCUSSION OF RESULTS

We used the numerical scheme described in section 3 to compute solutions of different values
of the Weber number α for several values of the angle γ. The most of the results presented here
are obtained with N = 70.

4.1. Flow without surface tension. When the surface stress is neglected, Weber’s number α
tends towards the infinite and the equation of Bernoulli becomes

(4.1) exp (2τ) = u2 + v2 = 1, on the free surfaces

Exact analytical solutions can be computed via free streamline theory. We computed the solu-
tions numerically using the procedure described above and our results agree with the theoretical
and experimental results are given; (see Figure 4).
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Figure 4: Numerical comparison of the free surface shape for γ =
π

4

4.2. Flow with surface tension effect. When the effect of surface tension is included in the
free surface condition, there is an inexact solution known. We use the numerical procedure
described in section 3 to compute solutions of the problem for various values of the Weber
number α, and for various values of the angle γ.

In Figure 5 and Figure 6; when γ =
π

3
and γ =

π

4
, we showed different free surface profiles

for different values of the Weber number.
when the Weber number is very large, The free surface’s shape flattens and tends towards a

straight line (see Figure 5 and Figure 6). For even small α, the free surface’s shape was smooth
without capillary waves.
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Figure 5: Free surface’s shape for various values of Weber number α for the angle γ =
π
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Table 4.1: Values of the minimal Weber α0 for some values of the angle γ and values of the Weber number α∗

when the numerical scheme ceases to spare at original curve.

γ
π

2

π

3

π

4
α0 0.05 0.1 0.25
α∗ 25 50 100

We could compute solutions for the Weber number very small, when α ≤ α0, the algorithm
converges rapidly. As an example for γ = π/3 , we could compute the solution for all α ≥ 0.1.
For each value of γ there exists a critical value α∗ (see Table 4.1). For α ≥ α∗ all free surface
profiles for different values of α ≥ α∗ and for each fixed γ are the same graphs.

The Figure 7 shows the variation of the coefficient of contraction as a function of the Weber
number α.

0 2 4 6 8 10

1/

-0.8

-0.4

0.0

0.4

0.8

C

Figure 7: Variation of the contraction coefficient C according to the Weber number α for the angle γ =
π

4
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Table 4.2: The coefficients ak for various values of the Weber number α and various values of the angle γ.

γ α a1 a25 a48 a70
108 −7.5× 10−9 6.16× 10−12 1.23× 10−12 4.25× 10−14

π

4
500 −1.49× 10−3 1.24× 10−6 2.47× 10−7 8.46× 10−9

10 −7.15× 10−2 7.82× 10−5 1.55× 10−5 4.7× 10−7

0.01 −4.44 3.54× 10−3 7.57× 10−4 2.15× 10−5

107 −6.66× 10−8 5.47× 10−11 1.09× 10−11 3.77× 10−13

π

3
100 −6.63× 10−3 5.63× 10−6 1.12× 10−6 3.73× 10−8

50 −1.32× 10−2 1.15× 10−5 2.31× 10−6 7.49× 10−8

0.1 −2.039 3.17× 10−3 6.76× 10−4 1.92× 10−5

107 −5× 10−8 4.1× 10−11 8.21× 10−12 2.83× 10−13

π

2
250 −1.99× 10−3 1.66× 10−6 3.32× 10−7 1.12× 10−8

5 −9.16× 10−2 1.22× 10−4 2.44× 10−5 7.19× 10−7

0.05 −2.369 2.7× 10−3 5.78× 10−4 1.64× 10−5

107 −2.49× 10−8 2.05× 10−11 4.10× 10−12 1.41× 10−13

3π

4
150 −1.66× 10−3 1.39× 10−6 2.78× 10−7 9.35× 10−9

0.2 −6.34× 10−1 1.25× 10−3 2.66× 10−4 7.57× 10−6

107 −3.33× 10−8 2.74× 10−11 5.47× 10−12 1.88× 10−13

2π

3
100 −3.31× 10−3 2.81× 10−6 5.62× 10−7 1.86× 10−8

0.5 −4.22× 10−1 1.01× 10−3 2.13× 10−4 6.07× 10−6

The Table 4.2 present some values of the coefficients ak for different values of the Weber
number α and for different values of the angle γ. One finds for each value of α and for each
value of γ, the coefficients ak of the series (3.6). For fixed values of α , the coefficients ak were
found to decrease very rapidly as k increases (see Table 4.2).

5. CONCLUSION

From the above numerical results, we conclude that for all α ≥ α0 and for a fixed value of γ,
there is one and only one solution. In this case the series formulation provides a good approxi-
mation. We can say that the method we adopted for the solution in this work has the advantage
of converting from a two-dimensional problem to a one-dimensional problem using the conform
transformations as a first stage. Then, in the second stage, we solve the problem numerically
using truncation of the series technique, that enables us to obtain the results presented above.
The effectiveness of the method appears in the speed of data acquisition and accuracy, due to the
good convergence of the series. These results are very important, especially when they are used
to complete the solution of some mathematical problems in fluid mechanics in future research,
or to compare them with other problems solved in other ways.
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